Software demo: HoPeS Cloud segmentation and skeletons

Vitaliy Kurlin, http://kurlin.org Microsoft Research Cambridge and Durham University, UK

The secondment at Microsoft is supported by the EPSRC *Impact Acceleration Account*

2D cloud software: HoPeS Input : *n* points $C \subset \mathbb{R}^2$ with real coordinates Time: guaranteed $O(n \log n)$ in the worst case **Output** : persistent hole boundaries, skeletons

୬ବ୍ଦ

Computer Graphics application

Problem: complete all closed contours or paint

all regions that they enclose (a segmentation).

A user drawing a sketch on a tablet might be happy with our fast automatic 'best guess': *make contours closed* so that I can paint areas (a scale is easy to find, but we can't ask for it).

Cloud segmentation into regions

Proved: contours are close to the ground truth.

VK, Pattern Recognition Letters, to appear in 2016

From a cloud to a filtration

Def : the α -offset of a cloud $C \subset \mathbb{R}^2$ is the union of closed balls $C^{\alpha} = \bigcup_{p \in C} B(p; \alpha)$ of a radius α .

Filtration $C = C^0 \subset \cdots \subset C^{\alpha} \subset \cdots \subset C^{+\infty} = \mathbb{R}^2$.

Counting holes in *C* **may be easy**

The graph *G* has H_1 of rank 36, hence any ε -sample *C* of *G* will probably have 36 holes.

How can we see that there are 36 holes in C?

・ コット (雪) (小田) (コット 日)

Using stability of persistence

We can find the *widest diagonal gap* separating 36 points from the rest of persistence diagram.

An initial segmentation of *C* Acute Delaunay triangle is a 'center of gravity'.

We attach all adjacent non-acute triangles to get an initial segmentation on the right hand side.

Harder than counting cycles Initial regions \leftrightarrow red dots in PD (too many).

We should merge 36 regions of high persistence with all remaining regions of lower persistence.

Merging initial regions

Building $PD\{C^{\alpha}\}$, we keep adjacency relations of merged regions to enrich persistence info.

Hierarchy of segmentations

A user can choose to get exactly *k* regions by choosing 2nd widest diagonal gap in PD1 etc.

Parameterless skeletonisation

Def : Homologically Persistent Skeleton of a cloud *C* is $HoPeS(C) = MST(C) \cup critical edges$ representing all dots in 1D persistence of $\{C^{\alpha}\}$.

Properties of HoPeS(C)

Optimality : for any scale α , reduced subgraph HoPeS(C; α) is *shortest* among all graphs $G \subset C^{\alpha}$ inducing isomorphisms in H_0, H_1 .

Reconstruction : if *C* is an ε -sample of a good *G*, derived HoPeS_{*k*,*l*}(*C*) ~ *G* are 2ε -*close* to *G*.

Global stability : HoPeS(C) remains in a small offset *after perturbing C*. Proofs and extension: VK, Computer Graphics Forum 34-5 (2015), presented at SGP 2015: Symposium on Geometry Processing.

Recognising visual markers

Shop barcodes are not readable by humans.

We can make *visual markers* like Egyptian hieroglyphs readable by *humans and robots*.

VK, CAIP'15: Computer Analysis of Images and Patterns

イロト イポト イヨト イヨト

Fast simplification of images

1st widest gap gives contours of 2 large peppers

2nd widest gap gives 2 more small peppers.

・ロト・西ト・西ト・日下 ひゃぐ

Summary: C++ code HoPeS

- *time O*($n \log n$) for any input cloud $C \subset \mathbb{R}^2$
- persistent structures directly on data with guarantees: boundary contours, Homologically Persistent Skeleton HoPeS
- first persistence software in England

Papers and C++ code are at http://kurlin.org.

Collaborations and applications are welcome!