Pattern Recognition Letters
journal homepage: www.elsevier.com

A fast persistence-based segmentation of noisy 2D clouds with provable guarantees

Vitaliy Kurlin®**

“Microsoft Research, 21 Station Road, Cambridge CBI 2FB and Mathematical Sciences, Durham University, Durham DHI 3LE, UK.

ABSTRACT

We design a new fast algorithm to automatically segment a 2D cloud of points into regions. The only
input is a dotted image without any extra parameters, say a scanned black-and-white map with almost
closed curves or any image with detected edge points. The output is a hierarchy of segmentations
into regions whose boundary contours have a long enough life span (persistence) in a sequence of
nested neighborhoods of the input points. We give conditions on a noisy sample of a graph, when the
boundaries of resulting regions are geometrically close to all original cycles in the unknown graph.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction: the problem, summary and applications

1.1. Problem: automatic segmentation of a noisy 2D cloud
Recognising closed contours is a primary phenomenon ac-
cording to Gestalt laws of perception. Humans can easily form
closed loops from incomplete contours. Closed contours bound
holes or semantic regions whose extraction is needed for higher
level image understanding. So a robust location of holes and
their boundary contours is a key part of the low level vision.

The problem is most similar to Saund (2003), who found
perceptually closed contours using weights of various quality
criteria. Completing closed contours is equivalent to finding re-
gions bounded by these contours. The segmentation problem
will be solved in the hardest form without using extra input pa-
rameters: given only a noisy sample C of a graph G c R?,
reconstruct closed contours approximating all cycles of G.

The input is a cloud C, which is a finite set of points with any
real coordinates in the plane R?, see Fig. 1. Such a cloud can be
a noisy sample or a scan of a hand-drawn sketch or an artistic
drawing. The input can also be a binary black-and-white image
or a sparse cloud of points without any pixel connectivity.

The output is a hierarchy of segmentations into regions
whose boundaries are non-self-intersecting cycles of straight
edges connecting points in a given cloud. Fig. 1 shows a cloud
C and the most persistent segmentation, which was found by
using only C without parameters. All regions bounded by re-
sulting contours are painted with random colors for simplicity.

“*Corresponding author: Tel.: +44-1913343081; fax: +44-1913343051;
e-mail: vitaliy.kurlin@gmail.com (Vitaliy Kurlin)

: . ¥
e & K
: ; &
Brar ezian Pt SAEX .
el '3 . >
& M -
g : K e
o ¢ & N
- K EERUE 94 e +
N ¥
‘0 R4
" " . .
% K : #
PR R ;»&5&&’?«* B R R T
i : ¢
H g b ¥ 3
S L4 S & p
wten XY vpdew. D owa®e . o
¥
& . ES
¥ . -
I . L S R s

Fig. 1. Input: a noisy cloud C randomly sampled near a graph G c R2.
Output: randomly painted most persistent regions (best viewed in colour).

The algorithm finds the full hierarchy of segmentations in
time O(nlogn) for a cloud C of n points. The boundary con-
tours in a 1st segmentation of the hierarchy have approximation
guarantees for noisy samples of a graph G ¢ R? in Theorem 9.

In addition to the motivations of Saund (2003) we give four
more applications for locating holes and their boundaries.

Auto-closure of polygons. A typical difficulty for users of
graphics software is to accurately match endpoints of a polygo-
nal line for painting a resulting region. The suggested approach
resolves this difficulty without asking users for extra input.

Hierarchical segmentation. When there is no single ideal
segmentation as in most natural images, the algorithm can pro-
pose several most likely segmentations, which are rigorously
quantified by their stable-under-noise topological persistence.

Automatic colorization. Artistic drawings are line sketches
that often contain gaps, but may give an impression of closed
contours. We may enhance these black-and-white drawings by
automatically painting regions that appear visually closed.

Map reading. Conventional paper maps contain many level
set curves. These curves are often split into disjoint arcs by
labels showing actual heights above the sea level. Hence auto-
completion of contours can help faster digitize paper maps.

1.2. Related Work on Topology-based Image Segmentation

We review only methods that are close to the proposed one.

Pixel-based segmentation is a traditional approach to find
boundary contours in a pixel-based image. Such a segmentation
usually minimizes an energy function that contains a cost of as-
signing a single label and a cost of assigning different labels
to neighboring pixels. The resulting minimization problem is
often NP-hard. Including higher-order potential between more
than two pixels has even larger computational costs and still en-
codes only local properties. Chen et al. (2011) suggested the
first binary segmentation with global topological constraints,
e.g. when a foreground object is connected and has no holes.

Extra parameters are essentially needed for many algo-
rithms including Chernov and Kurlin (2013) and the image
segmentation by Letscher and Fritts (2007). They start with
a Delaunay triangulation of a point cloud C as in our first step.
Then small triangles merge to form persistent regions using two
threshold parameters: « for the radius of disks centered at the
points of C, and p for the desired level of persistence. We sub-
stantially improve this method to avoid any input parameters
and prove guarantees by using the stability of 1D persistence.

4o oo °
2e ° ° ®
1 cloud C

-4} o o o

Fig. 2. A cloud C and its (non-unique) Delaunay triangulation Del(C)

Fast 1D persistence for offsets of 2D point clouds can be
computed in time O(n log n) by the standard algorithm of Attali
et al. (2009). This approach was applied by Kurlin (2014b) for
counting topologically persistent holes in noisy clouds. How-
ever, the 1D persistence diagram contains only unstructured
data. A segmentation of a cloud requires more information
about adjacency relations of persistent regions. We substan-
tially extend the algorithm from Attali et al. (2009) by adding
a new sophisticated data structure Map(«), which allows one to
merge all regions into most persistent ones, see section 4.

Homology inference conditions were obtained in many
cases to guarantee a correct topological reconstruction from a
sample C. In addition to topological guarantees, for the first
time Theorem 9 provides a lower bound for the unknown noise
level € and gives conditions on a graph G when reconstructed
contours are geometrically 2&-close to true cycles of G.

2

1.3. Contributions: Parameterless Algorithm and Guarantees

The key differences between the new automatic solution and
all the past segmentation methods above are the following.

e We solve the harder problem of completing closed contours
or segmenting a cloud of points without any extra parameters.

o Input points can have any real coordinates in R?, the algorithm
works for feature points in images at any subpixel resolution.

o The algorithm is unsupervised and outputs a hierarchy, where
one can get a segmentation with a required number of regions.

o The quality of segmentations is measured by the stable-under-
noise persistence, which leads to guarantees in Theorem 9.

No scale parameters are needed, because a given cloud is
analyzed for all values of a radius . The 1st output consists of
those contours whose persistence is above a 1st widest gap in
a persistence diagram, see Definition 2 and 3. The 2nd output
has contours with a persistence above the lowest of the first 2
widest gaps etc. If exactly & regions are needed, one can select
contours corresponding to k cycles with highest persistence.

Data-driven measurements are used for quantifying persis-
tence of contours. If a point cloud C lives in a metric space, we
have only a distance function for studying a shape of C. So a
natural representation of such a shape is the a-offset C*, which
is the union of disks with a radius @ > 0 and centers at all points
of C. This complicated a-offset C* continuously deforms to the
simpler @-complex C(a) for any a, see Fig. 3 and Definition 1.

(
\)\
N)
C
|
(

of
Ve 7

/

7 \
(
) | *
" \\77//\; /(’ _/

Fig. 3. The a-offset C* deforms to the o-complex C(«) for @ = V2.

