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Preface

Where there is Matter, there is Geometry

— Johannes Kepler (1571- 1630)

a key figure in the 17th-century Scientific Revolution.

This book introduces the new research area of Geometric Data Science, where data
can represent any real objects through geometric measurements. Some of the simplest
inputs of real data objects are finite and periodic sets of unordered points.

For example, a molecule can be fully described by the positions of its atoms in a
3-dimensional space. However, many descriptions are highly ambiguous, especially to a
computer, which operates only with numbers. For example, a photograph is ambiguous,
because any object can have an astronomically large number of photographs.

All attempts to standardise photographs, as in passports, have shifted towards more
reliable biometric data. Indeed, the identification of living organisms was dramatically
improved due to the discovery of a DNA structure. However, geometric structures
remained ambiguous for many objects, including proteins and materials, which are still
represented by photograph-style inputs depending on arbitrary coordinate systems.

The major obstacle to progress from trial-and-error in chemistry and biology to a
justified design of materials and drugs was the absence of rigorous definitions and
problem statements. Geometric Data Science fills this gap by developing foundations
based on equivalences, invariants, distance metrics, and polynomial-time algorithms.

The main geo-mapping problem is to analytically describe moduli spaces of geo-
metric structures that are classes of data objects modulo an equivalence relation. These
moduli spaces are prototypes of ‘treasure maps’ containing all known objects of a cer-
tain type, as well as all not yet discovered ones. A discrete example is Mendeleev’s
table of chemical elements, which was initially half-empty, but importantly guided an
efficient search for new elements. A continuous example is a geographic map of the
Earth, where any location is unambiguously identified by the latitude and longitude.

Geometric Data Science aims to develop universal geographic-style coordinates for
all real data objects under practically important equivalences, such as rigid motion.
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vi Preface

The first part of the book focuses on finite point sets. The most important result is
a complete and continuous classification of all finite clouds of unordered points under
rigid motion in any Euclidean space. The key challenge was to avoid the exponential
complexity arising from permutations of the given unordered points. For a fixed di-
mension of the ambient Euclidean space, the times of all algorithms for the resulting
invariants and distance metrics depend polynomially on the number of points.

The second part of the book advances a similar classification in the much more
difficult case of periodic point sets, which model all periodic crystals at the atomic scale.
The most significant result is the hierarchy of invariants from the ultra-fast to complete
ones. The key challenge was to resolve the discontinuity of crystal representations that
break down under almost any noise. Experimental validation on all major materials
databases confirmed the Crystal Isometry Principle: any real periodic crystal has a
unique location in a common moduli space of all periodic structures under rigid motion.
The resulting moduli space contains all known and also all not yet discovered periodic
crystals, and hence continuously extends Mendeleev’s table to the full crystal universe.

The book was written for research students and professionals who work in math-
ematics and need rigorously justified and computationally efficient methods for real
data, such as crystalline materials and molecules, including proteins. The pre-requisite
knowledge is linear algebra, metric geometry, and calculus at the undergraduate level.

We finish by extending Johannes Kepler’s quote from the 17th century to inspire a
transformation from brute-force computations, which currently ‘burn’ our planet, to a
21st-century Maths for Science revolution: Where there is Data, there is Geometry.
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Chapter 1
Introduction: from practical challenges to
fundamental problems

Abstract This chapter discusses how practical challenges in object recognition and
data comparison can be converted into formally stated mathematical problems. After
introducing the necessary concepts of equivalences, invariants, and metrics, we state
the general geo-mapping problem to continuously parametrise moduli spaces for any
data under a given equivalence. With this foundation in place, further chapters examine
specific types of data objects that allow recently developed solutions in this book.

1.1 What questions should we ask about real data objects?

The initial question that can be asked about any real data object is what is it? or (more
formally) how is it defined? or (more deeply) how can we make sense of this data?

The first obstacle in achieving these goals is to embrace differences between real
objects and their digital representations. For example, a car is a physical object that is
very different from a pixel-based image of this car, which is only a matrix of integers.

The second obstacle is the ambiguity of digital representations in the sense that any
real object can have many representations that look very different to a computer.

If measurements have continuous real values, the resulting space of representations
is infinite. Even if we fix a finite resolution of physical measurements, all potential
data values still live in a huge space. For example, all images of size 2 × 2 pixels and
greyscale intensities 0, . . . , 255 form a huge collection of 2564 > 4 billion images. This
combinatorial explosion (or the curse of dimensionality) has blocked many brute-force
attempts to make sense of the data so a different scientific approach is called for [6].

All concepts and results in this book are introduced for very general data, such as
discrete sets of points, and hence are relevant to many applied areas, e.g. point clouds
in Computer Vision and Graphics. However, since our latest work is joint with chemists
and biologists, our motivations and examples will include data at the atomic scale,
including molecules, atomic clouds, and solid crystalline materials (periodic crystals).
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2 1 Introduction: from practical challenges to fundamental problems

Some physical objects can be exactly represented in a digital form, for example, by
listing the coordinates of atoms. This atomistic representation much better describes
a real molecule than pixel-based images of a car. Though we can exactly describe
a molecule by the positions of its atoms, is this description unambiguous? To better
understand the underlying obstacles, we split this question into more questions below.

First question: which objects are the same or different? Indeed, if we shift all atomic
positions by a fixed vector, the digital representation changes, but does the underlying
object remain the same? The question is deceptively simple, but because the definition
of a crystal structure was incomplete in practice [11], this problem has attracted con-
siderable attention, even appearing in the titles of papers [44]. The missing ingredient
was the concept of an equivalence, which should accompany all newly defined objects.

Second question: if different, by how much? Indeed, all real data is uncertain at least
due to measurement noise. Moreover, all atoms vibrate so their relative positions are
always uncertain. This basic fact in Richard Feynman’s first lecture on physics [25,
Chapter 1 “Atoms in motion”] called for a continuous quantification of similarities.
The resulting problem is algorithmically difficult even for macroscopic objects. Indeed,
when walking or driving, our brains (but not computers) easily recognise obstacles
whose visual representations change in our moving coordinate system. If a car moved
or the wind slightly deformed a bush, humans can still identify them as perturbations of
the original objects, while a computer program needs an exact formula for a distance.

Third question: where can we find new objects? Discovery sciences, such as molecular
or materials synthesis, struggle to find or even recognise new objects in the vast chemical
space. Indeed, all known molecules, say for a fixed number𝑚 of atoms, live in a common
space of 𝑚-atom configurations. This space potentially contains unknown molecules,
which have not yet been discovered, but where should we look for them? Humans faced
similar challenges in their early exploration of our planet to discover new places to live
and thrive. The slightly rephrased question where do all real objects live? requires us
to build a geographic-style map on a space of all potential objects of a given type.

It took cartographers over two centuries (1400–1600), during the Age of Geographic
Discoveries [4], to build a map of the Earth based on latitude and longitude coordinates.
Scientists can build geographic-style maps of continuous spaces for other real objects.

In summary, Geometric Data Science (GDS) aims to mathematically formalise and
answer the following questions for real data under practical equivalences, see Fig. 1.1.
The first question: Same or different?
The second question: If different, by how much?
The third question: Where do all (known and new) real objects live?

Fig. 1.1 The main questions of Geometric Data Science are illustrated for molecules: H2O, CO2, CH4.
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We finish this section by describing a few conventions used in the book. All spelling
is British as we are based in the UK. All acronyms that are harder to guess than the UK
are listed at the end of the book before the index. All environments are highlighted in
the bold font and numbered according to sections, e.g. Definition 1.2.1 is followed by
Example 1.2.2 in section 1.2. All figures and tables are numbered consecutively within
each chapter, as Fig. 1.1. All environments have the following end symbols:
□ for proofs;
▲ for definitions;
_ for examples and remarks;
⋆ for problems and conjectures;
■ for theorems, corollaries, propositions, and lemmas.

All new concepts in definitions are highlighted in the italic font, which is also used
for emphasising keywords. R𝑛 denotes the Euclidean 𝑛-dimensional space with a fixed
coordinate system of the standard orthonormal basis and origin 0. Any vector p with
real coordinates 𝑝1, . . . , 𝑝𝑛 can be positioned with the tail at 0 ∈ R𝑛 and the head at the
point 𝑝 = (𝑝1, . . . , 𝑝𝑛) ∈ R𝑛, i.e. 𝑝 and p are often used interchangeably.

1.2 Abstract and practical equivalence relations on data objects

This section recalls an equivalence relation and various types of invariant under a given
equivalence. These concepts will help formalise the first question: same or different?

For any type of object, such as real numbers or all finite sets 𝐴 of unordered points
in R𝑛, a binary relation describes ordered pairs (𝐴, 𝐵) that satisfy this relation. If 𝑥, 𝑦
are real numbers, one simple relation is the strict inequality 𝑥 < 𝑦.

Definition 1.2.1 (equivalence relation). A binary relation between objects of a given
type is called an equivalence and denoted by ∼ if the following axioms hold:
(a) reflexivity: any object is equivalent to itself, i.e. 𝐴 ∼ 𝐴;
(b) symmetry: for any objects 𝐴, 𝐵, if 𝐴 ∼ 𝐵, then 𝐵 ∼ 𝐴;
(c) transitivity: for any objects 𝐴, 𝐵, 𝐶, if 𝐴 ∼ 𝐵 and 𝐵 ∼ 𝐶, then 𝐴 ∼ 𝐶.

