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Abstract. We introduce simple codes and fast visualization tools for knotted
structures in complicated molecules and brain networks. Knots, links and more
general knotted graphs are studied up to an ambient isotopy in Euclidean 3-space.

A knotted graph can be represented by a plane diagram or a Gauss code. First we
recognize in linear time if an abstract Gauss code represents a graph embedded in
3-space. Second we design a fast algorithm for drawing any knotted graph in the
3-page book, which is a union of 3 half-planes along their common boundary.

The complexity of the algorithm is linear in the length of a Gauss code. Three-
page embeddings are encoded in such a way that the isotopy classification for
graphs in 3-space reduces to a word problem in finitely presented semigroups.

1 Introduction: Motivation and Problems on Knotted Structures

This is an extended version of the conference paper [13] with extra Appendices B, C,
D that describe key stages of the full algorithm for drawing 3-page embeddings.

Knotted structures are common in nature. For example, microscopic lines in liquid-
crystals [18] or Reeb graphs of complex shapes [2] can be knotted. Figure 1 shows large
brain neurons with many branching points. These structures are usually huge and more
complicated than simple closed curves studied in classical knot theory.

Pictures of knots can be attractive for humans, but robots would prefer a smaller
form or codes representing the same knotted object. Such codes are needed for auto-
matic analysis, however a final output is also important to visualise. We summarise our
requirements for processing knotted structures in the following 3 problems.

•Modeling: find a mathematical model for all possible knotted structures in R3.

• Encoding: represent any knotted structure by a simple code in a computer memory.

• Visualization: design a fast algorithm to visualize knotted structures given by codes.

Our suggested model for knotted structures is a possibly disconnected graph with
branching vertices and multiple edges that might be knotted in 3-space, see Definition 1.
For instance, any knot in 3-space is a non-self-intersecting closed curve or a loop.



Fig. 1. Neurons in the brain form a large knotted graph with many branching points in 3-space.

Knots live in 3-space, but it is easier to draw their planar projections with double
crossings. Such plane diagrams are usually represented by Gauss codes that specify the
order of overcrossings and undercrossings along a knot. We will extend classical Gauss
codes of knots and links to arbitrary knotted graphs in Definition 4.

Fig. 2. Plane diagrams (projections) of the trefoil, the Hopf link and a simple knotted graph.

A random code (of a required form) may not represent a real knotted graph, because
a planar drawing may need extra crossings. We solve this planarity problem for Gauss
codes of knotted graphs in Theorem 9. Our algorithm checks if a Gauss code is realized
by a graph in 3-space with a linear time complexity in the length of the given code.

Starting from any realizable Gauss code, we draw a corresponding graph in the 3-
page book, see Theorem 12. This book consists of 3 half-planes attached along their
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Fig. 3. Straighten a path α to build a 3-page embedding of a graph K5 ⊂ R3 from its diagram.

common boundary α called the spine. It is well-known that any graph can be topolog-
ically embedded in the 3-page book [1, Theorem 5.4]. However, an embedded graph
may cross many times the spine of the book. It is only known that O(|E| log |V |) spine
crossings suffice for embedding a graph with |V | vertices and |E| edges [6].

We largely strengthen the former result by designing a linear time algorithm to con-
tinuously move any graph embedded in 3-space to a graph within 3 pages. We review
other related work throughout the paper. Figure 3 is a high-level illustration of the fast
algorithm for a 3-page embedding of the graph K5 ⊂ R3. Appendix A contains more
details on the following advantages of 3-page embeddings over plane diagrams.

• Theorem 13 encodes 3-page embeddings of all knotted graphs in 3-space by easy
linear codes that form a finitely presented semigroup.

• Theorem 14 decomposes any topological equivalence between 3-page embeddings of
knotted graphs into finitely many local relations between 3-page codes.

2 Key Concepts on Knotted Graphs and Isotopy in 3-Space

A homeomorphism between spaces is a bijection that is continuous in both directions.
An embedding of one space into another is a continuous function f : X → Y that
induces a homeomorphism between X and its image f(X) ⊂ Y .

We study embeddings of undirected finite graphs, possibly disconnected and with
loops or multiple edges. The concept of a knotted graph extends the classical theory of
knots to arbitrary graphs considered up to isotopy in 3-space R3.

Definition 1 A knotted graph G ⊂ R3 is an embedding of a finite graph G. An ambient
isotopy between knotted graphs G,H ⊂ R3 is a continuous family of homeomorphisms
ft : R3 → R3, t ∈ [0, 1] such that f0 = id is the identity map on R3 and f1(G) = H .

An isotopy between directed graphs is similarly defined and should respect direc-
tions of edges. If the underlying graph G is a circle S1, then a knotted graph is a knot.
If G is a disjoint union of several circles, G ⊂ R3 is a link. A link isotopic to a union of
disjoint circles in R2 is trivial. The simplest non-trivial knot is the trefoil in the 1st pic-
ture of Figure 2. The simplest non-trivial link is the Hopf link in the middle of Figure 2.
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If an ambient isotopy keeps a small neighborhood of each vertex of a knotted graph
in one moving plane, the graph is called rigid. Rigid knotted graphs with vertices of only
degree 4 are sometimes called singular knots, because they consist of one or several
circles intersecting each other at singular points.

Definition 2 A plane diagram D of a knotted graph G ⊂ R3 is the image of G under
a projection R3 → R2 from 3-space R3 to a horizontal plane R2. In a general position
we assume that all intersections of a plane diagram D are double crossings so that the
crossings and the projections of all vertices of G are distinct. For each crossing of D,
we specify one of two intersecting arcs that crosses over another arc.

The key problem in knot theory is to efficiently classify knots and graphs up to
ambient isotopy. The first natural step is to reduce the dimension from 3 to 2. Any
isotopy of knotted graphs can be realized by finitely many moves on plane diagrams.
The following result extends Reidemeister’s theorem from knots to any knotted graphs.