The persistence of a contour is its life span in the sequence
of nested offsets C*. When « is increasing, a contour is born
at some « = birth and dies in a larger offset at @ = death. The
persistence is death — birth, see Definition 2. For C in Fig. 2,
the 1st contour is born at @ = V2 and persists until all triangles
of Del(C) are covered by disks of a larger radius «, see Fig. 3.

Here is a high-level description of the key contributions.

o Near linear time: for any n points in R2, a hierarchy of seg-
mentations is computed in time O(nlog n), see Theorem 7.

e Guarantees: if a cloud C is densely sampled from a good
enough graph G c R?, all contours of G can be geometrically
approximated by using only the cloud C, see Theorem 9.

o Stability: the output is globally stable under noise in a cloud
C, namely remains in a small offset of C, see Corollary 10.

e Experiments on synthetic and natural images in section 6
confirm that the results are robust even for really large noise.

2. Persistent homology of a-complexes C(«) in the plane

We briefly introduce key concepts, see details in (Kurlin,
2015, Appendix A). The a-offsets C* have complicated shapes,
but continuously deforms to a@-complexes, which are substruc-
tures of a Delaunay triangulation, see Edelsbrunner (1995).

Definition 1 (o-complexes C(a) and holes). A Delaunay tri-
angulation Del(C) on a cloud C ¢ R? consists of all triangles
whose vertices are from C and whose circumcircles enclose no
points of C. For any scale a > 0, the a-complex C(a) is ob-
tained from Del(C) by removing all open edges longer than 2«
and all open triangles with circumradii more than . A hole
of C(@) is a bounded connected component of R — C(«). The
boundaries of all holes are boundary contours of C(a).

If @« > 0 is small, the a-complex C(a) consists of all iso-
lated points of C. For any large enough a, the complex C(a) is
Del(C). So the a-complex C(«) is built on isolated points of C
by adding edges and triangles at the following critical values:

e an edge between points p;, p; € Cis added at & = %d(pi,pj);
e an acute triangle (that has all angles less than 7) is added at
the critical value a equal to the circumradius of the triangle;

e a non-acute triangle 7 is added to C(«) at the scale « that is
equal to the half-length of the largest side in the triangle 7.

All a-complexes form the filtration {C(@)} that is a nested
sequence C = C(0) c...c C(a) C ... C C(+o00) = Del(C).

/ \\ // ’ Ve \ / N\

5’/ N) \\&) » \

\, A - c - / \\\’,
pepsetattg | complex
/ Y/ y y

[I 7 C(2)
~ /r/ 2 \//

A DA,
4 AN s / 4

e

Fig. 4. The a-offset C* deforms to the a-complex C(«) for « = 2.

The summary of topological changes in the filtration {C (@)}
is quantified by life spans (from birth to death) of holes. For the
cloud C in Fig. 2, the first hole is born at the scale @ = V2 in
Fig. 3 and splits into 2 smaller holes at @ = 2, see Fig. 4.

The left-hand-side hole in Fig. 4 is a square, which shrinks to
the triangle with sides 4,2 \/5, 245 in C(\/5), see Fig. 5. The
triangle has the circumradius R, = 2.5 and enters C(«) at the
scale @ = 2.5, hence the hole persists over 2 < @ < 2.5.

The right-hand-side hole in Fig. 4 splits again at @ = V5 giv-
ing birth to the 3rd triangular hole with sides 2 \5, 2 \/5, 24/5.
This acute triangle has the circumradius R3 = % V2 ~ 2357
and enters C(a) at @ = Rs, so the 3rd hole persists over
V5 < @ < R;. The remaining hole in C(2.5) contains the Delau-
nay triangle with the largest circumradius R| = % V26 ~ 3.642,
see 2. So the most persistent hole lives over V2 < @ < R;.

The 1-dimensional homology H,(S) counts holes of a com-
plex S c R?. Formally, H,(S) is a vector space generated by 1-
dimensional cycles that enclose holes of S. If a connected com-
plex S C R2 consists of V vertices, E edges, F triangles, then

Fig. 5. The o-complexes C(a) of the cloud C in Fig. 2 for o = V/5,2.5.

x(8) = V-E+F is the Euler characteristic and 8;(S) = 1—x(S)
is the first Betti number equal to the number of holes of S.

The complex C(\/E) in Fig.3hasV = E =17, F = 0,
so B = 1. The vector space Hi(S) of linear combinations
with coefficients in the field Z, = {0, 1} is determined by
dimH,(S) = Bi(S), so Hi(S) = 75" . The a-complex
C(V5) c R? in Fig. 5 has 3 holes and H(C(V5)) = Z3.

Since any a-offset C* continuously deforms to the a-
complex C(a), they have and have the same homology H, see
(Kurlin, 2015, Appendix A). In practice, H;(C®) is unstable un-
der perturbations of a cloud C. This instability is resolved by
the more advanced concept of persistent homology that tracks
changes in the homology H;(C?) across all scales @ > 0.

Inclusions C(a;) C C(a;) for any a; < a; induce a sequence
of linear maps H{(C(a;)) — H;{(C(a;)) decomposable into a
sum of elementary sequences over life spans of each hole. The
a-complexes for the cloud C in Fig. 2 induce H,(C(0)) =0 —

— H{(C(V2)) = Zy — H\{(C(2)) = 73 — H\{(C(V5)) = 73 —
— H(C(R3)) = Z3 — H\(C(Ry)) = Zs — H (C(R))) = 0,

which decomposes as a sum of 3 sequences 0 — Z, it Zy— 0
over 3 life spans \/§§a<R1,2$a<R2and \/§$a<R3.

Definition 2 (persistence diagram PD{C(a)}). A homology
class v € H{(C(a;)) is born at a scale «; = birth(y) if y is
not in the image of the map H,(C(a)) — H(C(«a;)) for any
« < a;. The class y dies at a; = death(y) > a; when the image
of v under H\(C(a;)) — H{(C(a;)) merges into the image of
H(C(a@)) — Hi(C(a))) for some smaller scale o < a;. So
by the elder rule a younger hole born at «; dies by merging
another older hole, which was born earlier at a < a;. All pairs
(birth, death) form the persistence diagram PD{C(a)} c R?.

The filtration {C(@)} of a-complexes for a cloud C in
Fig. 2 has the persistence diagram in Fig. 6 containing 3 dots
(birth, death) for the 3 life spans of holes or their boundaries.

Points near the diagonal have a low persistence death — birth
and are considered as noise. If 4 > 1 different holes are born
and die at the same scales, the corresponding dot (birth, death)
has the multiplicity u. It is safe to add to a persistence diagram
all diagonal points (a, @) with infinite multiplicity, because they
have persistence 0, so PD{C(@)} is a multi-set of dots.

Stability of persistence from Cohen-Steiner et al. (2007)
says that perturbing a cloud C within its e-offset similarly per-
turbs PD{C(a)} up to &, see (Kurlin, 2015, Appendix A). After
the introduction above, we define the new concept of diagonal
gaps in persistence leading to a hierarchy of segmentations.

R1,Edeath deatht o q’OQ
R R-2} &
2t 1 O
R, s
s R,-2|
~ birth RBY " birth
0 2215 0

Fig. 6. The persistence diagram of {C(«)} for the cloud C in Fig. 2.

Definition 3 (diagonal gaps and subdiagram PD;). For the
filtration {C(a)} of a cloud C C R?, a diagonal gap is a largest
strip {a < 'y — x < b} that has pairs PD{C(«)} on the boundary
lines, but not inside the strip, see Fig. 6. For any integer k > 1,
the k-th widest diagonal gap has the k-th largest vertical width
b — a. If there are several widest gaps with the same width, we
choose the lowest gap. The k-th subdiagram PD; c PD{C(«)}
consists of all dots above the lowest of the first k widest gaps.