Any object 𝐴 generates its equivalence class [𝐴] = {all objects equivalent to 𝐴}. ▲

One widely used equivalence on real numbers is the usual equality (=), which
can be extended to vectors (points in R𝑛), matrices, and multisets of elements with
multiplicities or weights. The axioms in Definition 1.2.1 justify a classification under a
given equivalence as a splitting or partition into disjoint equivalence classes such that
every objects belongs to exactly one class. Indeed, any such classes, say [𝐴] and [𝐶]
share a common object 𝐵, i.e. 𝐴 ∼ 𝐵 and 𝐵 ∼ 𝐶, then 𝐴 ∼ 𝐶 and hence [𝐴] = [𝐶]
due to the transitivity axiom. If a classification is based on a labelled dataset, often with
labels produced by humans or a computer program, this finite classification is hard to
extend to many other real objects, which are called “out-of-distribution”.
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Example 1.2.2 (non-equivalences). (a) The relation 𝑥 < 𝑦 (strict inequality) on real
numbers is not an equivalence, because the reflexivity axiom fails: 𝑥 < 𝑥 is false.

(b) The relation 𝑥 ≤ 𝑦 (non-strict inequality) on real numbers is not an equivalence.
Though the reflexivity holds, the symmetry is also expected to hold for all real 𝑥, 𝑦 but
fails for any non-equal numbers: 𝑥 ≤ 𝑦 does not imply that 𝑦 ≤ 𝑥 for 𝑥 ≠ 𝑦.

(c) For any fixed real 𝜀 > 0, the relation |𝑥 − 𝑦 | ≤ 𝜀, which can called 𝜀-closeness,
satisfies the reflexivity and symmetry but fails the transitivity axiom. For instance, if
𝑥 = −𝜀, 𝑦 = 0, and 𝑧 = 𝜀, then |𝑥 − 𝑦 | = 𝜀 = |𝑦 − 𝑧 |, but |𝑥 − 𝑧 | = 2𝜀. _

Example 1.2.2(c) illustrates the sorites paradox [29], which has been discussed since
ancient times: “does a heap of sand remain a heap if grains of sand are removed one
by one?” Removing one grain of sand plays the role of an 𝜀-perturbation applied to a
data object, such as a heap of millions of grains. Such a single grain can be considered
similar to an outlier in data. If we are allowed to remove a point from a given set, such as
an outlier, without noticing any difference, then all point sets can be made equivalent.

Similarly, if we assume that a given object remains the same (equivalent to the
original one) under all perturbations up to any tiny threshold 𝜀 > 0, the transitivity
axiom will imply that sufficiently many perturbations can make all objects equivalent.
For instance, if we are ignore slight deviations of vertices in a triangle, the resulting
classification of triangles becomes trivial, consisting of a single class of all triangles.
Hence, noise in real data cannot be ignored but should be properly measured.

A simple example of an equivalence (not restricted to a fixed dataset) is an equality
for a specific property. For instance, two finite sets 𝐴, 𝐵 can be called equivalent if they
have the same size: |𝐴| = |𝐵|. However, many objects that share one property might
differ in other properties, For finite objects, the equivalence relation defined by their
size is weak in the sense that many substantially different objects have the same size,
e.g. molecules of the same number of atoms, belong to the same equivalence class.

We will look for a stronger equivalence that better separates given objects. For
objects that are more complicated than points in R𝑛, such as sets of points, the identity
relation is overkill in practice (too strong), because shifting all points of a cloud changes
only its coordinate representation rather than physical properties.

Though many equivalence relations make sense for real objects, such as molecules
or materials, one equivalence relation stands out in our world: a rigid motion usually
preserves all meaningful properties and hence is the strongest relation for most applica-
tions. When comparing physical objects, the first thing people try to do is to superimpose
them by rigid motion. Even if a given object, such as a human hand or a molecule, is
intrinsically flexible (non-rigid), its different rigid conformations (classes under rigid
motion) often have different properties and hence should be reliably distinguished.

Recall that a basis of R𝑛 consists of 𝑛 vectors v1, . . . , v𝑛 such that any v ∈ R𝑛 can be
written as a linear combination v =

𝑛∑
𝑖=1
𝑡𝑖v𝑖 for some 𝑡1, . . . , 𝑡𝑛 ∈ R. The basis vectors

are linearly independent in the sense that if
𝑛∑
𝑖=1
𝑡𝑖v𝑖 = 0, then 𝑡1 = · · · = 𝑡𝑛 = 0.
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Later, we will discuss more technical concepts, such as the determinant, which has
an algebraic definition. In the geometric spirit of this book, we only mention here that
the determinant det(v1, . . . , v𝑛) of the 𝑛 × 𝑛 matrix with columns v1, . . . , v𝑛 is the
signed volume of the parallelepiped on the edge vectors v1, . . . , v𝑛.

In particular, any vectors v1, . . . , v𝑛 ∈ R𝑛 form a linear basis of R𝑛 if and only if
det(v1, . . . , v𝑛) ≠ 0. Our default distance between any points a = (𝑎1, . . . , 𝑎𝑛) and

b = (𝑏1, . . . , 𝑏𝑛) in R𝑛 is Euclidean, denoted as |a − b| =
√︂

𝑛∑
𝑖=1

(𝑎𝑖 − 𝑏𝑖)2.

Example 1.2.3 (rigid motion, isometry, dilation, and homothety). (a) The translation
along a fixed vector v ∈ R𝑛 is the map 𝑇 [v] : R𝑛 → R𝑛 such that 𝑇 [v] (p) = p + v.

(b) A rotation in R𝑛 is a linear map 𝑅[𝑄] : R𝑛 → R𝑛, 𝑅[𝑄] (p) = 𝑄p represented by
a special orthogonal 𝑛 × 𝑛 matrix 𝑄 that has the determinant det(𝑄) = 1 and satisfies
𝑄𝑇𝑄 = 𝐼𝑛 = 𝑄𝑇𝑄 is the identity matrix, where 𝑄𝑇 is the transpose of 𝑄. All such
matrices 𝑄 form the special orthogonal group SO(R𝑛), see [14, section 4.5].

(c) A rigid motion 𝑓 : R𝑛 → R𝑛 is a composition of translations and rotations in R𝑛 and
can be written as 𝑓 (p) = 𝑄p + v for any p ∈ R𝑛, a fixed v ∈ R𝑛 and 𝑄 ∈ SO(R𝑛). Any
sets 𝐴, 𝐵 ⊂ R𝑛 that are related by rigid motion are called rigidly equivalent (denoted
by 𝐴 � 𝐵). All rigid motions in R𝑛 form the Special Euclidean group SE(R𝑛).

(d) The mirror reflection relative to an (𝑛 − 1)-dimensional hyperspace 𝐻 ⊂ R𝑛 with a
normal vector v is the map defined by 𝑓 [𝐻] (𝑝) = 𝑝, i.e. any point 𝑝 ∈ 𝐻 is fixed by
𝑓 [𝐻], and 𝑓 [𝐻] (u) = −u for any vector u parallel to v.

(e) A Euclidean isometry is any map 𝑓 : R𝑛 → R𝑛 preserving Euclidean distance,
i.e. | 𝑓 (a) − 𝑓 (b) | = |a − b| for any vectors a, b ∈ R𝑛. Alternatively, any Euclidean
isometry is a composition of a rigid motion and a mirror reflection, and can be written
as 𝑓 (a) = 𝑄a + v for any a ∈ R𝑛, a fixed vector v ∈ R𝑛, and an orthogonal matrix 𝑄
satisfying𝑄𝑇𝑄 = 𝐼𝑛 = 𝑄

𝑇𝑄. Any subsets 𝐴, 𝐵 ⊂ R𝑛 are related by isometry are called
isometric (denoted by 𝐴 ≃ 𝐵). All isometries in R𝑛 form the Euclidean group E(R𝑛).

(f) For a fixed factor 𝑠 > 0, the uniform scaling is the map 𝑢 : R𝑛 → R𝑛, 𝑢(a) = 𝑠a for
any vector a ∈ R𝑛. A dilation is a composition of a rigid motion and a uniform scaling.
A homothety is a composition of an isometry and a uniform scaling. _

Any rigid motion 𝑓 preserves orientation of R𝑛, which can be defined as the sign of
the determinant of the 𝑛 × 𝑛 matrix consisting of the columns 𝑓 (v1), . . . , 𝑓 (v𝑛), where
v1, . . . , v𝑛 is a basis of R𝑛. A mirror reflection, for example, changing the sign of the
first coordinate (the reflection relative to the hyperspace 𝑎1 = 0) is not a rigid motion,
because the orientation is changed. Hence, compositions or rigid motion with mirror
reflections form a slightly wider collection of equivalences, which do not distinguish
mirror images. The identities 𝑄𝑇𝑄 = 𝐼𝑛 = 𝑄𝑄𝑇 imply that det(𝑄) = ±1. All such
orthogonal matrices form the orthogonal group 𝑂 (R𝑛). We avoid the notation 𝑂 (𝑛),
which will be later used to denote a linear-time complexity of algorithms.