Theorem 3 [8] Two plane diagrams represent isotopic knotted graphs in 3-space R3

if and only if the diagrams can be obtained from each other by an isotopy in R2 and
finitely many Reidemeister moves in Fig. 4. (The move R5 is only for rigid graphs, the
move R5′ is only for non-rigid graphs.)

The move R4 is shown in Fig. 4 only for a degree 4 vertex, moves for other degrees
are similar. The move R5 turns a small neighborhood of a vertex in the plane upside
down. So a cyclic order of edges at vertices is preserved in rigid graphs. The move R5′

can arbitrarily reorder all edges at a vertex. Theorem 3 formally includes all symmetric
images of moves in Figure 4.

Fig. 4. These Reidemeister moves on diagrams generate any isotopy of graphs in R3.

The Reidemeister moves or their analogs on Gauss codes are not local as they in-
volve distant parts of a graph or a Gauss code. This non-locality is a key obstacle for
simplifying codes of knots. That is why we later consider 3-page embeddings that allow
only finitely many local moves, see Theorems 12, 13, 14.
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3 Gauss Codes of Knotted Graphs and Abstract Gauss Codes

A standard way to encode a plane diagram of a knot is to write down labels of crossings
in a Gauss code. The Gauss code of a link has several words corresponding to all con-
nected components of the link. We extend this classical concept to any knotted graphs
G ⊂ R3. If a component of a knotted graph G ⊂ R3 is a circle without vertices, we add
a base point (a degree 2 vertex) to this circle.

Definition 4 Let D ⊂ R2 be a plane diagram of a knotted graph G with vertices
A,B,C, . . . We fix directions of all edges of G and arbitrarily label all crossings of
D by 1, 2, . . . , n. Then each crossing of D has the sign locally defined in Figure 5.

The Gauss code W of the diagram D consists of all words WAB , where each word
WAB is associated to a directed edge from a vertex A to a vertex B as follows:

•WAB starts with A, finishes with B and has the labels of all crossings in AB;

• if AB goes under another edge at a crossing i with a sign ε ∈ {±} as in Figure 5, we
add the superscript ε to i and get the symbol iε with the sign ε in WAB .

In the plane diagram the edges at each vertex A of the graph G are clockwisely ordered
in R2, so the Gauss code also specifies a cyclic order of all edges at the vertex A.

If G is a knot, Definition 4 requires at least one degree 2 vertex (a base point) on the
circle G. Then we may ignore degree 2 vertices and consider W as a cyclic word.

Fig. 5. Local rules for assigning signs of crossings in plane diagrams of knotted graphs.

In Figure 5 the diagram of the blue trefoil has the cyclic Gauss code 12+31+23+.
The diagram of the red knotted graph has the Gauss codeW = {AB; A1−2A; B12−B}
with the cyclic orders of edges at vertices (AB, 2A,A1−) and (AB,B1, 2−B). In this
example each edge is denoted by the pair of its endpoints . In general, if there are mul-
tiple edges with the same endpoints, we use distinct labels for all different edges.

A Gauss code of any undirected graph depends on a choice of extra degree 2 ver-
tices, directions of edges, an order of crossings. If a plane diagram of a knotted graph
corresponds to a Gauss code, then this diagram is unique up to isotopy in the plane. We
explicitly construct a plane diagram from a Gauss code in the proof of Theorem 9.

Here is a naive approach to drawing a plane diagram represented by a Gauss-like
code W . We can plot vertices A,B,C, . . . and crossings 1, 2, . . . , n anywhere in R2.
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Since W specifies the cyclic order of edges at each vertex A in Definition 4, we may
draw short arcs around A in a correct cyclic order. Now we should connect all vertices
and crossings that have adjacent positions in the codeW by continuous non-intersecting
arcs in the plane.

The last step fails for the word 12+1+2 that does not encode any plane diagram.
Indeed, if we try to draw a closed curve with 2 self-intersections as required by 12+1+2,
we have to add a 3rd intersection (a virtual crossing) to make the curve closed. This
obstacle can be resolved if we draw a diagram on a torus as in Figure 7, because we
can hide a virtual crossing by adding a handle. Another approach is to embrace virtual
crossings, which has led to virtual knots.

If we study properly embedded graphs, we need to recognize planarity of Gauss
codes, namely we will determine if a Gauss code W represents the plane diagram of
some knotted graph G ⊂ R3. So we first introduce abstract Gauss codes in Definition 5
and then recognize their planarity in the general case of knotted graphs in Theorem 9.

Definition 5 Let the alphabet consist ofm lettersA,B,C, . . . and 3n symbols i, i+, i−

for i = 1, . . . , n. An abstract Gauss code W is a set of words such that

• the first and last symbols of each word in the code W are letters (of vertices),

• the set of symbols in all words (apart from the initial and final letters) contains, for
each i = 1, . . . , n, the symbol i and exactly one symbol from the pair i+, i−.

Each of the m letters defines a cyclic order of all symbols adjacent to this letter. The
length |W | is the total length of all words minus the number of words.

The Gauss code of any plane diagram of a knotted graph G from Definition 4 satis-
fies the conditions above. Indeed, the lettersA,B,C, . . . denote (projections of) vertices
of G. Then every edge contains crossings labeled by i, i+ or i− for i = 1, . . . , n.

The clockwise order of edges around any vertex A in the plane diagram of G in
R2 defines the cyclic order of vertices and crossings adjacent to A. If a component of
G is a circle, we may remove its vertices of degree 2 and write the remaining symbols
as in the cyclic code 12+31+23+ of the trefoil in Figure 5. The total number of these
symbols equals the double number of crossings.

4 Planarity Criterion for Gauss Codes of Knotted Graphs

The planarity problem is to determine whether it is possible to draw a plane diagram
represented by an abstract Gauss codeW . To avoid potential self-intersections, we shall
draw a diagram not in the plane, but in the Gauss surface S(W ) defined below.