Each k-th widest gap separates dots (birth,death) with a
higher persistence death — birth from dots with a lower per-
sistence. Definition 4 introduces a new structure of persistent
regions and their boundary contours directly on a cloud C.

Definition 4 (k-th segmentation of C into persistent regions).

For a finite cloud C c R?, consider all my dots (birth, death)
in the k-th subdiagram PD{C(a)}. Each dot (birth, death)
corresponds to a region bounded by a closed cycle whose
homology class was born at @ = birth. For each triangle T
outside these m regions in Del(C), we merge T with its adjacent
region along a longest edge of T. After all mergers, the final my,
regions form the k-th segmentation of C into persistent regions.

The persistence diagram in Fig. 6 has only one dot (V2, R))
above the 1st widest gap. The boundary of the corresponding
region is the closed contour C(V2) in Fig. 3. The remaining 3
right-angled triangles outside the complex C(V2) merge with
the external region. By Definition 4 the 1st segmentation of C
consists of the single region enclosed by C(V2), see Fig. 9.

The information about merged regions is not contained in
the classical 1D persistence diagram consisting of only dots
(birth, death). Hence the new algorithm in section 4 substan-
tially extends the standard persistence computation to get a hi-
erarchy of persistent structures directly on a cloud C.

3. Duality between a-complexes and @-graphs in the plane

We analyze the evolution of contours in the filtration of 2D
a-complexes C(a) using the simpler filtration of 1D a-graphs
C*(w) that are dual to C(«@). Let us associate a node v; to every
triangle in Del(C), call the external region of the triangulation
Del(C) also a ‘triangle’ and represent it by an extra node vy. So
v; are abstract nodes shown as small red circles in Fig. 7.

Definition 5 (a-graphs C*(@) of a cloud C). Let the metric
graph C* dual to Del(C) have the nodes vy, vy, . . ., v, and edges

4

of a length %di j connecting nodes v;,v; such that the corre-
sponding triangles in Del(C) share a longest side of the length
dij. The a-graph C*(a) is obtained from C* by removing all
edges not longer than a. Any isolated node v (except vy) is re-
moved from the graph C*(a) if the corresponding triangle T, in
Del(C) is not acute or has a small circumradius rad(v) < a.

The smallest graph C*(+00) is the isolated vertex vy corre-
sponding to the external region of Del(C). When « drops from
2.5t V5in Fig. 7, two isolated nodes v, and v; enter C* (),
because rad(v,) = Ry = 2.5, rad(v3) = R3 = %\/5 > V5. How-
ever, these nodes remain isolated in C*(\/3) because all sides
of their triangles have half-lengths not longer than V5.

Fig. 7. The complex C(e) and graph C*(a). Left: o = 2.5. Right: & = /5.

The ascending filtration of a Delaunay triangulation Del(C)
by a-complexes gives rise to the descending filtration of a-
graphs C* = C*(0) > ... D C*(@) D ... D C*(+00) = {vp}.
Each connected component of C*(@) has the corresponding re-
gion enclosed by a boundary contour of the complex C(a).

For instance, if C(@) contains a triangular cycle, but not the
enclosed triangle T, then the circumradius rad(v) > « and the
corresponding node v belongs to C*(a). So there is a 1-1 corre-
spondence between all isolated nodes (except vy) of the graph
C*(a) and all triangular boundaries of C(a). We extend this
duality to all components of C*(«) and all boundaries of C(a).

Lemma 6 (duality between C and C*). For any scale a > 0,
all components of the a-graph C*(a) are in a 1-1 correspon-
dence with all boundary contours of the a-complex C(a).

Proof. When « is decreasing, the birth of a boundary contour
in C(a) means that a small hole appears around the center (of
the circumcircle) of an acute triangle 7, ¢ Del(C). By Defini-
tion 5 at the same time the isolated node v corresponding to the
triangle 7, enters the graph C*(@) as a new component.

The death of a boundary contour in C(«) means that the con-
tour is torn at its longest edge e for @ = half-length of e. If the
edge e is shared by triangles T, T,, the corresponding nodes
u, v become linked, their components merge in C*(«).

So there is a 1-1 correspondence between births of contours
in C(@) and components in C*(«), and similarly between their
deaths. In general, for any fixed value of @, each component of
C*(a@) containing nodes vy, ..., v, is dual to the contour going
along the boundary of the union 7, U ... U T} C Del(C) of the
triangles represented by the nodes vy, ..., v, € C*(@). O

When « is decreasing from +oo to 0, the @-complex C(a) C
R? is shrinking, while C*(a) is growing by Duality Lemma 6.
Initially, C(+00) = Del(C) and we show all triangles of Del(C)
in blue. If a triangle disappears from C(«) at a critical value a,
for all smaller @ we put a small red circle in this triangle.

4. New data structure Map(«a) for segmenting 2D clouds

The nice algorithm of Attali et al. (2009) for a fast 1D persis-
tence requires an essential extension for segmenting 2D clouds,
because the 1D persistence diagram PD{C“} has no information
about adjacency of required persistent regions. Informally, we
will merge all noisy dots in PD{C*} with a small number of dots
above the widest gap, which leads to a final segmentation.

Nodes of the a-graph C*(a) with attributes are stored in the
array Forest(a). Components of C*(«) describing persistent re-
gions are in the array Map(«e). Briefly, the algorithm maintains
a union-find structure on Forest(«) and updates adjacency rela-
tions in Map(a) when one region mergers another one.

By Definition 5 all nodes of C*(«) are in a 1-1 correspon-
dence v < T, with all triangles of a Delaunay triangulation
Del(C), where the external region of Del(C) is also called a
‘triangle’. We call a node u € Forest(a) blue if T, € C(a), oth-
erwise u is red. Initially for a large «, all nodes are isolated and
blue. When « is decreasing, the nodes start turning red and join
each other to form red components of the a-graph C*(«).

Fig. 8. The complex C(e) and graph C*(@). Left: = 2. Right: @ = V2.

Merging two components. When two nodes become linked
and their red components merge, a younger component dies.
Since « is decreasing, a component is younger if its first node
was born at a smaller scale « than the older component. The
older component survives by the elder rule (Edelsbrunner and
Harer, 2010, p. 150), which aims to maximize persistence.

The new larger red component contains the dead nodes from
the younger component and the /ive nodes (or corresponding
live triangles) from the older component. Since « is decreasing,
any younger component dies at a smaller value of « than its
birth. So the persistence of a red component in C*(«) and the
corresponding boundary contour in C(«) is birth — death > 0.

In the structure Forest(«) any node v has these attributes:

o birth(v) = sup{a | v € C*(@)} = sup{a | T, c C(@)};

o uplink(v) is a unique parent of the node v in Forest(«);

o height(v) is the height of Tree(v) going down from v;

o Live(v) is the list of all triangles that are alive in Tree(v);

e bar(v) is the index of the region in Map(«) containing 7.
For each acute triangle T, in Del(C), the corresponding node

v has birth(v) = circumradius rad(v) of T,. For any non-acute

triangle 7, the node v is linked to an existing component when

«a is the half-length of the longest edge of T, so T, merges with

its neighbor. Starting from any node v, we come to root(v) by
going up along uplinks until the node root(v) is a self-parent.