Definition 1.2.4 (weaker vs stronger equivalences). For a fixed collection of objects,
one equivalence relation ∼1 is (non-strictly) weaker than another ∼2 (then ∼2 is called
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stronger than ∼1) if any objects equivalent under the stronger relation ∼2 are equivalent
under the weaker relation, i.e. 𝐴 ∼2 𝐵 always implies that 𝐴 ∼1 𝐵. ▲

If one equivalence ∼1 is weaker than ∼2, then the stronger equivalence ∼2 refines the
partition into equivalence classes defined by the weaker equivalence ∼1.

Rigid motions, isometries, dilations, and homotheties define equivalence relations
in the sense of Definition 1.2.1. Among these four equivalences, rigid motion is the
strongest (�). Isometry (≃) is slightly weaker because any pair of mirror images is in
the same isometry class, not necessarily in the same class under rigid motion.

Dilation is weaker than rigid motion because all uniformly scaled objects belong
to the same class. Homothety is the weakest of the four so that any objects related by
isometry or dilation are homothetic. A substantially weaker equivalence is defined by
bijection, which is a 1-1 map between all points of two objects.

After an equivalence is fixed, the next challenge is to classify all given objects
under this equivalence. Such a classification should answer the first question (same or
different?) by a practical algorithm that determines whether given objects are equivalent
or not. A mathematically justified approach to any classification is to develop invariant
descriptors that can reliably distinguish objects under a given equivalence, as defined
below. Invariant values can be numbers, vectors, matrices, or more complicated objects
in a metric space that should still be easier to compare than the original ones.

Definition 1.2.5 (invariants and complete invariants). (a) Fix an equivalence on some
objects. An invariant 𝐼 is a function that takes the same value on all equivalent objects,
i.e. 𝐴 ∼ 𝐵 implies that 𝐼 (𝐴) = 𝐼 (𝐵). Alternatively, if 𝐼 (𝐴) ≠ 𝐼 (𝐵), then 𝐴 ≁ 𝐵. In
other words, 𝐼 is a descriptor with no false negatives defined as pairs 𝐴, 𝐵 that represent
equivalent objects 𝐴 ∼ 𝐵 but have different values of this descriptor.

(b) An invariant 𝐼 is called complete if 𝐼 distinguishes all non-equivalent objects, i.e. if
𝐴 ≁ 𝐵, then 𝐼 (𝐴) ≠ 𝐼 (𝐵). Alternatively, if 𝐼 (𝐴) = 𝐼 (𝐵), then 𝐴 ∼ 𝐵, i.e. 𝐼 takes the
same value only on equivalent objects. In other words, 𝐼 has no false positives defined
as pairs of non-equivalent 𝐴 ≁ 𝐵 that are indistinguishable by 𝐼, i.e. 𝐼 (𝐴) = 𝐼 (𝐵). ▲

A constant function 𝐼 taking the same value on all objects satisfies Definition 1.2.5
but does not distinguish any objects. We will always assume that an invariant is not
the same for all equivalence classes. Then the implication [𝐼 (𝐴) ≠ 𝐼 (𝐵)] ⇒ [𝐴 ≁ 𝐵]
allows us to distinguish complicated) objects by using simpler invariants.

Example 1.2.6 (invariants vs non-invariants). (a) A simple invariant of a finite set 𝐴
under bijection or any stronger equivalence is the size of 𝐴, which we denote by |𝐴|.

(b) Tom Leinster’s magnitude of a finite metric space 𝐴 extends the size |𝐴| to the real-
valued invariant of 𝐴 under isometry [36, section 6.4], defined as the sum all elements
in the inverse of the matrix consisting of 𝑒−𝑑 (𝑝,𝑞) for all points 𝑝, 𝑞 ∈ 𝐴.

(c) For any finite set 𝐴 ⊂ R𝑛, the centre of mass 𝐴̄ =
1
|𝐴|

∑
𝑝∈𝐴

𝑝 is not invariant of 𝐴

even under translations and rotations in R𝑛, and hence under all weaker equivalences,
including rigid motion, isometry, and bijection.
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(d) For sets of two ordered points 𝑥, 𝑦 ∈ R, the difference 𝑥 − 𝑦 is invariant under rigid
motion (only translations in R), but not under isometry that can swap the order of 𝑥, 𝑦.
The Euclidean distance |𝑥 − 𝑦 | is a complete invariant of two ordered point sets under
isometry in R, but not under rigid motion. Indeed, the ordered pairs (0, 1) and (1, 0) of
numbers are not rigidly equivalent but have the same inter-point distance 1. _

A complete invariant 𝐼 fully answers the first main question (same or different?) by
checking if 𝐼 (𝐴) = 𝐼 (𝐵), which is equivalent to 𝐴 ∼ 𝐵 by Definition 1.2.5.

Any function ℎ generates its equivalence ron the domain where ℎ is defined: 𝐴 ∼ℎ 𝐵
if and only if ℎ(𝐴) = ℎ(𝐵). Then ℎ is a complete invariant under its equivalence ∼ℎ.

For a fixed collection of objects, invariants can be compared by strength similar to
equivalence relations in Definition 1.2.4. For ordered pairs (𝑥, 𝑦), the difference 𝑥− 𝑦 is
a stronger invariant than the distance |𝑥− 𝑦 |. For a fixed equivalence relation, a complete
invariant is the strongest one among all invariants under this equivalence.

1.3 Distance metrics on invariant values and equivalence classes

To rephrase the second main question (if different, by how much?) in mathematical
terms, this section introduces a distance metric between arbitrary objects, which can be
equivalence classes or values of an invariant under a given equivalence.

Definition 1.3.1 (metrics and pseudo-metrics). (a) A real-valued function 𝑑 on pairs
of objects under an equivalence relation ∼ is a metric if these axioms hold:
(1) coincidence: 𝑑 (𝐴, 𝐵) = 0 if and only if 𝐴 ∼ 𝐵;
(2) symmetry: 𝑑 (𝐴, 𝐵) = 𝑑 (𝐵, 𝐴) for any objects 𝐴, 𝐵;
(3) △ triangle inequality: 𝑑 (𝐴, 𝐵) + 𝑑 (𝐵,𝐶) ≥ 𝑑 (𝐴,𝐶) for any objects 𝐴, 𝐵, 𝐶.

(b) If axiom (1) is replaced with the weaker version (1′) 𝑑 (𝐴, 𝐴) = 0 for any 𝐴, then
non-equivalent objects 𝐴 ≁ 𝐵 can have 𝑑 (𝐴, 𝐵) = 0, and 𝑑 is called a pseudo-metric. ▲

The axioms in Definition 1.3.1(a) imply the non-negativity of a metric as follows:
2𝑑 (𝐴, 𝐵) = 𝑑 (𝐴, 𝐵) + 𝑑 (𝐵, 𝐴) ≥ 𝑑 (𝐴, 𝐴) = 0. The word “metric” is often used in
applications and evaluation functions that depend on a single object. We emphasise that
all metrics measure a distance between two objects. The concept of a distance becomes
more general if some of the three metric axioms are weakened [20].

Definition 1.3.2 (metric spaces and clouds). (a) Any set 𝑀 of objects with a metric
𝑑 : 𝑀 × 𝑀 → R is called a metric space.

(b) A cloud is any finite set of unordered points in a metric space. A Euclidean cloud
is any finite set 𝐴 ⊂ R𝑛 of unordered points with the Euclidean distance. ▲

We will usually consider metrics on invariant values rather than on original objects.
If 𝐼 is a complete invariant under a given equivalence, then any metric on invariant
values is the metric on equivalence classes of original objects so that the condition
𝑑 (𝐼 (𝐴), 𝐼 (𝐵)) = 0 is equivalent to 𝐴 ∼ 𝐵. However, if an invariant 𝐼 is incomplete,
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then 𝑑 (𝐼 (𝐴), 𝐼 (𝐵)) = 0 only guarantees that 𝐼 (𝐴) = 𝐼 (𝐵), not necessarily 𝐴 ∼ 𝐵.
Then any metric on (values of) an incomplete invariant defines only a pseudo-metric on
equivalence classes of original objects in the sense of Definition 1.3.1(b). Example 1.3.3
introduces well-known metrics on vectors and arbitrary subsets in a metric space.

Example 1.3.3 (Minkowski metrics, Hausdorff and bottleneck distances). (a) Fix a real
parameter 𝑞 ∈ [1,+∞). For any points a = (𝑎1, . . . , 𝑎𝑛) and b = (𝑏1, . . . , 𝑏𝑛) in R𝑛,

the Minkowski metric is 𝐿𝑞 (𝑎, 𝑏) =
(
𝑛∑
𝑖=1

|𝑎𝑖 − 𝑏𝑖 |𝑞
)1/𝑞

. In the limit case 𝑞 = +∞, the

metric is defined as 𝐿∞ (𝑎, 𝑏) = max
𝑖=1,...,𝑛

|𝑎𝑖 − 𝑏𝑖 |, also called the Chebyshev metric.