First we introduce the abstract graph G(W ) describing the adjacency relations be-
tween symbols in a Gauss code W . Then we attach disks to G(W ) to get the surface
S(W ) containing a required diagram without self-intersections. The criterion of pla-
narity will check if the surface S(W ) is a topological sphere S2.
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Definition 6 Any abstract Gauss codeW withm lettersA,B, . . . and 2n symbols from
{i, i+, i− | i = 1, . . . , n} gives rise to the Gauss graph G(W ) with m + n vertices
labeled by A,B, . . . and 1, 2, . . . , n.

We connect vertices p, q by a single edge in G(W ) if p, q (possibly with signs) are
adjacent symbols inW . Below when we travel along an edge from p to q, we record our
path by (p, q)+ if q follows p in the code W (in the cyclic order), otherwise by (p, q)−.

We define unoriented cycles in the graph G(W ) by going along edges and turning
at vertices according to the following rules illustrated in Figure 6:

• if we came to one of the vertices A,B,C, . . . from its neighbor, then we turn to the
next neighbor in the clockwise order specified in the Gauss code W ;

• at each vertex labeled by i ∈ {1, . . . , n} we turn to the next edge by one of the rules
below for a unique possible choice of δ ∈ {+,−} and both ε ∈ {+,−}

(p, i)+ → (iδ, q)δ, (p, i)− → (iδ, q)−δ, (p, i+)ε → (i, q)−ε, (p, i−)ε → (i, q)ε.

We stop traversing cycles when every edge was passed once in each direction. The
Gauss surface S(W ) is obtained from G(W ) by gluing a disk to each cycle.

Fig. 6. Interpretation of the ‘turning-left’ rules for traversing cycles in the Gauss graph G(W ).

The number of edges in the graph G(W ) equals the length |W | of the code W .
The rules for traversing cycles in Definition 6 geometrically mean that at each vertex
or crossing we turn left to a unique edge and can pass every edge exactly once in each
direction. Hence the Gauss surface of any abstract Gauss code is a compact orientable
surface without boundary. From now on we assume that all diagrams, Gauss graphs and
surfaces are connected. Otherwise each connected component is considered separately.

Lemma 7 For the Gauss code W of any connected plane diagram of a knotted graph
G ⊂ R3, the Gauss surface S(W ) is homeomorphic to a topological sphere S2.
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Proof. We assume that the given diagram D is contained in a sphere S2 instead of a
plane R2. Then the Gauss graph G(W ) can be identified with the diagram D, though
G(W ) was introduced as an abstract graph not embedded into any space. When we
traverse the cycles in D = G(W ) from Definition 6, we pass over the boundaries of
all connected components of S2 − D. Indeed, each time we turn left in the diagram
D ⊂ S2 according to the geometric rules in Figure 6. Hence the Gauss surface S(W )
can be identified with the sphere S2 containing the diagram D = G(W ). �

Example 8 We construct the Gauss surface of the abstract Gauss code W = 12+1+2,
whose diagram with one virtual crossing is in Figure 7. For simplicity, we removed the
degree 2 vertex from the circle and consider the word 12+1+2 in the cyclic order.

Then 4 pairs 12+, 2+1+, 1+2, 21 of adjacent symbols in the code W lead to the
Gauss graph G(W ) whose 2 vertices with labels 1, 2 are connected by 4 edges with la-
bels (1, 2+), (2+, 1+), (1+, 2), (2, 1), see Fig. 7. Recall that the edges labeled by (2, 1)
and (2+, 1+) meet at a non-avoidable virtual crossing in the plane, but the abstract
Gauss graph G(W ) has only 2 vertices.

If we start traveling from the edge (1, 2+)+ in the same direction as in W , the next
edge should be (2, 1+)− by the rule (p, i+)ε → (i, q)−ε, where p = 1, i = 2, ε = +
uniquely determine the next symbol q = 1+ from the code W (going from 2 in the
opposite direction). After passing the second edge (2, 1+)−, we return to the first edge
(1, 2+)+ by the same rule (p, i+)ε → (i, q)−ε for p = 2, i = 1, ε = −, q = 2+.

Fig. 7. The code W = 12+1+2 is realizable on a torus, G(W ) has two red dashed cycles.

So the 1st cycle consists of 2 edges (12+)+ and (2, 1+)−. The 2nd cycle consists
of 6 edges (1+, 2)+ → (2+, 1+)+ → (1, 2)− → (2+, 1)− → (1+, 2+)− → (2, 1)+.
Both cycles of G(W ) are shown by red dashed closed curves in Figure 7. The resulting
Gauss surface S(W ) with 2 vertices, 4 edges, 2 faces has the Euler characteristic χ =
2− 4 + 2 = 0 and should be a torus as expected from the 2nd picture in Figure 7.

The Euler characteristic of a surface subdivided by a graph with |V | vertices and
|E| edges into |F | faces (topological disks) is defined as χ = |V | − |E| + |F | and is
invariant up to a homeomorphism (a bijection continuous in both directions).

Any orientable connected compact surface of a genus g (the number of handles)
and b boundary components (circles) has χ = 2− 2g − b ≤ 2. Hence a sphere S2 with
χ = 2 is detectable by the Euler characteristic among connected compact surfaces.

Theorem 9 extends [12, Algorithm 1.4] from links to arbitrary knotted graphs.
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Fig. 8. A path α through all vertices of any planar graph meets every edge at most once

Theorem 9 Given an abstract Gauss code W of a length |W |, an algorithm of time
complexity O(|W |) can determine if the given Gauss code W represents a plane dia-
gram of a knotted graph G ⊂ R3.

Proof. The Gauss surface S(W ) of any abstract Gauss codeW contains the diagramD
encoded by W due to the geometric interpretation of the rules in Figure 6. We assume
that S(W ) is connected, otherwise we separately consider each connected component
below. This surface has the maximum Euler characteristic χ among all orientable con-
nected compact surfaces S that contain the diagram D and have no boundary.

Indeed, after cutting the underlying graph of the diagram D ⊂ S, the surface S
splits into several components. The Euler characteristic of S is maximal when all these
components are disks as in the Gauss surface. The disk has χ = 1, which is maximal
among all compact surfaces whose boundary is a circle.