5

Then u, v belong to the same component of Forest(«) if and
only if root(#) = root(v) as in a union-find structure. When we
need to join nodes u, v from different components, we actually
join their roots by adding a shorter tree to a taller tree.

Any root keeps the important information about its tree.
For instance, the birth time for any node v is extracted
as birth(root(v)). To justify the notation bar, any dot
(birth, death) € R? can be considered as the interval
[birth, death) ¢ R. These intervals or bars form a bar code
equivalent to PD. A value bar(v) = k means that the triangle 7',
is in the region whose boundary contour was the k-th to die.

Structure Map(a) of persistent regions. Any region R con-
sists of triangles whose corresponding nodes vy, ..., v, form a
connected component of C*(«), and R has these attributes:

e ind(R) is the index of the region R in the array Map(«);

e birth(R) = scale @ when a 1st triangle enters the region R;

e death(R) = @ when R mergers with an older superior region;
e Core(R) is a list of nodes whose triangles form the region R;
o sup(R) is the index of the superior region merged with R.

e heir(R) is the node v ¢ Core(R) adjacent to a node u € Core(R)
such that linking u, v mergers R and its superior region (of v);

The input is a set of n points given by real coordinates
X191, .» (X0, ¥u) € R2. We start by finding the Delaunay
triangulation Del(C) in time O(nlog n) with O(n) space.
Initialization. We set birth(vg) = +oo for the external node
vo € Forest(a). After finding Del(C), we go through each
triangle T, of Del(C) and set the birth of the corresponding
node v € Forest(a) as the circumradius rad(v) for acute 7, and
birth(7,) = 0 for non-acute 7). All bar(v) have the initial value
0 meaning that the bar indices are undefined. All arrays Live(v)
and Map(«@) are empty. We sort all edges of the triangles of
Del(C) in the decreasing order starting from the longest edge of
a length d. We start from the initial largest value o = %d.

The ‘while’ loop goes through each edge e of Del(C) in the
decreasing order of length until Forest(a) becomes connected.
Let the edge e be shared by adjacent triangles T, T,. If « is go-
ing down through the critical value equal to the half-length of e,
we link the corresponding nodes u, v in the @-graph C*(«). This
addition doesn’t affect Forest(«) if u, v were already connected,
namely they have a common root as in Case 1 below.

It is possible that one of the nodes, say u, was not included in
Forest(w) at the initialization stage, because the corresponding
triangle T, is not acute, so u was blue. In this Case 2 discussed
below we link the single node u to the red component of v.

If the nodes u, v are in different trees of Forest(@), we merge
these trees by linking their roots in Case 3. Final Case 4 below
studies the exception when both triangles T, T, are not acute.
Then T,, T, are right-angled and have the common hypotenuse
e, otherwise T, is enclosed by the circumcircle of T),, which is
forbidden in a Delaunay triangulation Del(C) by Definition 1.

At the end Map(a) will contain adjacency relations of all
regions in addition to the 1D persistence diagram PD{C(«)} as
pairs (birth, death). Each region R will have the index sup(R) of
its adjacent more persistent region that merged with R.

Case 1: the edge e has the same region on both sides, namely
the neighboring triangles T,, T, sharing the edge v have the
same root root(u) = root(v). This value of @ is not critical,
because both nodes u, v were already connected in Forest(a).

Case 2: e is the longest edge of a non-acute triangle 7, and
another triangle T, with v € Forest(a). We find root(v) and
add u to Forest(a) setting uplink(x) = root(v), birth(u) =
birth(root(v)). We increase height(root(v)) by 1 only if it was
1. If bar(v) is defined, then the node v belongs to the already
dead region R € Map(«@) with ind(R) = bar(v). Hence u joins
this region R and we set bar(x) = bar(v). If bar(v) is undefined,
then 7, is a live triangle and we add u to Live(root(v)).

Case 3: both birth(root(u)), birth(root(v)) > 0. Then the two
components of Forest(a) containing the nodes u, v merge. As-
sume that birth(root(«)) < birth(root(v)), so the component of u
is younger, hence dies. We create a new region R in Map(«), say
with an index i, by setting birth(R) = birth(root(u)), death(R) =
a (the current value equals the half-length of ¢). All nodes
w € Live(root(u)) die and we set bar(w) = i for them.

If bar(v) is already defined, the component of v has died and
we can set sup(R) = bar(v). Otherwise the component of v will
die later and we set heir(R) = v remembering to update sup(R)
using heir(R) after the ‘while’ loop is finished. Then we copy
the list Live(root(u)) to Core(R) so that the region R knows all
its nodes (triangles) that were alive just before R died.

Subcase 3a: height(root(x)) < height(root(v)). Then we
link root(u) of the shorter tree to root(v) of the taller tree to
keep to maximum height of all trees in Forest(a) minimal, so
root(v) becomes uplink(root(x)). If the heights were equal,
then height(root(v)) jumps up by 1. All live triangles from
Live(root(v)) are kept at the root of the new larger tree.

Subcase 3b: height(root(x)) > height(root(v)). Then we link
root(v) of the shorter tree to root(u) of the taller tree. Hence
root(#) becomes uplink(root(v)), but height(root(x)) remains
the same. We should keep all triangles from Live(root(v)) at the
root of the new tree replacing Live(root(u)) by Live(root(v)). So
it is important to save Live(root(x)) in Core(R) as we did.

Case 4: birth(root(1)) = 0 = birth(root(v)) means that both tri-
angles T,, T, are not acute and share their longest edge. This
is possible only if T, T, are right-angled with a common hy-
potenuse. Hence u, v form a new red component of C*(«).

The external region in Map(a). When Forest(a) becomes con-
nected, it remains to add to Map(«) the last entry R correspond-
ing to the external region of Del(C). The last root v has the list
Live(v) containing the node vy. Similarly to Case 3, Live(v) is
copied to Core(R) and we set bar(w) equal to the index ind(R)
for any node w € Live(v), but heir(R) is not needed.

Initial segmentation. Each triangle from Del(C) contributes
to a single component of Map(@), namely all lists Core(R)
are disjoint. Hence Map(«@) contains m = O(n) entries and
can be sorted in time O(nlogn) in the decreasing order of
pers = birth — death. We output the initial segmentation where
all triangles from Core(R) have a color associated with R. The
1st picture in Fig. 9 shows 3 initial regions corresponding to all
3 dots in the 1D persistence diagram PD{C®} from Fig. 6.

Algorithm 1 Build Map(e) of persistent regions in a cloud C
1: Input: a cloud C of n points (x1,y1), . .. (Xn, V)

Compute Del(C) with k triangles on the n points of C

Sort edges of Del(C) in the decreasing order of length

Forest « isolated nodes vy, ..., v, with all birth times 0

except birth(vyg) < +co and for each acute triangle 7, C

Del(C) we update birth(v) « circumradius of T,

5: Set the number of links in Forest(@): [< 0

6: while / < k (stop when Forest(a) becomes a tree) do

7: Take the next longest edge e, set @ « %length(e)

8

9

Bl

Find u, v dual to the triangles T, T, that share e
Find root(u), root(v) going along uplinks from u, v

10: if root(u) = root(v) then Case 1: no changes, hence

11: continue the loop without increasing the number /.
12: end if

13: if birth(root(x)) = 0 and birth(root(v)) > 0 then

14: (there is also a symmetric case with u, v swapped)
15: Case 2: (u is blue, v is red) run Algorithm 2 below.
16: The number of links / < [+ 1, continue the loop.
17: end if