(b) Let 𝐴, 𝐵 be subsets of a space 𝑋 with a metric 𝑑. The distance from 𝑎 ∈ 𝐴 to
𝐵 is 𝑑 (𝑎, 𝐵) = inf

𝑏∈𝐵
𝑑𝑋 (𝑎, 𝑏). The directed distance is 𝑑𝐻 (𝐴, 𝐵) = sup

𝑎∈𝐴
𝑑 (𝑎, 𝐵). The

Hausdorff distance is HD(𝐴, 𝐵) = max{𝑑𝐻 (𝐴, 𝐵), 𝑑𝐻 (𝐵, 𝐴)}. The bottleneck distance
BD(𝐴, 𝐵) = inf

𝑔:𝐴→𝐵
sup
𝑝∈𝐴

𝑑 (𝑔(𝑝), 𝑝) is minimised for all bijections 𝑔 : 𝐴→ 𝐵. _

If there are no bijections 𝐴 → 𝐵, one can set BD(𝐴, 𝐵) = +∞, so BD is a well-
defined metric only on subsets that allow bijections. In Example 1.3.3(a), the parameters
𝑞 = 1, 2,+∞ define the metrics that are also called Manhattan (sum metric), Euclidean,
and Chebyshev (max metric), respectively. We will often consider Minkowski metrics
for all parameters 𝑞 ∈ [1,+∞], including the limit case 𝑞 = +∞.

For any 𝜀 ≥ 0 and a subset 𝐶 of a metric space 𝑀 , the 𝜀-offset of 𝐶 consists of all
points 𝑞 ∈ 𝑀 at a maximum distance 𝜀 from 𝐶, i.e. 𝑑 (𝑞, 𝐶) ≤ 𝜀.

In other words, the 𝜀-offset of 𝐶 is the union of closed balls with the radius 𝜀 and
centres at all points 𝑝 ∈ 𝐶. Then the Hausdorff distance HD(𝐴, 𝐵) can be defined as
the minimal 𝜀 ≥ 0 such that the 𝜀-offset of 𝐴 covers 𝐵 and the 𝜀-offset of 𝐵 covers 𝐴.

The Hausdorff distance HD is illustrated in terms of 𝜀-offsets in Figure 1.2, where
a single ball around a blue or green point can cover a cluster of several points from a
different subset of another colour. The bottleneck distance BD is stricter by measuring a
minimum required deviation for a bijective matching of points, as in Figure 1.2 (right).

Fig. 1.2 Left: in the Euclidean line R. the clouds 𝐴 of 4 green points and 𝐵 of 4 blue points have a
small Hausdorff distance HD. Right: the same clouds 𝐴, 𝐵 ⊂ R have a large bottleneck distance BD
based on a bijection 𝑔 : 𝐴→ 𝐵 (shown by red arrows), which minimises the maximum deviation of
points, see Example 1.3.3(b).

Definition 1.3.1 allows a discrete metric that takes a constant value on all non-
equivalent objects , e.g. 𝑑 (𝐴, 𝐵) = 1 for all 𝐴 ≁ 𝐵, and 𝑑 (𝐴, 𝐵) = 0 for all 𝐴 ∼ 𝐵.
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However, this discrete metric is purely theoretic because all real objects slightly differ
due to noise, so this metric would almost always have the same value 1. Definition 1.3.4
formalises the practically useful continuity under perturbations.

For simplicity, we will consider a collection 𝑋 of objects that allow bijections between
each other. For finite sets, this restriction means that all clouds from 𝑋 have the same
size. Bijections always exist between any infinite discrete subsets of R𝑛 (that have a
positive minimum inter-point distances), because such subsets are countable.

Definition 1.3.4 (Lipschitz continuity). Let 𝑋 be a space of objects with a distance
metric 𝑑𝑋. Let 𝐼 : 𝑋 → 𝑌 be a function to a space 𝑌 with a metric 𝑑𝑌 , e.g. an invariant
under a given equivalence. Then 𝐼 is Lipschitz continuous with a Lipschitz constant 𝜆
if, for any 𝜀 ≥ 0, the 𝜀-closeness 𝑑𝑋 (𝐴, 𝐵) ≤ 𝜀 implies that 𝑑𝑌 (𝐼 (𝐴), 𝐼 (𝐵)) ≤ 𝜆𝜀. ▲

For any discrete subsets in a metric space, the condition BD(𝐴, 𝐵) ≤ 𝜀 can be
replaced with the following: 𝐵 is obtained from 𝐴 by perturbing every point of 𝐴
within its 𝜀-neighbourhood. For molecules and materials consisting of atoms, such
𝜀-perturbations and hence the bottleneck distance are motivated by thermal vibrations
and experimental noise under which atoms can slightly change their positions but
cannot disappear. For other applications, e.g. to point clouds in Computer Vision,
Definition 1.3.4 can be made stricter by requiring the Lipschitz continuity under less
restrictive perturbations of input data in the Hausdorff distance.

The classical continuity in terms of 𝜀, 𝛿 is much weaker than the more practical

Definition 1.3.4. For instance, the function 𝑦 =
1
𝑥

is continuous for all 𝑥 ≠ 0 but has no

Lipschitz constant because
1
𝑥
→ ∞ as 𝑥 → 0. Hence, almost any function in practice

can be called continuous in the weak sense of 𝜀, 𝛿 away from singular points.

The Lipschitz continuity brings a physical meaning due to an explicit constant 𝜆.
For example, if any atom is perturbed up to 𝜀, any inter-atomic distance changes up to
2𝜀 due to the triangle inequality of Euclidean distance. Hence, inter-atomic distances
in physically meaningful units have Lipschitz constant 𝜆 = 2.

1.4 The geo-mapping problem for data objects under equivalences

This section introduces auxiliary concepts of a metric moduli space and a computational
complexity before stating the main geo-mapping problem. Several non-trivial cases of
this problem will be solved in later chapters for point clouds and periodic point sets.

Definition 1.4.1 (metric moduli spaces). Let 𝑋 be a collection of objects with the
bottleneck distance BD and an equivalence relation ∼. The metric moduli space is the
set𝑌 = 𝑋/∼ of all equivalence classes [𝐴] for 𝐴 ∈ 𝑋 , equipped with a distance metric 𝑑
satisfying all metric axioms in Definition 1.3.1(b) so that the class map 𝑋 → 𝑌 defined
by 𝐴 ↦→ [𝐴] is Lipschitz continuous in the sense of Definition 1.3.4. If an equivalence
is defined by an action of a group 𝐺 on 𝑋 , the moduli space is also denoted by 𝑋/𝐺. ▲
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Moduli spaces are also called quotient spaces or spaces of orbits. The adjective metric
means that a moduli space is equipped with a metric satisfying Definition 1.3.1(a).

Algebraic geometry studied moduli spaces in more general settings [48], usually
for varieties defined by polynomial equations and considered under actions of linear
groups, not involving permutations and metrics. However, the recently emerged area
of Metric Algebraic Geometry [9] started to explore metrics on moduli spaces. Geo-
metric Data Science (GDS) goes further by requiring polynomial-time algorithms for
complete invariants with continuous metrics, and adds the realisability and Euclidean
embeddability to parametrise moduli spaces similar to geographic maps of Earth.

Definition 1.4.2 (cloud spaces CIS(R𝑛;𝑚) and CRS(R𝑛;𝑚)). (a) For the col-
lection 𝑆(R𝑛;𝑚) of all 𝑚-point sequences 𝑝1, . . . , 𝑝𝑚 ∈ R𝑛, the moduli space
𝑆(R𝑛;𝑚)/SE(R𝑛) was previously called a shape space Σ𝑚𝑛 [32]. Under the extra action
of the permutation group, the moduli space 𝑆(R𝑛;𝑚)/(SE(R𝑛) × 𝑆𝑚) = Σ𝑚𝑛 /𝑆𝑚 will
be called the Cloud Rigid Space and denoted by CRS(R𝑛;𝑚).
(b) Under isometry, not distinguishing mirror images, the space 𝑆(R𝑛;𝑚)/(E(R𝑛)×𝑆𝑚)
will be called the Cloud Isometry Space and denoted by CIS(R𝑛;𝑚). ▲

Definition 1.4.2 is motivated by the fact that points are unordered (unlabelled) in most
practical scenarios. Then the equivalence relation is defined by the actions of E(R𝑛)
and the permutation group 𝑆𝑚. Though atoms in molecules are labelled by chemical
elements and sometimes electric charges, many simple molecules such as benzene C6H6
consist of many indistinguishable atoms, whose permutation group 𝑆6 × 𝑆6 consists of
(6!)2 (more than half a million) permutations. These challenges motivated geo-mapping
problems for finite and periodic sets of unordered points.

For all 2-point clouds (sets of two distinct unordered points) in R𝑛, their inter-point
distance 𝑑 is a complete invariant under isometry. In this case, the Cloud Isometry
Space CIS(R𝑛; 2) is the interval (0,+∞) parametrised by the distance 𝑑.

For any Euclidean cloud 𝐴, its input size |𝐴| is the number of points, because the
required computer memory is proportional to |𝐴|, for a fixed dimension 𝑛. If 𝐴 is a
subset of a metric space, then 𝐴 can be given by a distance matrix of size |𝐴|2.