To decide the planarity of the Gauss code W , it remains to determine if the Gauss
surface S(W ) is a sphere S2, which is detectable by the Euler characteristic χ = 2 in the
class of all orientable connected compact surfaces S without boundary. For computing
the Euler characteristic χ, we use the Gauss graphG(W ), which splits the Gauss surface
S(W ) into topological disks by Definition 6.

Namely, the surface S(W ) has m+ n vertices, |W | edges and the number of faces
equal to the number of cycles. We count all cycles in the graph G(W ) in time O(|W |)
by a double traversal of W according to the rules in Figure 6. Hence in time O(|W |)
we compute χ = m+ n− |W |+ #(cycles) and determine if the Gauss surface S(W )
is homeomorphic to a topological sphere S2. �

5 Embedding any Knotted Graph into a 3-Page Book

Our algorithm will draw a 3-page embedding of a knotted graph G, which is usually
represented by a plane diagram or by a Gauss code. Even for knots, an abstract Gauss
code may not represent a closed curve in 3-space. That is why we first solve the planarity
problem for Gauss codes of knotted graphs in Theorem 9.

If we know that a given Gauss code represents a plane diagram D of a knotted
graph G, the next step in Theorem 11 is to draw the diagram D in a 2-page book as
defined below. After that we upgrade this topological 2-page embedding of D to a 3-
page embedding of G in linear time, see Theorem 12.
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Definition 10 The k-page book consists of k half-planes with a common boundary line
α called the spine of the book. An embedding of an undirected graph G into the k-page
book is topological if the intersection of G with the spine α is finite and includes all
vertices of G. A spine point of the embedded graph G is any non-vertex point in the
spine α. If G has no spine points, so every edge of G is contained in a single page, then
the k-page book embedding of G is called combinatorial.

A graph D is planar if D can be embedded in R2. Any undirected planar graph has
a combinatorial 4-page embedding [20]. Figure 8 shows a non-hamiltonian maximal
planar graph that can not be combinatorially embedded into 2 pages [1, section 5].
Any topological 2-page embedding of this graph will have spine points. The linear time
algorithm below guarantees at most two spine points per edge.

Theorem 11 [5, Theorem 1] Given a planar undirected graph D ⊂ R2 with |V | ver-
tices, an algorithm of linear time complexityO(|V |) can draw a topological embedding
of the graph D in the 2-page book with at most two spine points per edge.

Two more pictures in Figure 8 illustrate the key idea how we can construct a non-
self-intersecting path α that passes through each vertex once and intersects each edge at
most once. By an isotopic deformation of R2, the path α can be converted into a straight
spine, which splits the plane into 2 pages. Since all vertices and crossings of D are in
the spine α, we get a required topological 2-page embedding of D.

We are not going to minimize the number of bends of edges in a 2-page embedding
of a plane diagramD, because we shall construct 3-page embeddings of original knotted
graphs with a linear number O(|W |) of total bends in the length of a Gauss code W .

Theorem 12 Given an abstract Gauss codeW , an algorithm of time complexityO(|W |)
determines ifW represents a plane diagram of a knotted graphG ⊂ R3 and then draws
a topological 3-page embedding of a graph H isotopic to G. Moreover, the graph H
has at most 12|W | intersections with the spine of the book.

Proof. We first apply the linear time algorithm from Theorem 9 to determine if the
code W represents a plane diagram D of a knotted graph G. If yes, we draw a 2-page
embedding of the diagram D ⊂ R2 in linear time using the algorithm of Theorem 11.

At every crossing in the diagram D, we mark a short red arc that crosses over an-
other arc in D. The centers of all these marked arcs are all crossings of D, which are
already in the straight spine α of the 2-page book. We may slightly deform the embed-
ding ofD by pushing the marked red arcs into the spine α. The full list of local upgrades
of crossings has only 10 types in Table 1 justified by Lemma 20 in Appendix D.

Now we push all marked red arcs into the extra 3rd page attached along α above the
diagram D. So we have upgraded the 2-page embedding of D to a 3-page embedding
of a knotted graph H isotopic to the original graph G, see Fig. 9 and 10.

We need a constant time per crossing, so O(|W |) in total, for a 3-page embedding
of H . Since the diagram D has |W | edges, the 2-page embedding of D with at most
2 spine points per edge has at most 3|W | points in the spine α. Each crossing of D is
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Crossing Upgraded Crossing Crossing Upgraded Crossing
(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Table 1. Necessary local upgrades of crossings from 2 to 3 pages, see Lemma 20 in Appendix D.

replaced by at most 4 intersections with the spine α in a 3-page embedding of H . The
total number of points in the intersection of H and the spine α is at most 12|W |. �

The codes of 3-page embeddings in Fig. 9 and 10 are explained in Appendix A.

6 Discussion and 10 Open Problems on Knotted Graphs

We now discuss our results in the light of a huge gap between real-life experiments and
pure mathematics. Experimental data are usually given in the form of unstructured and
noisy clouds of points. If we have only 2D images as in Figure 1, then we also need to
extract a knotted structure in a suitable form.

Pure mathematicians have developed deep theories how to classify complicated ge-
ometric objects including knots. However, all mathematical algorithms start from ideal
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models, say a closed curve given by continuous functions or a polygonal curve given
by a sequence of points connected by straight edges.

Fig. 9. Hopf link and Hopf graph with Gauss codes and 3-page embeddings

The key challenge is to convert any unstructured experimental data into an ideal
theoretical model that can be rigorously analyzed by existing mathematical methods.
The first advance in this direction is computing the fundamental group of a knot com-
plement from a point cloud in [4]. We state open problems relating practice and theory
for knotted graphs. We are open to collaboration on these and any related projects.

Fig. 10. Left-handed and right-handed trefoils with Gauss codes and 3-page embeddings

1. State and prove a criterion of planarity of Gauss codes of knotted graphs using com-
binatorial invariants like sums of signs similarly to [12, Theorem 3.6].