18: if 0 < birth(root(x)) < birth(root(v)) then

19: (u younger than v, another case with u, v swapped)
20: Case 3: components of u, v merge, run Algorithm 3
21: The number of links / < [+ 1, continue the loop.
22: end if

23: if birth(root(u)) = 0 = birth(root(v)) then

24: Case 4: (the triangles T, T, are right-angled)

25: Set birth(x) = birth(v) « «a, uplink(v) « u,

26: height(u) < height(x)+ 1, add the node v to Live(u)
27: The number of links / < [+ 1, continue the loop.
28: end if

29: end while
30: Return array Map(«a) of regions generated by Case 3

Algorithm 2 : link the node u to the component of the node v
1: Set uplink(u) « root(v), birth(u) < birth(root(v))

if height(root(v)) = 1 then height(root(v)) « 2

end if

if bar(v) is already defined then set bar(u) < bar(v)

else Add u to Live(root(v)) in the subtree at root(v)

end if

AN

Algorithm 3 : the younger component becomes a region R

1: Create a new region R € Map(«) of the younger node u

2: Set birth(R) <« birth(root(u)), death(R) = a, Core(R) «
Live(root(u)), bar(w) « ind(R) for each w € Live(root(u))

3: if bar(v) is defined then sup(R) = bar(v)

4: else heir(R) = v (the region of v will enter Map later)

5. end if

6: if height(root(u)) < height(root(v)) then

7 uplink(root(u)) < root(v)

8 height(root(v)) + + if height(root(u)) = height(root(v))

9: else uplink(root(v)) < root(u)

10: Live(root(u)) « Live(root(v))
11: birth(root(u)) « birth(root(v))
12: end if

Fig. 9. Initial segmentation: 3 regions. Final segmentation: 1 region.

The k-th widest gap in persistence. We find the k-th gap be-
tween decreasing persistences of regions in sorted Map(«) in
time O(nlogn). In the conditions of Theorem 9, the 1st gap
separates m dots (birth, death) corresponding to true cycles of
a graph G. Even if the conditions do not hold, the widest gap
gives an approximation to the expected number m of regions,
which can also be set by a user, for a final segmentation below.

Indices sup(R) of superior regions. We go through each region
R € Map(e) and build the 1-1 correspondence old index — new
index in sorted Map(a). We go again through each R and access
the node heir(R) whose bar index bar(heir(R)) is the original
(non-sorted) index of the superior region that merged with R.
Using the 1-1 correspondence of indices in Map(a) above, we
know the new index sup(R) of this superior or more persistent
region with a higher persistence that merged with R.

Final segmentation into m regions. Now we form m regions,
where m can be the number of dots in the 1st (or k-th) subdia-
gram of PD{C“} or m can be user-defined. We go through all
regions R of sorted Map(«) starting from the least persistent re-
gion. If the current index ind(R) > m, we add the list Core(R)
to Core(sup(R)), which enlarges the superior region that has the
index sup(R) and a higher persistence. If ind(sup(R)) > m,
the region sup(R) will also merge with its superior later. After
merging all regions of ind(R) > m with their superiors one by
one, we output lists Core(R) of triangles for ind(R) = 1,...,m.

5. Fast running time and reconstruction guarantees

The main results are Theorem 7, guarantees for boundaries
in Theorem 9 and global stability of output in Corollary 10.

Theorem 7 (fast computation of persistent contours). For
any point cloud C of n points in the plane, the algorithm in
section 4 computing the full hierarchy of segmentations has the
time complexity O(nlogn) and memory space O(n).

Proof of Theorem 7. A Delaunay triangulation Del(C) for a
cloud C c R? of n points has I = O(n) triangles and is found in
time O(nlogn) (de Berg et al., 2008, section 9.1). The ‘while’
loop in Algorithm 1 goes once through not more than O(n)
edges in Del(C). We can associate to each edge e its two in-
cident triangles T, T,, C Del(C) in advance, so identifying the
corresponding nodes u, v in line 8 is easy. We prove that finding
root(u), root(v) in line 9 by going along uplinks in any tree of
Forest(a) with / nodes requires O(log [) = O(log n) steps.

The height of a tree can increase only in Case 2 (from 1 to 2)

or in Case 3, where the height jumps by 1 after we link two trees
of the same height. In Case 3 we always link a shorter tree to

7

a taller one. So any two paths in a tree from a root to terminal
nodes (leaves) can differ by at most 1, where we include all
trivial paths consisting of a single node.

Hence almost any node is linked to at least nodes one level
down, except all terminal nodes and some nodes only one level
up. Then any tree of height & > 1 should contain at least 2/~
nodes at level 1 < j < h — 1 plus at least one node at level £,
soatleast I +2 + 2%+ .-+ 2"2 4+ 1 = 21 nodes in total. If
1 > 2"! then the height is & < 1 + log, [= O(log [).

All other steps in the ‘while’ loop from section 4 need O(1)
time. Then we spend O(n log n) time for sorting O(n) entries in
Map(a). The lists Live(v) of triangles are disjoint in Forest(a)
as well as similar lists Core(R) in Map(a). Then O(n) Delaunay
edges, triangles or corresponding nodes with attributes need
only O(n) space in Forest(a) and similarly in Map(«). O

Continuous maps between spaces fy, fi : X — Y are called
homotopic if they can be included into a continuous family of
maps f, : X — Y, 1€ [0,1]. AsetS c R?is contractible to a
point g € S if the identity id : § — S is homotopic to S — g.

Let L be any closed non-self-intersecting loop in R?. We
consider all offsets L* when « is increasing. If @ > 0 is small,
L® is the thickening of L with the radius @. There is a first
critical scale @ when the internal boundary of L touches itself,
so L* is no longer a topological annulus. There is a last critical
scale @ when the internal boundary of L shrinks to a point, so
L* becomes contractible, which is true for all larger radii a.

p/3 holes enclosed

by new L, L,

>0

radius p(G) thickness 8(G)

£
Fig. 10. The ‘heart’ graph has 6 = 0. The ‘figure-eight’ graph has 6 > 0.

A round disk is contractible to its center, but we can not con-
tract a circle to one point always staying within the circle. Be-
low we consider closed loops that go along boundaries of re-
gions in R? — G. The internal loop of the graph 0) goes along
the short vertical edge twice, namely up and down.

Definition 8 (radius p of a cycle, thickness 6 of a graph G).
A cycle L of a graph G € R? is basic if L is non-self-intersecting
and encloses a bounded region of R?> —G. When « is increasing,
the hole enclosed by the a-offset L is born at @ = 0 and dies
at the scale a = p(L) that is called the radius of the cycle L. So
the hole enclosed by L has the life span 0 < a < p(L).

In general, when « is increasing, new holes can be born in
G©, let they be enclosed by Ly, ..., Ly at their birth times. The
thickness 0(G) =

J=1.
these smaller holes born during the evolution of offsets G*. If

no such holes appear, then 6 = 0, otherwise 6 > 0, see Fig. 10.

If acycle L ¢ R? encloses a convex region, then the only hole
of L* completely dies when « is the radius p(L), so 8(L) = 0.

The heart-shaped cycle L in the first picture of Fig. 10 en-
closes a non-convex region, however no new holes are born in

L%, so (L) = 0. The figure-eight-shaped graph G in the second
picture of Fig. 10 has a positive thickness equal to the radius
p(L;) of the largest cycle born in G* when « is increasing.

A cloud C is an g-sample of a graph G ¢ R? if C ¢ G*®
and G C C®. Theorem 9 gives conditions on C and G when
the 1st segmentation in the output hierarchy for C has boundary
contours close to all basic cycles of the unknown graph G.