If 𝐴 ⊂ R𝑛 is a periodic set of points, its input size |𝐴| can be defined as the number
of points in a minimal cell whose periodic translations define the infinite set 𝐴.

All computational complexities will be considered in the Random Access Memory
(RAM) model, where any numerical value can be accessed in a constant time.

Definition 1.4.3 (the big 𝑂 notation for computational complexities). Let an algo-
rithm have an input size 𝑚. For a function 𝑓 (𝑚), an algorithm has the computational
complexity 𝑂 ( 𝑓 (𝑚)) if the total number of required operations, including additions,
multiplications, and evaluations of elementary functions has an upper bound 𝑐 𝑓 (𝑚) for
a constant 𝑐 and all sufficiently large 𝑚. If 𝑓 is a linear or polynomial function of 𝑚,
the resulting algorithms have a linear or polynomial time, respectively. ▲

For ordered points 𝑝1, . . . , 𝑝𝑛 ∈ R𝑛, their distance matrix can be computed in time

𝑂 (𝑛2), because we need only
𝑛(𝑛 − 1)

2
distances |𝑝𝑖 − 𝑝 𝑗 | for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.
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Definition 1.4.4 (homeomorphism and embedding). A homeomorphism 𝑓 is a bi-
continuous bijection, i.e. both 𝑓 and 𝑓 −1 are continuous. Then an embedding 𝑓 : 𝑋 → 𝑌

is a homeomorphism on image, i.e. 𝑋 → 𝑓 (𝑋) is a homeomorphism. ▲

Since all our spaces have metrics, the goal is to guarantee the Lipschitz continuity
in the sense of Definition 1.3.4 so that all embeddings have Lipschitz constants.

While we state Problem 1.4.5 in full generality below, the reader can keep in mind the
partial case of 3-point clouds (triangles) under Euclidean isometry in the plane R2. Our
typical distance 𝑑𝑋 on a space 𝑋 is the bottleneck distance BD from Example 1.3.3(b),
which can be infinite for periodic sets, so 𝑑𝑋 may not be a metric satisfying Defini-
tion 1.3.1(a). Even for finite sets, the bottleneck distance BD is impractical to compute
via exponentially many permutations. Problem 1.4.5 aims to replace a complicated
moduli space 𝑋/∼ with a simple metric space 𝑀 of geocodes, as formalised below.

Problem 1.4.5 (Geo-Mapping Problem). For any space 𝑋 of objects with a distance
𝑑𝑋 and an equivalence relation ∼, design a geocode defined as an invariant 𝐼 : 𝑋 → 𝑀

with values in a metric space 𝑀 satisfying the following conditions.

(a) Completeness: objects 𝐴, 𝐵 ∈ 𝑋 are equivalent (𝐴 ∼ 𝐵) if and only if 𝐼 (𝐴) = 𝐼 (𝐵).
(b) Reconstruction: any object 𝐴 ∈ 𝑋 can be reconstructed from its invariant value
𝐼 (𝐴) ∈ 𝑀 , uniquely under the given equivalence.

(c) Metric: there is a metric 𝑑𝑀 in the invariant space 𝐼{𝑋} = {𝐼 (𝐴) | 𝐴 ∈ 𝑋} ⊂ 𝑀 ,
satisfying all metric axioms in Definition 1.3.1(a).

(d) Continuity: 𝐼 is Lipschitz continuous in the sense of Definition 1.3.4: there is a
constant 𝜆 > 0 such that, for any 𝜀 ≥ 0, if 𝑑𝑋 (𝐴, 𝐵) ≤ 𝜀, then 𝑑𝑀 (𝐼 (𝐴), 𝐼 (𝐵)) ≤ 𝜆𝜀.

(e) Inverse continuity: there is a constant 𝜇 > 0 such that, for any 𝛿 ≥ 0, if
𝑑𝑀 (𝐼 (𝐴), 𝐼 (𝐵)) ≤ 𝛿, there is an equivalence 𝑓 satisfying 𝑑𝑋 ( 𝑓 (𝐴), 𝐵) ≤ 𝜇𝛿.

(f) Realisability: the invariant space 𝐼{𝑋} = {𝐼 (𝐴) | 𝐴 ∈ 𝑋} can be parametrised so
that we can generate any value 𝐼 (𝐴) ∈ 𝐼{𝑋} realisable by some object 𝐴 ∈ 𝑋 .

(g) Euclidean embedding: the invariant space 𝐼{𝑋} = {𝐼 (𝐴) | 𝐴 ∈ 𝑋} with the metric
𝑑𝑀 allows a bi-Lipschitz embedding into a Euclidean space R𝑁 for an integer 𝑁 .

(h) Computability: fix a metric space containing all objects of 𝑋 , then the invariant
𝐼 (𝐴) in (a), a reconstruction of 𝐴 from 𝐼 (𝐴) in (b), the metric 𝑑𝑀 (𝐼 (𝐴), 𝐼 (𝐵)) in (c),
an equivalence 𝑓 in (e), the generation of a new value in 𝐼{𝑋}, and an embedding
𝐼{𝑋} ⊂ R𝑁 can be algorithmically computed in polynomial times of the input size. ⋆

Completeness in 1.4.5(a) formalises the first main question (same or different?)
in Geometric Data Science by requiring that a geocode 𝐼 is a complete invariant
code unambiguously representing any given object. Then 𝐼 defines a bijection be-
tween the moduli space 𝑋/∼ and the invariant space 𝐼{𝑋} ⊂ 𝑀 . Completeness
alone is impractical because one can define 𝐼 as the entire collection of images
𝐼 (𝐴) = { 𝑓 (𝐴) for all equivalences 𝑓 }, which is infinite for most equivalence relations.

The reconstruction in 1.4.5(b) is stronger than the completeness, because a complete
invariant can be abstract or too complicated without an algorithmic reconstruction. For
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instance, a human fingerprint and a genetic code are practically used for identifying
humans but are insufficient (yet) to grow a genetic replica of a living person.

The metric requirements in 1.4.5(c) are justified by recently designed distances 𝑑
on point clouds [43], which guarantee pre-determined outputs of several clustering
algorithms, such as 𝑘-means and DBSCAN, if a distance 𝑑 between points is allowed
to fail the triangle inequality, even with any small additive error.

The Lipschitz continuity in 1.4.5(d) in the bottleneck distance is motivated for
atomic-scale objects by the fact that atoms vibrate around their average positions.

The inverse continuity in 1.4.5(e) allows us to deform a geocode 𝐼 (𝐴) and continu-
ously trace the evolution of reconstructed objects 𝐴. Exact values of Lipschitz constants
𝜆, 𝜇 are less important than their existence, because one can always scale down a metric
𝑑 to make 𝜆 in 1.4.5(d) smaller, then the constant 𝜇 in 1.4.5(e) will be larger.

Conditions 1.4.5(c,d,e) formalise the second main question (if different, by how
much?) by requiring that a geocode 𝐼 is a bi-continuous invariant.

For most objects in this book, the initial metric 𝑑𝑋 will be the bottleneck distance
BD. However, the continuity in conditions 1.4.5(d,e) for BD might be unrealistic for
some infinite objects, such as periodic lattices. In this case, an initial space 𝑋 will
consist of finite inputs with bottleneck-type metrics, e.g. lattice bases under isometry.

The realisability in 1.4.5(f) justifies the name geocode as an analogue of geographic
coordinates and requires an explicit description of all realisable values in the invariant
space 𝐼{𝑋} similar to all hospitable places on Earth. This realisability in 1.4.5(f) is
stated in purely mathematical terms and can be extended for practical applications
by additionally requiring that 𝐼 (𝐴) is realised by a physical object 𝐴. For instance, a
distance 𝑑 between atoms cannot be any positive number, so 2-atom molecules have
this distance 𝑑 in a small range within the full moduli space CIS(R3; 2) = (0,+∞).

The Euclidean embeddability in 1.4.5(f) converts 𝐼 (𝐴) into a vector in some in R𝑁

with usual Euclidean distance, which can be used as an input of machine learning algo-
rithms. However, the space exploration, such as a deformation or sampling of invariant
values, should be performed in the invariant space 𝐼{𝑋}, because the complement
R𝑁 \ 𝐼{𝑋} consists of artificial values that are not realisable by any objects.

The polynomial-time computability in 1.4.5(h) glues all previous conditions and
makes Geo-Mapping Problem 1.4.5 notoriously hard even for finite sets of 𝑚 ≥ 4
unordered points under isometry in R2, which were classified only into discrete types
such as squares and parallelograms, through they live in a continuous 5D space.

A full solution to Problem 1.4.5 enables a continuous exploration of a complicated
moduli space 𝑋/∼ by directly sampling geocodes in the invariant space 𝐼{𝑋}.

Machine learning often relies on latent spaces of descriptor values, which can be
ambiguous due to non-invariance or incompleteness, or discontinuity under noise.

For any real data under a given equivalence, Geometric Data Science aims to replace
all latent spaces with invariant spaces, which should be parametrised by fast geocodes.