2. Let a link of n components be given as an unordered union of m ≥ 2n open arcs (or
sequences of points). How can we ‘correctly’ join corresponding endpoints of the arcs
to form n closed curves in R3?

3. When drawing pictures on a tablet, a few intersecting curves can be represented by
several sequences of 2D points sampled along the curves. Under what conditions on the
curves and sample, can we quickly reconstruct the curves using only the sample?

4. Design a fast algorithm to convert an unstructured 3D point cloud sampled around an
unknown knotted structure into a Gauss code W of a knotted graph.

5. Design an algorithm to convert a 2D image of a knotted graph into a Gauss code W .

Our current work on visualizing Gauss codes is an important step in the hard prob-
lems above. First, we may try to recognize small patches of vertices and crossings in a
2D image of a knotted graph, but after that we should combine them in a Gauss code
whose planarity can be quickly checked by Theorem 9.
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Second, if we need to visualize any noisy cloud sampled from an unknown knot
K ⊂ R3, we may draw a knot isotopic to K using its Gauss code and Theorem 12.
Even more importantly we often wish to get a simplified (minimal) version of a knot.

The state-of-the-art simplification algorithm for recognizing trivial knots available
at http://www.javaview.de/services/knots is based on 3-page embeddings. We remind
how to extend this approach to graphs in Appendix A and state more problems below.

6. Design an algorithm to untangle diagrams of graphs isotopic to planar graphs.

7. Extend the algorithm for drawing knotted graphs in 3 pages to drawing 2-dimensional
surfaces in a universal 3-dimensional polyhedron (the hexabasic book) from [9].

8. Decide if the problem to find a 3-page embedding of a knotted graph G ⊂ R3 having
the minimum number of intersections with the spine α is NP-hard.

9. Use the computed invariants to build a database of isotopy classes of knotted graphs
similarly to the Knot Atlas at http://katlas.math.toronto.edu.

10. Define a kernel [16] on point clouds representing knotted graphs so that one can use
tools of machine learning for automatic recognition of real-life knotted structures.

The earlier version [13] of this paper had other Problems 1 and 8 about knotted
graphs G ⊂ R3 given as sequences of points, say positions of atoms in a protein back-
bone. These problems were solved in [14] and replaced above by harder questions.

Algorithms from Theorems 9, 11 and 12 are described in Appendices B, C, D, respec-
tively. A C++ code will be on the webpage http://kurlin.org of the first author, who
thanks EPSRC for funding his secondment at Microsoft Research Cambridge. More
examples are included in the forthcoming MSc thesis [17] of the second author.
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Appendix A: semigroups for classifying graphs up to isotopy

We remind how to encode 3-page embeddings of all knotted graphs by words in a simple
alphabet. Since edges with vertices of degree 1 can be easily unknotted by isotopy in
3-space, for simplicity we consider below only graphs without degree 1 vertices.

Fig. 11. Local 3-page embeddings for the generators of the semigroups from Theorem 14.

To explain the 3-page encoding of knotted graphs, let us deform any 3-page em-
bedding so that all arcs are monotonically projected to the spine α. Then the 3-page
embedding can be uniquely reconstructed from its thin neighborhood around α.
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Namely, if we know only directions of arcs going from all spine intersections, we
can uniquely join these arcs in each of 3 pages. Hence we can encode any 3-page em-
bedding by the ordered list of local embeddings at all intersections in the spine α.

Theorem 13 [11, Theorem 1.6a] Any 3-page embedding of a knotted graph G with
vertices up to degree n can be encoded by a word in the alphabet consisting of the letters
ai, bi, ci, di and xk,i for each degree k = 3, . . . , n, where i = 0, 1, 2, see Fig. 11.

Fig. 11 shows 12 local embeddings ai, bi, ci, di, i ∈ Z3 = {0, 1, 2}, which are suf-
ficient for encoding 3-page embeddings of knots and links. The notation ai emphasizes
that all ai can be obtained from each other by a rotation around the spine α.

For encoding graphs in Theorem 13, we can make sure that at each vertex the spine
separates one or two arcs from others.Then only 3 local embeddings are enough for
each degree, see 3 neighborhoods x3,0, x3,1, x3,2 of a degree 3 vertex in Fig. 11.

The 3-page embedding K5 ⊂ R3 in Fig. 3 can be represented by the 3-page code
w = a1d1 (a1b1x4,1)2(a1d1x4,1)d1(x4,1d1c1)(x4,1b1c1)d2c1c2.

The following result completely reduces the topological classification of knotted
graphs up to isotopy in R3 to a word problem in finitely presented semigroups. The
cases of 3-regular graphs and 4-regular graphs (singular knots) appeared in [10], [15].

Theorem 14 [11, Theorems 1.6 and 1.7] There is a finitely presented semigroup whose
all central elements are in a 1-1 correspondence with all isotopy classes of knotted
graphs with vertices of degree up to n. An algorithm of a linear complexity O(|w|) de-
cides if an element w of the semigroup is central, i.e. commutes with all other elements.

So two knotted graphs G,H ⊂ R3 are isotopic in 3-space if and only if their cor-
responding central elements wG, wH are equal in the semigroup. A stronger result in
[9] says that all isotopies between 3-page embeddings of arbitrary knotted graphs are
realizable in the hexabasic book U × [0, 1], where U is the union of the 3-page book
P0 ∪ P1 ∪ P2 (with the common boundary line α) and a plane P3 orthogonal to α.
Theorem 14 has been extended to the isotopy classification of surfaces in R4 [9].

There are two semigroups:RSGn for rigid knotted graphs with vertices up to degree
n and NSGn for non-rigid graphs. Both semigroups have 12 generators ai, bi, ci, di,
i ∈ {0, 1, 2}, and 3(n − 2) generators for vertices up to degree n, so 3 generators for
each degree from 3 to n, see Fig. 11. The operation in the semigroups is the concatena-
tion of words. The unit is the empty word ∅. The generators ai, ci, xk,i are not invertible,
while bi, di are inverses of each other. In the case of links for n = 2, the semigroup has
48 relations (1)–(4), where the index i ∈ Z3 = {0, 1, 2} is considered modulo 3.

