Auto-completion of contours

based on topological persistence

Vitaliy Kurlin, http://kurlin.org
Microsoft Research Cambridge
and Durham University, UK

Maps and hand-drawn sketches

Problem: complete all closed contours or paint all regions that they enclose (a segmentation).

Saund. Perceptually closed paths. T-PAMI'03.

Past algorithms need ad-hoc parameters, e.g. a scale of closeness, weights for quality criteria.

Auto-completion of contours

Input: a dotted 2D image of sparse points without any user-defined parameters, no scale.

Required output: most 'persistent' contours.

From a cloud to some shape

Def: the α -offset of a cloud $C \subset \mathbb{R}^2$ is the union of closed balls $C^{\alpha} = \bigcup_{p \in C} B(p; \alpha)$ of a radius α .

Homology group H_1 counts independent cycles: $C^{1.5}$ has 1 cycle, C^2 has 2 cycles, $C^{2.577}$ has 0.

Persistent homology

For any *filtration* $S(\alpha_1) \subset S(\alpha_2) \subset \cdots \subset S(\alpha_m)$, the evolution of homology under linear maps $H_1(S(\alpha_1)) \to \cdots \to H_1(S(\alpha_m))$ is described by pairs (birth, death) when a class *persists* from its birth $\alpha = \text{birth}$ to its death at $\alpha = \text{death}$.

A noisy ε -sample C of a graph

Def: a point cloud C is called a noisy ε -sample of a graph $G \subset \mathbb{R}^2$ if $C \subset G^{\varepsilon}$ and $G \subset C^{\varepsilon}$.

Th (Edelsbrunner et al. '07): any ε -sample C of G has the diagram $PD\{C^{\alpha}\}\ \varepsilon$ -close to $PD\{G^{\alpha}\}$.

Using stability of persistence

We can find the widest diagonal gap separating 36 points from the rest of persistence diagram.

Delaunay triangulation DT(C)

Def: for $C = \{p_1, \dots, p_n\} \subset \mathbb{R}^2$, the Voronoi cell is $V(p_i) = \{q \in \mathbb{R}^2 : d(q, p_i) \le d(q, p_j), j \ne i\}$.

Def: a Delaunay triangulation DT(C) is dual to the Voronoi cells and is found in time $O(n \log n)$.

α -complexes $C(\alpha)$ on a cloud C

Def: the α -complex $C(\alpha) \subset \mathrm{DT}(C)$ has edges of length $\leq 2\alpha$ and triangles of circumradius $\leq \alpha$.

Th (Edelsbrunner '95): any C^{α} deforms to $C(\alpha)$.

Graphs $C^*(\alpha)$ dual to α -complexes

We extend algorithm Attali et al. TopolnVis'09. Persistence-sensitive simplification of functions.

Cycles of $C(\alpha) \subset \mathbb{R}^2$ correspond to connected components of the graph $C^*(\alpha)$ dual to $C(\alpha)$.

Harder than counting cycles

Acute Delaunay triangle is a 'center of gravity'.

We attach all adjacent non-acute triangles to get an initial segmentation on the right hand side.

Merging initial regions

We maintain adjacency relations when a region merges another one with a higher persistence.

Merger: the older region absorbs the younger.

Simple vs non-simple contours

Def: $G \subset \mathbb{R}^2$ is simple if the boundary L of any bounded region in $\mathbb{R}^2 - G$ has a radius $\rho(L)$ such that L^{α} is circular for $\alpha < \rho(L)$ and $L^{\alpha} \sim \cdot$ for $\alpha \geq \rho(L)$, so the hole in L^{α} dies at $\alpha = \rho(L)$.

The diagram $PD\{G^{\alpha}\}$ of any simple graph has only (birth, death) = $(0, \rho)$ in the vertical axis.

Noisy input → **correct output**

Th (VK'14): let $G \subset \mathbb{R}^2$ be a simple graph with $0 < \rho_1 \le \cdots \le \rho_m$ and $\rho_1 > 8\varepsilon + \max\{\rho_{i+1} - \rho_i\}$. For any ε -sample C of G, the algorithm finds m expected contours, they are in the 2ε -offset $G^{2\varepsilon}$.

Idea: the widest gap survives

 $ho_1 > 8\varepsilon + \max\{\rho_{i+1} - \rho_i\}$ says that the diagonal gap $\{0 < y - x < \rho_1\}$ is widest under noise.

Also $\varepsilon \geq \max\{\text{birth}\}\$ above the widest gap in $PD\{C^{\alpha}\}\$, hence all edges in a persistent contour $L \subset G$ have half-lengths $\leq \varepsilon$, so $L \subset C^{\varepsilon} \subset G^{2\varepsilon}$.

Summary and further work

- input: 2D point cloud, no extra parameters
- output: most persistent closed contours
- **time**: $O(n \log n)$ for any n points in 2D
- 2ε -approximation is guaranteed for a noisy ε -sample of a good unknown graph $G \subset \mathbb{R}^2$
- any edge detector: image → point cloud, auto-completion: cloud → object contours
- extend to graphs with non-simple contours
- collaboration is welcome! kurlin.org/blog