1.5 Solutions to the geo-mapping problem in the simplest cases 13

In the geographic analogy, a example geocode of any position on Earth (considered
as a round sphere) consists of the latitude and longitude coordinates in the realisable
ranges [−90◦, 90◦] and (−180◦,+180◦]. More exactly, the (interior of the) rectangle
𝑅 = [−90◦, 90◦]×[−180◦,+180◦] continuously maps to sphere 𝑆2. This parametrisation
assumes that the horizontal edges of 𝑅 (all geocodes with a latitude +90◦ or −90◦) map
to the north and south pole, respectively. We should also glue the vertical edges of 𝑅
(all geocodes with longitudes ±180◦ and a fixed latitude) to a single meridian of 𝑆2.

Apart from these boundary identifications, geocodes have real values in known
ranges and have enabled navigation on Earth. Indeed, the shortest way from the US to
Japan is to cross the International Date Line over the Pacific Ocean, where the longitude
changes from−180◦ to+180◦. Hence, complete invariants of data objects become much
more valuable with a continuous metric to find shortest paths in a moduli space.

The vision of Geometric Data Science is to develop such geographic-style maps
(briefly, geomaps) for moduli spaces of all real objects under practical equivalences.

These geomaps have analytically defined invariant coordinates and substantially
differ from outputs of dimensionality reduction algorithms for the following reasons.

Firstly, many such algorithms are stochastic in the sense that their outputs for the
same input data can differ on runs with random seeds or on different machines.

Secondly, even if a dimensionality reduction is deterministic, such as Principal
Component Analysis, the underlying algorithm is data-driven in the sense that adding
new data changes the output projection of all data. Moreover, the coordinates of the
resulting projections are so complicated that it is impractical to write them down.

Thirdly, any dimensionality reduction as a function ℎ : R𝑚 → R𝑛 for 𝑚 > 𝑛 ≥ 1 is
either discontinuous, i.e. makes close points distant, or collapses an unbounded region
of R𝑚 to a single point, i.e. loses an infinite amount of data [35]. Hence, dimension-
ality reductions can produce nice pictures, but a justified analysis of similarities and
differences should use invariants and distances in the original high-dimensional space.

When we choose 2 or 3 invariants for a low-dimensional projection of a geomap, we
know all other skipped invariants and hence can expand any cluster or hot spot from
the first projection in other coordinates. Most importantly, adding new data to geomaps
keeps the locations of all past data similar to mapping new places on a geographic map,
because the invariant coordinates are defined in a data-independent way.

We considered the name Metric Data Science since it is similar to Metric Algebraic
Geometry [9]. The progress beyond metrics towards geographic-style maps [10] of
moduli spaces motivated the extra prefix in the name of Geometric Data Science.

1.5 Solutions to the geo-mapping problem in the simplest cases

This section discusses Examples 1.5.1-1.5.4, which solve Problem 1.4.5 for finite sets
of unordered points under rigid motion and isometry in R𝑛 for the simplest known cases
of dimension 𝑛 = 1, up to 𝑚 = 3 points in R𝑛, and for cyclic polygons in R2.
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Example 1.5.1 (geocodes of finite point sets in R). In dimension 𝑛 = 1, any finite set
𝐴 ⊂ R consists of naturally ordered points 𝑝1 < 𝑝2 < · · · < 𝑝𝑚.

(a) Since any rigid motion in R is a translation, the first point 𝑝1 can be fixed at the
origin 0 ∈ R. Then the sequence 𝑝1 < · · · < 𝑝𝑚 is uniquely determined by the geocode
𝐼 (𝐴) = (𝑑1, . . . , 𝑑𝑚−1) of the𝑚−1 distances 𝑑𝑖 = 𝑝𝑖+1−𝑝𝑖 , where the only realisability
condition is 𝑑𝑖 > 0, 𝑖 = 1, . . . , 𝑚 − 1. The Cloud Rigid Space is CRS(R;𝑚) = R𝑚−1

+ .

(b) Any isometry in R is a translation or its composition with the reflection 𝑥 ↦→
−𝑥, which reverses the order of all points of 𝐴 and the order of the distances 𝑑𝑖 ,
so that (𝑑1, . . . , 𝑑𝑚−1) ↦→ (𝑑𝑚−1, . . . , 𝑑1). Under isometry in R, the geocode 𝐼 (𝐴)
is the unordered pair of these distance vectors in R𝑚−1

+ The Cloud Isometry Space
is CIS(R;𝑚) = R𝑚−1

+ /∼, where the equivalence relation ∼ reverses the order of all
coordinates. If 𝑚 = 2, then CIS(R; 2) = (0,+∞) = CRS(R; 2). If 𝑚 = 3, then
CIS(R; 2) = {(𝑥, 𝑦) ∈ R2 | 0 < 𝑥 < 𝑦} for 𝑥 = min{𝑑1, 𝑑2}, 𝑦 = max{𝑑1, 𝑑2}. _

Example 1.5.2 (geocodes for 𝑚 = 2 points in R𝑛). (a) For pairs of unordered points
𝑝, 𝑞 in R𝑛, one complete invariant under isometry is the inter-point distance 𝑑 = |𝑝−𝑞 |,
because we can fix 𝑝 at the origin 0 ∈ R𝑛 by translation and then apply rotation from
O(R𝑛) to the point 𝑞 at the distance 𝑑 in the positive 1st coordinate axis of R𝑛.

The distance 𝑑 has Lipschitz constant 𝜆 = 2, because perturbing each of the points
𝑝, 𝑞 up to 𝜀 changes their distance 𝑑 = |𝑝 − 𝑞 | up to 2𝜀 due to the triangle inequality.

To check the inverse continuity, let 2-point clouds 𝐴 = {𝑝, 𝑞} and 𝐵 = {𝑢, 𝑣} in R𝑛

have 𝛿-close distances 𝑑 (𝐴) = |p−q| and 𝑑 (𝐵) = |u−v| so that |𝑑 (𝐴) −𝑑 (𝐵) | = 𝛿. Let
𝑓 be the isometry that translates the point 𝑝 to 𝑢 and then rotates the vector q−p around
the point 𝑢 with an orthogonal matrix from O(R𝑛) to make 𝑓 (q−p) parallel to the fixed
vector v − u. Since 𝑓 (𝑝) = 𝑢, the difference of parallel vectors can be estimated by the
difference of their lengths: | 𝑓 (q) − v| =

�� | 𝑓 (q − p) | − (v − u) |
�� = |𝑑 (𝐴) − 𝑑 (𝐵) | = 𝛿,

so the image 𝑓 (𝐴) is 𝛿-close to 𝐵. We can even additionally shift the 2-point cloud
𝑓 (𝐴) along the straight line through the points of 𝐵 to put each point of (the image
of) 𝐴 at a distance of

𝛿

2
from its closest point of 𝐵. Hence, the Lipschitz constant in

condition 1.4.5(e) is 𝜇 =
1
2

so that 𝜆𝜇 = 1. The realisability condition for an inter-point
distance is 𝑑 > 0. The moduli space CIS(R𝑛; 2) = (0,+∞) is embedded in R.

(b) If the given points 𝑝, 𝑞 are ordered, all conclusions in part (a) remain valid in
dimensions 𝑛 ≥ 2, also under rigid motion instead of isometry, because any vectors in
R𝑛 can be made parallel by rigid motion. In R, the complete invariant of two ordered
points 𝑝, 𝑞 under rigid motion (translation) is the difference 𝑝 − 𝑞. The Cloud Rigid
Space CRS(R; 2) = R \ {0} excludes the degenerate case of identical points 𝑝 = 𝑞. _

Fig. 1.3 (left) illustrates Geo-Mapping Problem 1.4.5 by geocodes parametrising
geographic-style maps for moduli spaces of 3-point clouds (triangles) under isometry.

Example 1.5.3 (geocodes for 𝑚 = 3 points in R𝑛). (a) The side-side-side theorem in
Euclidean geometry says that any triangles are congruent (isometric, in our language)
if and only if they have the same triple of side lengths, under permutations.
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Fig. 1.3 Left: a geocode 𝐼 from Problem 1.4.5 is illustrated for triangles (3-point clouds) whose
isometry classes form a moduli space, which can be mapped like Earth. Right: the Cloud Isometry Space
CIS(R𝑛; 3) is continuously parametrised by triples of inter-point distances 0 < 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑎 + 𝑏.

An isometry in the plane can reverse orientation, so the vertices of a triangle are
unordered. Since a triangle is considered a cloud of 3 unordered points, its three inter-
point distances can be written in increasing order, say 0 < 𝑎 ≤ 𝑏 ≤ 𝑐.

The side-side-side theorem implies that the ordered triple (𝑎, 𝑏, 𝑐) is a complete
invariant of 3 unordered points under isometry in the plane and hence in any R𝑛.
Similar to Example 1.5.2, the distances 𝑎, 𝑏, 𝑐 are continuous under perturbations with
Lipschitz constant 𝜆 = 2. The inverse continuity in 1.4.5(e) is harder and will be tackled
in forthcoming work. The only realisability condition is the single triangle inequality
𝑐 ≤ 𝑎 + 𝑏, which is the upper bound for the largest distance. Then the Cloud Isometry
Space CIS(R𝑛; 3) is the triangular cone {(𝑎, 𝑏, 𝑐) ∈ R3 | 0 < 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑏 + 𝑐}.

