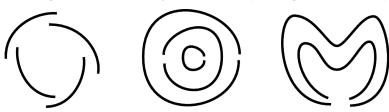
#### **Auto-completion of contours**

based on topological persistence

Vitaliy Kurlin, <a href="http://kurlin.org">http://kurlin.org</a>
Microsoft Research Cambridge
and Durham University, UK

# Maps and hand-drawn sketches

**Problem**: complete all closed contours or paint all regions that they enclose (a segmentation).



Saund. Perceptually closed paths. T-PAMI'03.

Past algorithms need ad-hoc parameters, e.g. a scale of closeness, weights for quality criteria.



#### **Auto-completion of contours**

**Input**: a dotted 2D image of sparse points without any user-defined parameters, no scale.

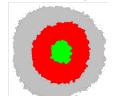






Required output: most 'persistent' contours.



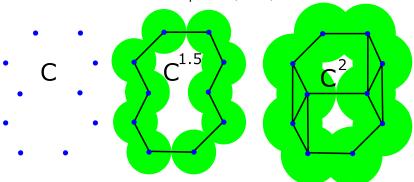






#### From a cloud to some shape

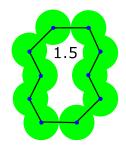
**Def**: the  $\alpha$ -offset of a cloud  $C \subset \mathbb{R}^2$  is the union of closed balls  $C^{\alpha} = \bigcup_{p \in C} B(p; \alpha)$  of a radius  $\alpha$ .

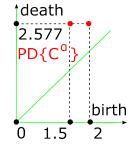


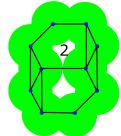
Homology group  $H_1$  counts independent cycles:  $C^{1.5}$  has 1 cycle,  $C^2$  has 2 cycles,  $C^{2.577}$  has 0.

#### Persistent homology

For any *filtration*  $S(\alpha_1) \subset S(\alpha_2) \subset \cdots \subset S(\alpha_m)$ , the evolution of homology under linear maps  $H_1(S(\alpha_1)) \to \cdots \to H_1(S(\alpha_m))$  is described by pairs (birth, death) when a class *persists* from its birth  $\alpha = \text{birth}$  to its death at  $\alpha = \text{death}$ .



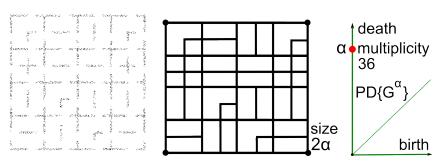






# A noisy $\varepsilon$ -sample C of a graph

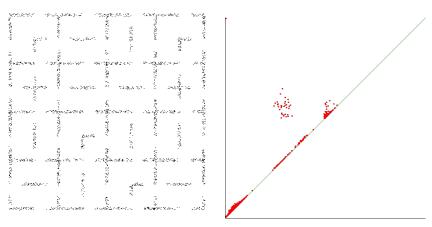
**Def:** a point cloud C is called a noisy  $\varepsilon$ -sample of a graph  $G \subset \mathbb{R}^2$  if  $C \subset G^{\varepsilon}$  and  $G \subset C^{\varepsilon}$ .



**Th** (Edelsbrunner et al. '07): any  $\varepsilon$ -sample C of G has the diagram  $PD\{C^{\alpha}\}\ \varepsilon$ -close to  $PD\{G^{\alpha}\}$ .



# Using stability of persistence

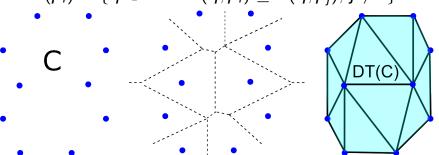


We can find the widest diagonal gap separating 36 points from the rest of persistence diagram.



# **Delaunay triangulation** DT(C)

**Def:** for  $C = \{p_1, \dots, p_n\} \subset \mathbb{R}^2$ , the Voronoi cell is  $V(p_i) = \{q \in \mathbb{R}^2 : d(q, p_i) \le d(q, p_j), j \ne i\}$ .

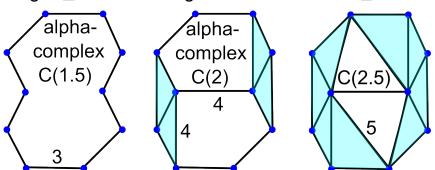


**Def:** a Delaunay triangulation DT(C) is dual to the Voronoi cells and is found in time  $O(n \log n)$ .



# $\alpha$ -complexes $C(\alpha)$ on a cloud C

**Def:** the  $\alpha$ -complex  $C(\alpha) \subset \mathrm{DT}(C)$  has edges of length  $\leq 2\alpha$  and triangles of circumradius  $\leq \alpha$ .