(1) d0d1d2 = 1 and bidi = 1 = dibi;

(2) ai = ai+1di−1, bi = ai−1ci+1, ci = bi−1ci+1, di = ai+1ci−1;

(3) w(dici) = (dici)w for w ∈ { ci+1, bidi+1di };
(4) uv = vu, where u ∈ { aibi, bi−1didi−1bi }, v ∈ { ai+1, bi+1, ci+1, bidi+1di }.
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One of the 7 relations in (1) is superfluous as it follows from the remaining 6. The
generators ai, bi, ci, d2 can be expressed only in terms of d0, d1, but the resulting rela-
tions between d0, d1 will be longer. All defining relations of the semigroups represent
elementary isotopies between 3-page embeddings, see [13, Appendix].

For knotted graphs with vertices of only degree 3, any non-rigid isotopy can be
made rigid, because we can keep 3 short arcs at any vertex in a moving plane. Hence
both semigroups for rigid and non-rigid isotopies from Theorem 14 are the same for
n = 3. In this case the extra relations in addition to (1)–(4) are (5)–(9), see [10], [11]:
(5) x3,i−1 = di−1x3,idi+1;
(6) x3,ibi(d2i d

2
i+1d

2
i−1) = (didi+1di−1)x3,ibi;

(7) x3,idi = ai(x3,idi)ci, bix3,ibi = ai(bix3,ibi)ci;
(8) ux3,i+1 = x3,i+1u for any word u from { aibi, dici, x3,ibi, bi−1didi−1bi };

(9) (x3,ibi)v = v(x3,ibi)v for any word v from { ai+1, bi+1, ci+1, bidi+1di }.

Knotted graphs that have only vertices of degree 4 and are considered up to rigid
isotopy are often called singular knots. Each singular point remains a transversal inter-
section of two arcs during a rigid isotopy, so the cyclic order of all arcs at any degree 4
vertex is invariant. The semigroup of Theorem 14 for singular knots has 15 generators
ai, bi, ci, di, x4,i, relations (1)–(4) above and relations (10)–(14) below, see [11, 15]:
(10) x4,i−1 = bi+1x4,idi+1;
(11) (dix4,ibi)(d

2
i d

2
i+1d

2
i−1) = (d2i d

2
i+1d

2
i−1)(dix4,ibi);

(12) dix4,idi = ai(dix4,idi)ci, bix4,ibi = ai(bix4,ibi)ci;
(13) wx4,i+1 = x4,i+1w for any word w from { aibi, dici, dix4,ibi, bi−1didi−1bi };
(14) (dix4,ibi)v = v(dix4,ibi)v for any word v from { ai+1, bi+1, ci+1, bidi+1di }.

The hard part of Theorem 14 says that any isotopy between graphs decomposes into
finitely many elementary isotopies involving a small part of a 3-page code. This is the
main advantage of the 3-page encoding over plane diagrams and Gauss codes. Indeed,
Reidemeister moves in Fig. 4 and their analogues on Gauss codes are not local.

The linear time algorithm for detecting a central element w checks if the arcs corre-
sponding to all letters ofw properly meet each other in every page to form an embedding
of a graph without hanging edges. For example, the letter a2 doesn’t encode any knotted
graph, but a2c2 does, because the arcs of a2, c2 meet and form a closed curve.

The 3-page code of a knotted graph commutes with any other element w in the
semigroups from Theorem 14. For instance, a trivial knot has the code a2c2 and can be
isotopically moved in R3 to another side of the 3-page embedding represented by w.

Appendix B: Algorithm 1 for checking planarity of any Gauss code

The input is an abstract Gauss codeW from Definition 5. The output is a plane diagram
(if it exists) having the same Gauss code W . The plane diagram will be obtained as the
Gauss graph G(W ) with topological disks attached to certain cycles of G(W ).
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Stage 1.1: simplifying a Gauss code W by Reidemeister moves I, see Fig. 4.

We go along a Gauss code W and check all pairs of two successive symbols. If the
pair is one of (k, k+), (k, k−), (k+, k), (k−, k) corresponding to the same k-th cross-
ing, we remove this pair from W and continue from the symbol before the removed
pair. If W is cyclic (for a circle), at the end we compare the 1st and last symbols of W .

Stage 1.2: building the abstract Gauss graph G(W ) of a Gauss code W .

The Gauss graph G(W ) was introduced in Definition 6. The nodes of G(W ) are
all different vertices and crossings extract from the Gauss code W after forgetting all
signs. We store the graphG(W ) in memory by using three arrays NodeTypes, EdgeList,
WedgeList. NodeTypes[r] is 0 if r is a vertex, 1 if r is a positive crossing, −1 if r is a
negative crossing. The EdgeList consists of ordered pairs (i, j), where i, j are indices of
nodes in NodeTypes. The WedgeList for each node n contains indices of edges attached
to n and ordered according to the cyclic order from W (starting from any edge).

Stage 1.3: subdividing the Gauss graph G(W ) to remove multiple edges.

It will be convenient to avoid multiple edges of G(W ) for Algorithm 2 building a
2-page embedding. For each node n, we check all attached edges. If we find two edges
with the same endpoint k 6= n, we add a midpoint to one of these edges.

Stage 1.4: splitting the Gauss graph into different connected components.

We split the subdivided Gauss graph into connected components by using the Boost
algorithm [3] based on a Breadth First Search. From now on we assume that G(W ) is
a connected graph without loops and double edges.

Stage 1.5: finding cycles in the Gauss graph G(W ) and checking planarity.

We initialise the boolean PassList whose 2 halves can be viewed as two (forward
and backward) lists indexed by edges ofG(W ). Every bit in each of the halves indicates
whether we have passed the corresponding edge in the forward or backward direction
whilst building cycles. Each entry in PassList is initially false. We shall keep track of
the index least in this list so that all edges with indices less than least are passed.