Under homothety (isometry composed with uniform scaling), this cone projects to
the smaller moduli space represented by the yellow triangle in Fig. 1.3 (right).

The red diagonal {𝑎 = 𝑏 = 𝑐} represents all equilateral triangles. The boundary
planes {𝑎 = 𝑏 ≤ 𝑐} and {𝑎 ≤ 𝑏 = 𝑐} represent two types of isosceles triangles: “more
horizontal” and “more vertical”, respectively. The third boundary plane {𝑐 = 𝑎 + 𝑏}
represents degenerate triangles of three points in a straight line.

(b) Under rigid motion in any R𝑛 for 𝑛 ≥ 3, all conclusions remain valid, because a
mirror reflection in R2 can be realised by a rotation in R𝑛 with a matrix from SO(R𝑛).
Then, for 𝑛 ≥ 3, the Cloud Rigid Space CRS(R𝑛; 3) is the same cone as in part (a).

In the plane R2, any rigid motion preserves the cyclic order of 3 points (vertices
of a triangle). Then the complete invariant is a triple (𝑎, 𝑏, 𝑐) of inter-point distances
satisfying max{𝑎, 𝑏} ≤ 𝑐 ≤ 𝑎 + 𝑏, so the shorter distances 𝑎, 𝑏 can be in any order. The
resulting Cloud Rigid Space CRS(R2; 3) is obtained by gluing two copies of triangular
cones CIS(R2; 3) along their boundaries, where 3-point clouds are mirror-symmetric.

While CIS(R𝑛; 3) is embedded in R3 for any 𝑛 ≥ 2, Euclidean embeddability of
CRS(R2; 3) needs a higher-dimensional space R𝑁 in condition 1.4.5(g). _

Example 1.5.4 (geocodes of cyclic polygons in R2). A polygon polygon in R2 is cyclic
if its vertex set 𝐴 is a subset of a circle of a radius (say) 𝑟 > 0. Then all points of 𝐴 are
cyclically ordered along this circle, say as 𝑝1, . . . , 𝑝𝑚. Since the centre of the circle can
be fixed at 0 ∈ R2, the set 𝐴 is determined, uniquely under rotation from SO(R2), by the
𝑚 cyclically ordered inter-point distances 𝑏𝑖 = |𝑝𝑖+1 − 𝑝𝑖 |, 𝑖 = 1, . . . , 𝑚, where 𝑝𝑚+1 =
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𝑝1. The geocode of 𝐴 under rigid motion in R2 is the sequence 𝐼 (𝐴) = (𝑏1, . . . , 𝑏𝑚)
under cyclic permutations. [41, Theorem 1.8] provides the realisability condition: 𝑏 𝑗 <∑
𝑖≠ 𝑗

𝑏𝑖 for 𝑗 = 1, . . . , 𝑚. Under isometry in R2, the sequence (𝑏1, . . . , 𝑏𝑚) should also

be considered under reversing the order: (𝑏1, . . . , 𝑏𝑚) ↦→ (𝑏𝑚, . . . , 𝑏1). _

Euclid might have drawn a geomap of triangles from Example 1.5.3(a) on sand more
than 2000 years ago. Hence, it was surprising that even the case of 𝑚 = 4 unordered
points in R2 remain opened until complete, Lipschitz continuous, and polynomial-time
isometry invariants were developed in 2023 for 𝑚 unordered points in any R𝑛 [49].

1.6 Related areas and connections of Geometric Data Sciences

This section briefly relates Geometric Data Science to other areas in mathematics, data
science, and computer science. Later chapters will review past work on specific data.

Our classifications of geometric objects by invariants were inspired by the famous
question Can we hear the shape of a drum? [31], which has the negative answer in terms
of 2D polygons indistinguishable by spectral invariants [26, 27]. Problem 1.4.5 went
beyond complete classifications for even better invariants that satisfy extra conditions
in 1.4.5(b-h) to allow us not only ‘hear’ but more fully ‘sense’ geometric shapes, e.g.
equivalence classes under rigid motion in any R𝑛. Problem 1.4.5 can be informally
rephrased as a short question: can we sense the shape of a real object?

Though Geo-Mapping Problem 1.4.5 will be re-phrased for various discrete objects,
the original statement covers all possible data under arbitrary equivalence relations. In
this book, our data objects will be finite and periodic sets of unordered points, which
represent atoms in molecules and materials. Other important objects include embedded
graphs, polygonal surface meshes, and simplicial complexes. Our standard equivalences
are rigid motion, isometry, and their compositions with uniform scaling. Weaker but
still practical equivalences are defined by affine, projective, and conformal maps, or
actions of specific linear groups on subsets of R𝑛 as in classical algebraic geometry.

The generality of Geo-Mapping Problem 1.4.5 and the recent progress in the practical
cases of finite and periodic point sets justified the birth of Geometric Data Science
[49, 34, 3] as a new area on the interface between metric geometry and data science.

Statistics, data analysis, and shape analysis considered a similar object-oriented
approach [38], often for continuous shapes, such as curves and surfaces, under more
complicated equivalences, including re-parametrisations or diffeomorphisms.

The carefully written book “Object-oriented data analysis” discussed the concepts
of equivalence relations and classes (fibres or orbits) in [38, section 1.2.2] in the case of
triangles under congruence as in Example 1.5.3(a), though without mapping the Cloud
Isometry Space CIS(R𝑛; 3) as in Fig. 1.3(b). Since the keyword invariant appeared
once in [38, p.184], section 1.2 added more motivations and examples of invariants.
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Several books on classical invariant theory [40, 33, 22] discuss invariants in the con-
text of algebraic geometry for solutions of polynomial equations, usually under actions
of linear groups with elements in Q or C, not involving translations or permutations, as
discussed with B.Hasset [28] and F.Kirwan [39] in private communications.

In real algebraic geometry, the invariants are also studied for (semi-)algebraic sets
[8, 45], including important computational aspects [18, 47]. The recent book “Metric
Algebraic Geometry” [9] moved beyond invariants towards distance metrics after the
earlier workshop on “Emerging applications of algebraic geometry” [42].

The key difference of this book from algebraic geometry is the focus on discrete sets
of unordered points coming from real data, such as atomic configurations.

Discrete sets of points have been studied in discrete geometry [37] and rigidity
theory [1], often for ordered points. This case also has practical applications in proteins,
though unordered (unlabelled) sets are more common in real data.

Topological Data Analysis [23, 19] developed persistent homology summarising the
evolution of complexes built on discrete data [15, 30]. For point clouds, the resulting
persistence diagrams are invariants under isometry, which are usually computed in
dimensions 0 and 1 due to the high complexity, and turned out to be weaker than
previously anticipated [46] in comparison with isometry invariants in Chapter 4.

In Topological Robotics, M.Farber [24, Chapter 1] studied moduli spaces of linkages
(or robot arms). A linkage is a polygonal line of straight segments with potential
intersections in the plane orR𝑛. If a linkage is a closed polygon, its vertices are cyclically
ordered. If 𝑙1, . . . , 𝑙𝑚 are fixed lengths of straight segments between successive points,
the topology of the resulting moduli space 𝑀 (𝑙1, . . . , 𝑙𝑚) was described for generic
lengths [24, Theorem 1.3] and for many singular cases [24, Theorem 1.6] in terms of
homology [24, Theorems 1.7, 1.21] and cohomology [24, Theorems 1.24-1.29].

In Computer Science, the interest in the geometry of data has risen due to the
influential area of “Geometric Deep Learning” [12, 13] advocating for the invariance
of inputs or outputs under actions of SE(R3) or E(R3) in machine learning algorithms.

All these related developments essentially inspired the new area of Geometric Data
Science, whose foundational concepts are highlighted in Fig. 1.4 (left).

The logo-style image in Fig. 1.4 (right) shows two quadrilaterals (a vertical kite in
green and yellow, and a horizontal trapezium in red, yellow, and blue) whose vertex
sets (clouds of 4 unordered points) are indistinguishable by 6 pairwise distances.

1.7 The chapter plan: from easier to more challenging data

This section outlines the plan of all further chapters, which are split into two big parts:
finite point sets and periodic point sets, which will be mostly studied under isometry.
In the first part, Chapters 2-6 solve partial cases of Problem 1.4.5 for finite point sets.
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Fig. 1.4 Left: the key concepts are introduced in Definitions 1.2.1, 1.2.5, 1.3.1, 1.3.4, and 1.4.3,
all linked in Problem 1.4.5. Right: the main objects are finite and periodic sets of unordered points,
including lattices in R2 whose space under rigid motion was the first solution to Problem 1.4.5.

Chapter 2 discusses complete, bi-continuous, and linear-time invariants [2] for finite
sets of ordered points under rigid motion in R3, which exposed thousands of duplicate
chains in the Protein Data Bank within a few hours on a modest desktop computer.

Chapter 3 leverages Principal Component Analysis to get complete and polynomial-
time invariants for finite clouds of unordered points under rigid motion in R𝑛.

Chapter 4 introduces Pointwise Distance Distribution. The PDD is a fast and generically
complete isometry invariant of finite and periodic sets of unordered points. This chapter
proves that the PDD is complete for all 4-point clouds under isometry in R𝑛.