Theorem 9 (guarantees for the 1st segmentation). Let C be
any g-sample of a connected graph G < R? with a thick-
ness 0(G) > 0 and m > 1 basic cycles having ordered radii

.....

1st segmentation of C from Definition 4 has exactly m regions
whose boundary contours are in the 2&-offset G** C R2.

The cloud C in Fig. 2 can be considered as an e-sample of the
graph G = C(V2) in Fig. 3 for& = V2. Then 6(G) = R, -2 =
0.5 is the maximum persistence of a new hole born in G*. Since
G has only one radius p; = R; ~ 3.642, which is the minimum
scale when G* becomes contractible, the inequality of Theo-
rem 9 fails. However PD{C“} in Fig. 6 above the widest gap
has 1 dot corresponding to one region enclosed by G in Fig. 9.
So the algorithm may give a correct reconstruction beyond the
guarantees of Theorem 9 when a noisy sample is ‘uniform’.

Since resulting contours pass through points of C, the output
is locally sensitive to perturbations of C. However, the result
below confirms a global stability of boundaries in a small offset.

Corollary 10. In the conditions of Theorem 9 if another cloud
C is 6-close to C, then the boundaries in the 1st segmentation
from Definition 4 for the perturbed cloud C are within the (25 +
4e)-offset of the boundaries in the 1st segmentation for C.

Theorem 9 and Corollary 10 are proved in (Kurlin, 2015, Ap-
pendix B). The key tool is the stability of persistence saying
that the diagram PD{C?} is in the e-neighborhood of PD{G"}.
The inequality in Theorem 9 implies that the diagonal gap
{0 < y—x < p1}is widest in PD{G®} and contains a widest
gap of the perturbed diagram PD{C?}. Hence, using only C
without extra parameters, we can find the widest gap in PD{C*}
separating persistent contours form all noise near the diagonal.

6. Conclusions and experiments on synthetic and real data

Clouds C of n = 1000 points in Fig. 11-12 were randomly
sampled around graphs G C R? (the regular octagon with 4 big
diagonals in Fig. 11, a lattice graph in Fig. 12) as follows:

(1) choose a random seed point p in the graph G so that the
distribution of seeds over the total length of G is uniform;

(2) choose a final point g in [p —¢&, p+ €] X [p — &, p + €], which
is the square neighborhood of a size € around the seed p.

The noise bound ¢ is needed only for generating a cloud C,
the algorithm uses only C, not . The 2nd picture of Fig. 11 is
the 1D persistence diagram PD{C®} with exactly 8 dots above
the yellow widest gap. The initial regions in the 3rd picture of
Fig. 11 are in a 1-1 correspondence with all dots from PD{C“}.

% o
L3

Fig. 11. Top: cloud C and 1D persistence diagram PD{C"} with yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

e 8 s e B e emen s g .
AT RRRe RAL RS T S SR o
1,) o3 o
k3 R X o
% K i N
-, . “
" o o
> e 3
& ’ G
¥ P o
e SRR ie
& 8
e *, 4
- i o
3
A e EN
3 p &
W & h
R -
= . - .“ % . £
SRR g
& K .
3 -~
B \ $
“ 2 7 ¢
€1 & . =
fpsy ot o i R TR C ST TR 11
el NN DA

e

Fig. 12. Top: cloud C and 1D persistence diagram PD{C"} with yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

The final segmentation in the 4th picture has only 8 regions
obtained by merging ‘noisy’ regions of lower persistence.

The initial segmentation in the 3rd picture of Fig. 12 contains
more than 9 large regions. However only 9 regions have a large
enough persistence, all others correctly merge them in the 4th
picture. So the size doesn’t matter, but the persistence does!

The clouds C in Fig. 13—14 are samples of binary images. C
is rather sparse in Fig. 13, but the widest gap in PD{C"} sepa-

rates 2 dots corresponding to the final 2 non-convex regions.

.

a
I 2
A <

Fig. 13. Top: cloud C of n = 159 points and diagram PD{C“} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 14. Top: cloud C of n = 852 points and diagram PD{C“} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

The 1st pictures in Fig. 15-18 are from the Berkely segmen-
tation database, see Martin et al. (2001). The 2nd pictures are
clouds C obtained as Canny edge points with the low threshold
75 and ratio 3. The clouds C in Fig. 15 and 18 have a lot of clut-
ter, but the final segmentation in the 4th pictures correctly iden-
tify a shape of the object corresponding to the only dot above
the 1st widest gap in the diagrams from the 3rd pictures.

9

The final 2 pictures in Fig. 16 and 18 show the 2nd segmen-
tations from the hierarchy, which separate two hands from the
face in Fig. 16 and the boat from its mirror image in Fig. 18.
More experiments are in (Kurlin, 2015, Appendix C).

The summary of the key contributions is below.

e The O(nlogn) time algorithm from section 4 accepts any
cloud of points in R? without extra parameters and outputs a
hierarchy of segmentations selected by their persistence.

e Theorem 9 proves that the persistent contours approximate
true contours of a graph G given only by a noisy sample C.

e Corollary 10 guarantees a global stability of boundaries in the
1st segmentation of C under perturbations of a given cloud C.

The C++ code is at http://kurlin.org/projects/cloud-
analysis.cpp. In comparison with the earlier conference version
in Kurlin (2014a), Theorem 9 has been extended from the
partial case 6(G) = 0 to a wider class of graphs with any
thickness 6(G) > 0. Since the algorithm needs no parameters,
there is a lot of freedom to preprocess real data and extract a
cloud satisfying Theorem 9. Here are further open problems.

e Smooth boundary contours in a final segmentation of C.
o Extend Theorem 9 to noisy samples with unbounded noise.
o Use persistence to locate holes in high-dimensional clouds.

The author is open to collaboration on any related projects
and thanks all reviewers in advance for helpful suggestions.

References

Attali, D., Glisse, M., Hornus, S., Lazarus, F., Morozov, D., 2009.
Persistence-sensitive simplification of functions on surfaces in linear time,
in: TopoInVis: Topology-based Methods in Visualization, Springer.

de Berg, M., Cheong, O., van Kreveld, M., Overmars, M., 2008. Computational
Geometry: Algorithms and Applications. Springer.

Chen, C., Freedman, D., Lampert, C., 2011. Enforcing topological constraints
in random field image segmentation, in: Proceedings of CVPR: Computer
Vision and Pattern Recognition, pp. 2089-2096.

Chernov, A., Kurlin, V., 2013. Reconstructing persistent graph structures from
noisy images. Image-A 3, 19-22.

Cohen-Steiner, D., Edelsbrunner, H., Harer, J., 2007. Stability of persistence
diagrams. Discrete and Computational Geometry 37, 103—130.

Edelsbrunner, H., 1995. The union of balls and its dual shape. Discrete and
Computational Geometry 13, 415-440.

Edelsbrunner, H., Harer, J., 2010. Computational topology. An introduction.
AMS, Providence.

Kurlin, V., 2014a. Auto-completion of contours in sketches, maps and sparse
2d images based on topological persistence (conference version of the cur-
rent paper), in: Proceedings of CTIC: Computational Topology in Im-
age Context, pp. 594-601. URL: http://ieeexplore.ieee.org/xpl/
articleDetails. jsp?arnumber=7034735.

Kurlin, V., 2014b. A fast and robust algorithm to count topologically persis-
tent holes in noisy clouds, in: Proceedings of CVPR: Computer Vision and
Pattern Recognition, pp. 1458-1463.