Step 1. Starting at the index least, check each entry of the edge list until a false entry is
found. If we reach the end of the list, we have found all cycles.

Step 2. Change least to the found index i of the next edge that wasn’t passed yet. Set
PassList[i] = true and start a new cycle from this i-th oriented edge e. Repeat the
following substeps until the next passed edge is once again e.

2a. For each edge, use EdgeList, WedgeList to find the node being moved towards.

2b. To make the ”left-turn” for traversing a cycle from Definition 6 and Fig. 6, we take
the next edge from the list of cyclically ordered edges at the node from the substep 2a.

2c. Change the boolean entry in PassList for the new passed edge to true.

Step 3. Store the cyclic order of the edges in the found cycle, and move back to Step 1.
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Step 4. Compute the Euler characteristic of the Gauss surface S(W ) by the formula
χ = V − E + F . Here V,E are the numbers of nodes and edges, respectively, in
G(W ). The number of cycles (or disks attached to the graph) is denoted by F .

Step 5. If χ 6= 2, the given Gauss code W doesn’t correspond to any knotted graph as
shown in the proof of Theorem 9. Otherwise, we output an embedding G(W ) ⊂ S2 as
the graph G(W ) with its NodeTypes, EdgeList, PassList and all found cycles.

Fig. 12. Left: trefoil with signs of crossings and a base point p for WTref = 12+31+23+.
Middle: subdivided Gauss graph without double edges from Stage 1.3 of Algorithm 1. Right: 5
cycles found in the subdivided graph at Stage 1.5 of Algorithm 1, so χ = 6 − 9 + 5 = 2.

Appendix C: Algorithm 2 for drawing a 2-page embedding

The input is an embedding G ⊂ S2 of an abstract graph G with the boundary cycles
of all faces (connected components of S2 − G). The output is a topological 2-page
embedding G ⊂ P0 ∪ P1 (of a graph isotopic to the given one in S2). Here the half-
planes P0 and P1 have the common boundary (spine) α containing all nodes of G.

Stage 2.1: extending a given graph G to a maximal planar graph Ḡ.

We triangulate each face whose boundary has more than 3 nodes as follows.

Step 1. Pick a node v and use WedgeList, EdgeList to find its neighbors u,w.

Step 2. If u,w are connected by an edge (outside the current face), v cannot be con-
nected to any other node x 6= u, v, w of the face, so we add all such edges (v, x).
Otherwise, we add the edge (u,w) cutting the triangle (u, v, w) from the current face.

Step 3. Start again with a new face if it still has more than 3 nodes.

For the embedded Gauss graph of the trefoil code WTref , the only non-triangular
face in Fig. 12 is {5, 1, 4, 2, 6, 3}. To triangulate this face, we begin with node 1, and
check if its neighbors in the face are adjacent in the graph. Node 1 has neighbours 4 and
5 in the face, which a quick check revels is not an edge in our list and so we add edge
(4,5), and create new cycles {5, 1, 4} and {4, 2, 6, 3, 5}. Similarly edges (4,6) and (6,5)
are added, in order to get a triangulation from the graph Ḡ(WTref ).
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Stage 2.2: building a canonical ordering on the nodes of the maximal planar graph Ḡ
A graph G is k-connected ifG has at least k+1 nodes and the removal of any k−1

or fewer nodes with all their incident edges keeps the graph connected.

Definition 15 Given a maximal planar graph G ∈ R2 on n ≥ 3 nodes, an ordering of
the nodes v1, v2, . . . , vn of G is called canonical if for each 3 ≤ k < n the subgraph
Gk induced by the nodes v1, . . . , vk has the following properties.
(a) The subgraph Gk is 2-connected and its external face Fk has the edge v1v2.
(b) The neighbors of vk+1 in Gk form a path on the boundary of the face Fk.

A canonical ordering exists by [7, Proposition 3] and is implemented in [3].

Fig. 13. Left: illustration of Definition 15. Right: drawing Ḡ(WTref ) using a canonical ordering.

Stage 2.3: drawing a 2-page embedding of the maximal planar graph Ḡ
We implemented the algorithm from [5] drawing a topological 2-page embedding

G ⊂ P0 ∪ P1 of any maximal planar graph whose nodes v1, . . . , vn are added to the
spine according to their canonical ordering. We put the edge between the first 2 nodes
v1, v2 into the lower page P1. For each next node vk, we follow the steps below.

Step 1. Find the embedded neighbors w1, . . . , wl of vk, where w1 is the leftmost in α.

Step 2. Embed vk into α just to the right of w1, and embed the edge (vk, w1) in P1.

Step 3. We connect vk with its neighbour w2 according to the substeps below.
3a. If vk and w2 are consecutive in the spine, we embed the edge (vk, w2) in P1.
3b. If vk, w2 are not consecutive, we embed (vk, w2) with 2 extra spine intersections
p, q, namely (vk, w2) splits into 3 subedges (vk, p) ⊂ P1, (p, q) ⊂ P0, (q, w2) ⊂ P1.

Step 4. For each neighbor wi, 3 ≤ i ≤ l, we embed the edge (vk, wi) as in substep 3b.

Step 5. Update EdgeList when we subdivide an edge into 3 subedges in Steps 3b, 4.

We explain the steps above by drawing the trefoil graph Ḡ(WTref ) from the last
picture in Fig. 14. This graph has a canonical ordering of nodes {1, 3, 4, 2, 5, 6}. We
embed the node v3 = 4 between the first 2 nodes v1 = 1 and v2 = 3 by Steps 2 and 3a
in the 2nd picture of Figure 14. We embed the node v4 = 2 with 3 already embedded
neighbors 1, 4, 3 by Steps 2, 3, 4 above in the 3rd picture of Figure 14.
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Fig. 14. A maximal planar graph Ḡ(WTref ) and drawing its 2-page embedding in Stage 2.3.