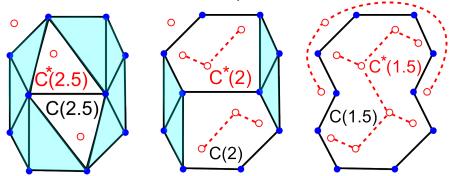


**Th** (Edelsbrunner '95): any  $C^{\alpha}$  deforms to  $C(\alpha)$ .



# Graphs $C^*(\alpha)$ dual to $\alpha$ -complexes

We extend algorithm Attali et al. TopolnVis'09. Persistence-sensitive simplification of functions.

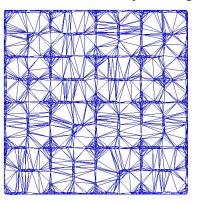


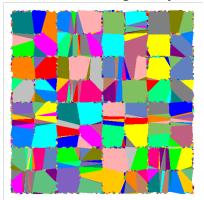
Cycles of  $C(\alpha) \subset \mathbb{R}^2$  correspond to connected components of the graph  $C^*(\alpha)$  dual to  $C(\alpha)$ .



#### Harder than counting cycles

Acute Delaunay triangle is a 'center of gravity'.

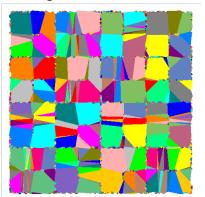


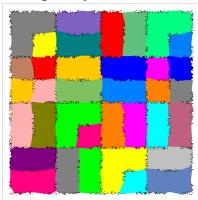


We attach all adjacent non-acute triangles to get an initial segmentation on the right hand side.

## Merging initial regions

We maintain adjacency relations when a region merges another one with a higher persistence.



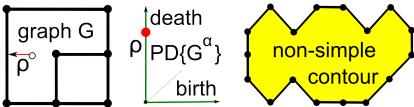


Merger: the older region absorbs the younger.



# Simple vs non-simple contours

**Def**:  $G \subset \mathbb{R}^2$  is simple if the boundary L of any bounded region in  $\mathbb{R}^2 - G$  has a radius  $\rho(L)$  such that  $L^{\alpha}$  is circular for  $\alpha < \rho(L)$  and  $L^{\alpha} \sim \cdot$  for  $\alpha \geq \rho(L)$ , so the hole in  $L^{\alpha}$  dies at  $\alpha = \rho(L)$ .

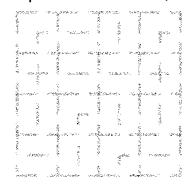


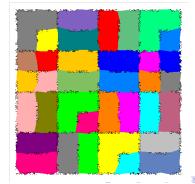
The diagram  $PD\{G^{\alpha}\}$  of any simple graph has only (birth, death) =  $(0, \rho)$  in the vertical axis.



### **Noisy input** → **correct output**

**Th** (VK'14): let  $G \subset \mathbb{R}^2$  be a simple graph with  $0 < \rho_1 \le \cdots \le \rho_m$  and  $\rho_1 > 8\varepsilon + \max\{\rho_{i+1} - \rho_i\}$ . For any  $\varepsilon$ -sample C of G, the algorithm finds m expected contours, they are in the  $2\varepsilon$ -offset  $G^{2\varepsilon}$ .







### Idea: the widest gap survives

 $ho_1 > 8\varepsilon + \max\{\rho_{i+1} - \rho_i\}$  says that the diagonal gap  $\{0 < y - x < \rho_1\}$  is widest under noise.



Also  $\varepsilon \geq \max\{\text{birth}\}\$ above the widest gap in  $PD\{C^{\alpha}\}\$ , hence all edges in a persistent contour  $L \subset G$  have half-lengths  $\leq \varepsilon$ , so  $L \subset C^{\varepsilon} \subset G^{2\varepsilon}$ .

### Summary and further work

- input: 2D point cloud, no extra parameters
- output: most persistent closed contours
- **time**:  $O(n \log n)$  for any n points in 2D
- $2\varepsilon$ -approximation is guaranteed for a noisy  $\varepsilon$ -sample of a good unknown graph  $G \subset \mathbb{R}^2$
- any edge detector: image → point cloud, auto-completion: cloud → object contours
- extend to graphs with non-simple contours
- collaboration is welcome! kurlin.org/blog