Kurlin, V., 2015. A fast persistence-based segmentation of noisy 2d clouds
with provable guarantees (full version of the current paper) URL: http:
//kurlin.org/projects/cloud2D-segmentation-full.pdf.

Letscher, D., Fritts, J., 2007. Image segmentation using topological persistence,
in: Proceedings of CAIP: Computer Analysis of Images and Patterns, pp.
587-595.

Martin, D., Fowlkes, C., Tal, D., Malik, J., 2001. A database of human seg-
mented natural images and its application to evaluating segmentation algo-
rithms and measuring ecological statistics, in: Proc. ICCV, pp. 416-423.

Saund, E., 2003. Finding perceptually closed paths in sketches and drawings.
Transactions Pattern Analysis and Machine Intelligence 25, 475-490.

10

Fig. 15. Top: image 86016 from BSD500 and cloud C of 19627 Canny edge Fig. 17. Top: image 3096 from BSD500 and cloud C of 1614 Canny edge
points. Bottom: PD{C”} and final segmentation with a correct object. points. Bottom: PD{C“} and final segmentations with a correct object.

Fig. 16. Top: image 302003 from BSD500 and cloud C of 5388 Canny edge Fig. 18. Top: image 15088 from BSD500 and cloud C of 6565 Canny edge
points. Middle: PD{C?} with 1st widest gap and segmentation with 1 region points. Middle: PD{C®} with 1st widest gap and segmentation with 1 region
Bottom: PD{C“} with 2nd widest gap and segmentation with 4 regions. Bottom: PD{C?} with 2nd widest gap and segmentation with 2 regions.

11

Pattern Recognition Letters
journal homepage: www.elsevier.com

Supplementary materials (appendices with proofs and more experiments) for the paper
A fast persistence-based segmentation of noisy 2D clouds with provable guarantees

Vitaliy Kurlin®**

“Microsoft Research, 21 Station Road, Cambridge CBI 2FB and Mathematical Sciences, Durham University, Durham DHI 3LE, UK.

ABSTRACT

To avoid any confusion we continue numbering definitions and figures as in the 10-page paper.

© 2015 Elsevier Ltd. All rights reserved.

Appendix A: a-complexes and their persistent homology

We briefly remind key concepts and results also introducing
the a-complexes in a different way to give a new perspective.

Definition 11 (a plane graph, its cycles and holes). A plane
graph is a subset G C R? consisting of finitely many vertices
and non-intersecting arcs joining vertices. A cycle of G is a
subset L C G consisting of edges connecting adjacent vertices:
p1 to pa, pa to p3 and so on until py to p1. A cycle is a closed
loop, but may have self-intersections. A cycle L C G is called
basic if L encloses a hole, which is a connected region R* — G.

If every bounded region in the complement R? — G of a plane
graph is a triangle, then the graph G defines a triangulation on
its vertices. The following Delaunay triangulation Del(C) is a
small and quickly computable structure on a cloud C c R?.

Definition 12 (Delaunay triangulation). For a cloud C =
{P1>-..,pn} € R? of n points, a Delaunay triangulation Del(C)
has all triangles with vertices p;, pj, pr € C whose circumcircle
doesn’t enclose any other points of C, see Fig. 2.

A Delaunay triangulation is not unique if C contains 4 points
on the same circle. The boundary edges of Del(C) form the con-
vex hull(C) of C. The complement R? — hull(C) will be called
the external region. If Del(C) has k triangles and b boundary
edges, then counting E edges over k triangles gives 3k+b = 2E.
By the Euler formula n — E + (k + 1) = 2 in the plane, we con-
cludethatk =2n—-b -2, E = 3n— b — 3, so Del(C) has O(n)
edges and triangles. Also Del(C) is found in time O(nlogn)
with O(n) space, see (de Berg et al., 2008, section 9.1).

**Corresponding author: Tel.: +44-1913343081; fax: +44-1913343051;
e-mail: vitaliy.kurlin@gmail.com (Vitaliy Kurlin)

A Delaunay triangulation Del(C) is an example of a gen-
eral 2-dimensional complex consisting of vertices, edges and
triangles in R?. To study the shape of a cloud C at different
scales, we shall define subcomplexes that contain the elements
of Del(C) whose sizes are bounded above by a fixed radius «.

For a point p; € C, the Voronoi cell consists of all points
g € R? that are closer to p; than to all other points of C, so
V(p) = {g € R* : d(pi.q) < d(pj,q)forany j # i}. Then
a Delaunay triangulation Del(C) consists of all triangles with
vertices p, g, r € C such that V(p) N V(g) N V(r) is not empty.
If the Voronoi cells are restricted to a scale @ > 0, we get the a-
complexes C(a). For any p € R? and @ > 0, denote by B(p; @)
the closed disk with the center p and radius a.

Definition 13 (a-complexes). For a finite cloud C C R?, the a-
complex C(a) € R? contains all edges between points p,q € C
such that V(p)N B(p; @) meets V(q)NB(q; @), see (Edelsbrunner
and Harer, 2010, section II1.4). Similarly, the a-complex C(a)
contains all triangles with vertices p, q,r such that the full in-
tersection V(p) N B(p; @) N V(g) N B(q; @) N V(r)N B(r; @) # 0.

The following lemma motivates the concept of the a-
complex C(), which is a simpler object than the a-offset C°.

Lemma 14. Edelsbrunner (1995) For any scale «, the a-offset
C? of a cloud C c R? continuously deforms to C(a) C R?.

Definition 15 (homology group H; of a complex S). Cycles
of a complex S can be algebraically written as linear com-
binations of edges with coefficients 0 or 1 in the group
Zo = 7.]27 = {0, 1}. The vector space C; consists of all these
linear combinations. The boundaries of all triangles in S (as
cycles of 3 edges) generate the subspace By C Cy. The quotient
space Cy /By is the 1-dimensional homology group H(S).

Definition 16 (the bottleneck distance). Ler ||p — ¢llo =
max{|x; — x|, |y1 — y2l} be the distance between p = (x1,y1),
q = (x2,y2) in R%. The bottleneck distance between persistence
diagrams PD and PD’ is dp = inf, SUPepp llg — ¥ (q)lle over all
bijections : PD — PD’ of multi-sets PD and PD’.

Definition 17 (s-sample). Forany & > 0, a finite cloud C c R?
is an g-sample of a graph G c R* if C ¢ G® and G c C®.

Stability Theorem 18 below is a key foundation of topolog-
ical data analysis saying that the persistence diagram is stable
under perturbations of original data. We quote only a simple
version of the Stability Theorem for filtrations of offsets.

Theorem 18 (stability). Cohen-Steiner et al. (2007)
If a finite cloud C C R? of points is an e-sample of a plane
graph G c R?, then we have dg(PD{G?},PD{C?}) < &.

By Lemma 14 any offset C* has the same homology group
H, as C(a). So we may replace the filtration {C”} of offsets by
the filtration{C ()} of simpler complexes in Theorem 18.

Appendix B: detailed proofs of Theorem 9 and Corollary 10

Proof of Theorem 9. The homology H;(G) is generated by m
basic cycles Ly,..., L, that enclose m holes (bounded regions
in the complement R?> — G). These m cycles give dots (0, p;) in
the vertical axis of the 1D persistence diagram PD{G“}.

death
P,

Fig. 19. Left: 1D persistence diagram PD{G“} for a graph G satisfying The-
orem 9. Right: perturbed diagram PD{C?} for a noisy c-sample C of G.