We introduce the dual graph below in order to show in Proposition 19 that the above
algorithm produces an embedding isotopic to an original maximal planar graph.

Definition 16 Given a planar graph G ⊂ R2, the dual graph G∗ ⊂ R2 has a node for
each face of G and a continuous arc connecting nodes from any adjacent faces of G.

Theorem 17 (Whitney [19, Theorem 11]) A 3-connected planar graph G with a fixed
external face has a unique dual graph G∗ ⊂ R2 up to isotopy in the plane.

Corollary 18 Any 3-connected planar graph without loops and multiple edges has a
unique planar embedding (up to isotopy) with a choice of external face of G

Proof. Let G1, G2 ⊂ R2 be planar embeddings of the same abstract graph with the
same external face. By Theorem 17, the duals G1

∗ and G2
∗ are isotopic. By Defi-

nition 16 the double dual G1
∗∗ is isotopic to G1 and G2

∗∗ is isotopic to G2. Since
G1
∗ ∼ G2

∗, we conclude that G1
∗∗ ∼ G2

∗∗, hence G1 ∼ G1
∗∗ ∼ G2

∗∗ ∼ G2.

Proposition 19 For any maximal planar graph Ḡ ⊂ R2 with a fixed external face,
Stage 2.3 outputs a 2-page embedding isotopic to the original embedding Ḡ ⊂ R2.

Proof. We may assume that a given maximal planar graph G has at least 4 nodes, then
G is 3-connected. Since G has a fixed external face, no loops or double edges, G has a
unique planar embedding by Corollary 18. Since the 2-page embedding from Stage 2.3
has the same face, the output is isotopic to the original embedding of G. �

Stage 2.4: restricting a 2-page embedding of a maximal planar graph Ḡ to G
At Stage 2.1 we extended a planar graph G to a maximal planar graph Ḡ in order

to use a canonical ordering for drawing a 2-page embedding. Erase the edges added at
Stage 2.1 to get a 2-page embedding of G, see the 1st picture in Fig. 15.
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Appendix D: Algorithm 3 for drawing a 3-page embedding

Algorithm 1 in Appendix B starts from a Gauss code W and outputs an embedded
(possibly, subdivided) Gauss graph G(W ) ⊂ S2 (if it exists). Then we fix an external
face to get an embedding G(W ) ⊂ R2. Algorithm 2 in Appendix C outputs an isotopic
2-page embeddingG(W ) ⊂ P0∪P1. In Algorithm 3 the input is the 2-page embedding
with signs of crossings coming from the Gauss code W . The output will be a 3-page
embedding K(W ) ⊂ P0 ∪ P1 ∪ P2 of a knotted graph isotopic to a graph given by W .

Stage 3.1: upgrading crossings in a 2-page embedding to get a 3-page embedding.

Lemma 20 There are exactly 10 types of crossings in P0∪P1 obtained by Algorithm 2.

Proof. According to the steps of Stage 2.3, all 4 (sub)edges incident to each each cross-
ing are in the lower page P1. Each of these 4 edges goes either to the left or to the right
of the crossing. There are 5 ways to split 4 edges into 2 groups of left and right edges.
For each of 5 ways, there are 2 types of crossings, see all 10 types are in Table 1. �

We upgrade each crossing in a 2-page embedding G(W ) ⊂ P0 ∪ P1 to a local 3-
page embedding according to Table 1. The resulting global embedding defines a knotted
graph K(W ) ⊂ P0 ∪ P1 ∪ P2, because in every page all arcs join each other.

Fig. 15. Left: 2-page embedding of the Gauss graph G(WTref ) from Stage 2.4 with resolved
crossings for Stage 3.1. Right: 3-page embedding of the trefoil G(WTref ) obtained at Stage 3.1.

Stage 3.2: computing the element of a knotted graph K(W ) in a 3-page semigroup.
The 3-page embedding obtained at Stage 3.1 may contain spine intersections with

both arcs in the same page. The 3-page alphabet in Fig. 11 has only local embedding
where arcs around every point in the spine occupy exactly 2 pages. Examples in the left
hand side picture of Fig. 18 show how to get a 3-page embedding encoded by an element
in a semigroup from Appendix A. After these upgrades the trefoil K(WTref ) from
Fig. 15 has the 3-page code a0a1d0b1a1b1d1d1d1b1b1d1b0c1d0d1d1b1b1b1b0d1c0c1.

Stage 3.3: local simplifications for shortening elements in a 3-page semigroup.
Relations (1)–(2) in the semigroups from Appendix A are illustrated in Fig. 17

and allow us to locally simplify the element obtained at Stage 3.2. The trefoil from
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Fig. 16. Normalizations of 3-page embeddings around points with arcs in the same page.

Fig. 17. A geometric interpretations of relations (1) and (2) in the semigroups from Appendix A.

Fig. 15 will have the shorter code a0a1d0b1a1d1b0c1d0d2d1c0c1 in the 1st picture
of Fig. 18. The 2nd picture shows a minimal 3-page embedding with a shortest code
a2a1d0d2d1d0d2c1c0 by using more relations in the semigroups from Appendix A.

Stage 3.4: computing 3D coordinates for a straight-line 3-page embedding of K(W ).
The spine α is identified with the x-axis. The upper page P0 is in the (x, z)-plane.

The pages P1,P2 are obtained from P0 by the rotations through the angles ± 2π
3 . If

a 3-page code of a knotted graph K(W ) ⊂ P0 ∪ P1 ∪ P2 has n letters, we embed
corresponding points in the spine at (j, 0, 0), 1 ≤ j ≤ n. After finding which points are
connected in each page Pi, we embed all edges as broken lines with 2 straight segments.

Fig. 18. Left: the 3-page embedding of a trefoil after local simplifications at Stage 3.3. Right: the
minimal 3-page embedding of a trefoil after global simplifications by relations from Appendix A.

The MSc thesis [17] contains more details why all stages in Appendices B, C, D
require a linear time and memory in the length of a Gauss code.
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