All other dots in the 1D persistence diagram PD{G"} come
from smaller holes in the a-offsets G* that were born later. The
maximum persistence death — birth of these holes is bounded
above by the thickness 6(G), see Definition 8 and Fig. 19.

.....

guarantees that the widest diagonal gap {(G) <y — x < p;} in
PD{G"} is wider than any other gaps including the higher gaps
pi+1 — p; between the dots (0, p;) € PD{G*},i=1,...,m— 1.

By Stability Theorem 18 the perturbed diagram PD{C(«)} is
in the g-offset of PD{G*} C UT (0,p;) U {y — x < 8(G)} with
respect to the L., metric on R?. All noisy dots near the diagonal
in PD{C(@)} can not be higher than 6(G) + 2¢ after projecting
along the diagonal {x = y} to the vertical axis {x = 0}.

The remaining dots can not be lower than p; — 2¢ after the
same projection (x, y) — y—x. Hence the smaller diagonal strip
{6(G) +2e < y—x < p; —2¢&} of the vertical width p; —4e—-6(G)
is still empty in the perturbed diagram PD{C(«)}.

12

By Stability Theorem 18 any dot (0, p;) € PD{G"}, i > 2, can
not jump lower than the line y—x = p;—2¢ or higher than y—x =
pi + &. Then the widest diagonal gap between these perturbed

Since all dots near the diagonal have diagonal gaps not wider
than 6(G) + 2¢, the 2nd widest gap in the perturbed diagram
PD{C(«)} always has a vertical width smaller than p; —4&—-6(G).
Hence the 1st widest gap in PD{C(a)} covers the diagonal strip
{0(G) + 2e < y — x < p; — 2¢}, which is within the Ist widest
gap {8(G) <y — x < p1} in the original diagram PD{G“}.

Then the subdiagram PD{C (@)} above the line y—x = p; —2¢
contains exactly m perturbations of the original dots (0, p;) in
the vertical strip {0 < x < g}. Hence the boundary contours 0C
from the 1st segmentation of C contain exactly m critical edges
corresponding to the m dots in the subdiagram PD{C(«)}.

It remains to prove that the boundary contours dC in the 1st
segmentation of a cloud C are 2e-close to G. Let the critical
scale a(C) be the maximum birth over all dots in PD{{C(«a)}.
These dots are at most &£ away from their corresponding points
(0, p;) in the vertical axis, so critical scale @(C) is at most &.

A longest edge e of any contour persisting over birth < a <
death has the half-length equal to its birth, because adding e
made the contour closed giving a birth its homology class.

Then all edges in the boundary contours dC have half-lengths
at most a(C) < e. Hence JC is covered by the disks with the
radius € and centers at all points of C, so 0C c C® C G*. O

Proof of Corollary 10. The condition that the perturbed cloud
C is 6-close to the original cloud C, which is &-close to the
graph G, implies that C is (6 + £)-close to the graph G c R?.

Theorem 9 for the e-sample C and (& + &)-sample C says that
the boundaries 0C of the 1st segmentation are 2e-close to G and
similarly the boundaries AC are (26 + 2&)-close to the graph G.

Hence these boundaries are (26 + 4&)-close to each other. [

Appendix C: more experiments on synthetic and real data

Fig. 20-27 show that many graphs are correctly recon-
structed from noisy samples generated as in Fig. 11-12.

Fig. 28 shows binary images whose random samples are pro-
cessed in Fig. 13—14 in the paper and in Fig. 29-32 below. De-
spite the sparse cloud C in Fig. 31 has only 137 points, the
widest gap in the persistence diagram clearly separates 3 dots
leading to 3 expected regions, see the last picture in Fig. 28.

As in the paper, Canny edge points are extracted from images
in Fig. 33-36 with the same low threshold 75 and ratio 3.

The cloud C in the 2nd picture of Fig. 35 has many noisy out-
liers. However the 1st segmentation gives a single correct shape
in the 4th picture obtained without extra input parameters.

Fig. 34 and 36 show 2 segmentations from the hierarchy cor-
responding to the 1st and 2nd widest gaps in persistence.

13

Fig. 20. Top: cloud C of n = 1000 points, diagram PD{C“} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

” Fig. 22. Top: cloud C of n = 1000 points, diagram PD{C®} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 21. Top: cloud C of n = 1000 points, diagram PD{C®} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

References

de Berg, M., Cheong, O., van Kreveld, M., Overmars, M., 2008. Computational
Geometry: Algorithms and Applications. Springer.
Cohen-Steiner, D., Edelsbrunner, H., Harer, J., 2007. Stability of persistence

diagrams. Discrete and Computational Geometry 37, 103-130. Fig. 23. Top: cloud C of n = 1000 points, diagram PD{C?} with the yellow

Edelsbrunner, H., 1995. The union of balls and its dual shape. Discrete and widest gap. Bottom: initial and final segmentations (best viewed in color).
Computational Geometry 13, 415-440.

Edelsbrunner, H., Harer, J., 2010. Computational topology. An introduction.
AMS, Providence.

Fig. 26. Top: cloud C of n = 1000 points, diagram PD{C?} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 24. Top: cloud C of n = 1000 points, diagram PD{C®} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

gbm "’?‘O"W wq‘o.w\ tﬁoﬁ‘.w‘" S : . .
. 3 N 3 § LS
3) k4 . N
* Iw é PUwONE g.x: MERTYERN *." ..’ g
o‘~o‘.
zw o «m v «3 e nimo.n -
3
S
P omian t cesbees ¥ % H
H .
¢
i i
20*.? u.}o..u.\ b iadediiad « o m ooy
...... - . ¥ ¢ 4
s‘:‘:‘?‘ P 3., ::.::3.‘: - :,’;; . § } t { g
W ¥ by N ERIRTL PP e $ D e,
y i . . 3 3 .
s . S N I3 I e .
o " P Rl ? gmwwo o o otie «%Mf PO RN
3 e 3 o FE H 3
- PR b N N
s A T S H e
; S .
E AU WO SR SO

{.‘ g, e 3,
OB AR A RS

Foke

Fig. 27. Top: cloud C of n = 2000 points, diagram PD{C®} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 25. Top: cloud C of n = 1000 points, diagram PD{C®} with the yellow E @ O M | |
widest gap. Bottom: initial and final segmentations (best viewed in color). \ / \ /

Fig. 28. Binary images whose samples are processed in Fig. 13-14, 29-32.

.
N
B
SE
RS
e R
KSR
[
Rse -~

Fig. 29. Top: cloud C of n = 636 points and diagram PD{C®} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 31. Top: cloud C of n = 137 points and diagram PD{C“} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 30. Top: cloud C of n = 1146 points and diagram PD{C®} with the
widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 32. Top: cloud C of n = 63 points and diagram PD{C®} with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

15

16

Fig. 33. Top: image 388006 from BSD500 and cloud C of 1489 Canny edge

Fig. 35. Top: image 372019 from BSD500 and cloud C of 6637 Canny edge
points. Bottom: PD{C“} and final segmentations (best viewed in color).

points. Bottom: PD{C”} and final segmentations (best viewed in color).

e o

e

Fig. 34. Top: image 135069 from BSD500 and cloud C of 1136 Canny edge

points. Middle: PD{C”} with 1st widest gap and segmentation with 1 region
Bottom: PD{C*} with 2nd widest gap and segmentation with 2 regions.

Fig. 36. Top: image 107072 from BSD500 and cloud C of 5394 Canny edge
points. Middle: PD{C?} with 1st widest gap and segmentation with 1 region
Bottom: PD{C®} with 2nd widest gap and segmentation with 4 regions.