Chapter 5 refines the isometry invariant PDD to a stronger Simplexwise Distance
Distribution (SDD) for a finite cloud of unordered points in any metric space. Despite
having a higher (polynomial-time) complexity, a simple definition of SDD allows us to
distinguish all known non-isometric clouds in R3 that have identical PDDs.

Chapter 6 improves SDD to a Simplexwise Centred Distribution, which is a complete,
Lipschitz continuous and polynomial time invariant of all point clouds under rigid
motion in R𝑛. The hardest obstacle in the proof of Lipschitz continuity was resolved by
a strength of a simplex, which is a linear-growth analogue of the simplex volume.

In the second part, Chapters 7-11 solve partial cases of Problem 1.4.5 for periodic sets.

Chapter 7 defines complete invariants for ordered sequences of points (under several
versions of isometries in R × R𝑛−1) that are periodic along the first coordinate axis.

Chapter 8 expands the classical approaches of Gauss, Lagrange [17], and Delone [7],
who studied lattices via quadratic forms, and the more recent work of Conway and
Sloane [16] to solve Problem 1.4.5 for all periodic lattices under rigid motion in R2.

Chapter 9 discusses density functions, which extend the point density of periodic point
sets to generically complete invariants under isometry in R3. These density functions
will be analytically described for all periodic sequences of intervals within R.

Chapter 10 extends PDDs from finite to periodic point sets, proves their generic
completeness under isometry in R𝑛, and describes their asymptotic behaviour.
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Chapter 11 refines the seminal work of Dolbilin, Lagarias, and Senechal [21] to build a
complete invariant isoset with Lipschitz continuous metrics, which can be approximated
by polynomial-time algorithms for all periodic point sets in R𝑛.

Chapter 12 summarises the most significant results and experimentally verified prin-
ciples, which inspired new concepts of geometric structures for crystals and molecules.
A brief history of developments concludes with future directions and highlights several
open problems, some of which can be accessible to school students and are partially
inspired by V.I.Arnold’s “Problem for School Pupils” in [5, Chapter 6].
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Chapter 2
Sequences of ordered points under rigid motion in
Euclidean spaces

Abstract This chapter discusses complete invariants of finite sets of ordered points
under rigid motion in Euclidean space R𝑛. After discussing distance matrices, we adapt
Geo-Mapping Problem 1.4.5 for protein backbones, which are non-degenerate polygonal
chains in R3. Further sections describe the linear-time Backbone Rigid Invariant (BRI)
and all-vs-all comparisons of chains in the Protein Data Bank.

2.1 Classical invariants and shape spaces of ordered points

This section reviews past approaches to classify sequences of ordered points 𝑝1, . . . , 𝑝𝑚
under rigid motion or isometry in R𝑛. In the case of isometry, a complete invariant of
the sequence 𝑝1, . . . , 𝑝𝑚, known at least since 1935 [23], is the matrix of pairwise
distances. An alternative (complete) isometry invariant is the Gram matrix of scalar
products p𝑖 · p 𝑗 [25, chapter 2.9], which can be expressed in terms of the distance
matrix and vice versa. Since these matrices do not distinguish mirror images, we state
the Euclidean version of Problem 1.4.5 for any finite sets of ordered points below.

Problem 2.1.1 (partial case of Problem 1.4.5 for sequences under rigid motion in R𝑛).
Design a map 𝐼 on finite sets of ordered points in R𝑛 satisfying the conditions below.

(a) Completeness: any sequences 𝐴, 𝐵 ⊂ R𝑛 are related by rigid motion (𝐴 � 𝐵) in R𝑛

if and only if 𝐼 (𝐴) = 𝐼 (𝐵).

(b) Reconstruction: any sequence 𝐴 ⊂ R𝑛 of ordered points can be reconstructed from
its invariant value 𝐼 (𝐴), uniquely under rigid motion.

(c) Metric: there is a distance 𝑑 on the invariant space {𝐼 (𝐴) | sequences 𝐴 ⊂ R𝑛}
satisfying all metric axioms in Definition 1.3.1(a).

(d) Continuity: there is a constant 𝜆 such that, for any 𝜀 > 0, if 𝐵 is obtained from 𝐴 by
perturbing every point of 𝐴 up to Euclidean distance 𝜀, then 𝑑 (𝐼 (𝐴), 𝐼 (𝐵)) ≤ 𝜆𝜀.

23
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(e) Computability: for a fixed dimension 𝑛, the invariant 𝐼 (𝐴), and the metric
𝑑 (𝐼 (𝐴), 𝐼 (𝐵)) can be computed in times that depend polynomially on the maximum
size max{|𝐴|, |𝐵|} of sets 𝐴, 𝐵 ⊂ R𝑛. ⋆

Problem 2.1.1 will be solved in section 7.2. Further sections of this chapter will
solve a non-degenerate version of Problem 2.1.1 for protein backbones in R3, see
Problem 2.2.2. The following concepts will be essentially used later.

Definition 2.1.2 (affine dimension). The affine dimension aff (𝐴) of a cloud 𝐴 ⊂ R𝑛

of points 𝑝1, . . . , 𝑝𝑚 is the maximum dimension of the vector space generated by all
inter-point vectors p𝑖 − p 𝑗 for 𝑖, 𝑗 ∈ {1, . . . , 𝑚}. ▲

The affine dimension aff (𝐴) is an isometry invariant and is independent of the order
of points of 𝐴. Any cloud 𝐴 of 2 distinct points has aff (𝐴) = 1. Any cloud 𝐴 of 3 points
that are not in the same straight line has aff (𝐴) = 2. Lemma 2.1.3 provides a criterion
for a matrix to be realisable by squared distances of a cloud in R𝑛.

Lemma 2.1.3 (realisation of distances). (a) A symmetric 𝑚 ×𝑚 matrix of 𝑠𝑖 𝑗 ≥ 0 with
𝑠𝑖𝑖 = 0 is realisable as a matrix of squared distances between 𝑝0 = 0, 𝑝1, . . . , 𝑝𝑚−1 ∈ R𝑛

for some 𝑛 if and only if the (𝑚 − 1) × (𝑚 − 1) matrix 𝐺 of 𝑔𝑖 𝑗 =
𝑠0𝑖 + 𝑠0 𝑗 − 𝑠𝑖 𝑗

2
has

only non-negative eigenvalues.
(b) If𝐺 has only non-negative eigenvalues, then aff (0, 𝑝1, . . . , 𝑝𝑚−1) equals the number
𝑘 ≤ 𝑚 − 1 ≤ 𝑛 of positive eigenvalues of 𝐺. In this case, 𝑔𝑖 𝑗 = 𝑝𝑖 · 𝑝 𝑗 define the Gram
matrix of the vectors 𝑝1, . . . , 𝑝𝑚−1 ∈ R𝑛, which are uniquely determined in time𝑂 (𝑚3)
under a map from O(𝑛).

Proof of Lemma 2.1.3. (a,b) We extend [5, Theorem 1] to the case 𝑚 < 𝑛 + 1 and find
𝑝1, . . . , 𝑝𝑚−1 ∈ R𝑛 in time 𝑂 (𝑚3), uniquely under an orthogonal map from O(𝑛).

The part only if ⇒. Let a symmetric matrix 𝑆 consist of squared distances between
points the 𝑝0 = 0, 𝑝1, . . . , 𝑝𝑚−1 ∈ R𝑛. For 𝑖, 𝑗 = 1, . . . , 𝑚 − 1, the matrix of

𝑔𝑖 𝑗 =
𝑠0𝑖 + 𝑠0 𝑗 − 𝑠𝑖 𝑗

2
=

|𝑝𝑖 |2 + |𝑝 𝑗 |2 − |𝑝𝑖 − 𝑝 𝑗 |2

2
= 𝑝𝑖 · 𝑝 𝑗

is the Gram matrix, which can be written as 𝐺 = 𝑃𝑇𝑃, where the columns of the
𝑛 × (𝑚 − 1) matrix 𝑃 are the vectors 𝑝1, . . . , 𝑝𝑚−1. For any vector 𝑣 ∈ R𝑚−1, we have

0 ≤ |𝑃𝑣|2 = (𝑃𝑣)𝑇 (𝑃𝑣) = 𝑣𝑇 (𝑃𝑇𝑃)𝑣 = 𝑣𝑇𝐺𝑣.

Since the quadratic form 𝑣𝑇𝐺𝑣 ≥ 0 for any 𝑣 ∈ R𝑚−1, the matrix 𝐺 is positive semi-
definite, i.e. 𝐺 has only non-negative eigenvalues, see [9, Theorem 7.2.7].

The part if ⇐. For any positive semi-definite matrix𝐺, there is an orthogonal matrix
𝑄 such that 𝑄𝑇𝐺𝑄 = 𝐷 is the diagonal matrix, whose 𝑚 − 1 diagonal elements are
non-negative eigenvalues of 𝐺. The diagonal matrix

√
𝐷 consists of the square roots of

the eigenvalues of 𝐺. The number of positive eigenvalues of 𝐺 equals the dimension
𝑘 = aff ({0, 𝑝1, . . . , 𝑝𝑚−1}) of the subspace that is linearly spanned by 𝑝1, . . . , 𝑝𝑚−1.
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We may assume that all 𝑘 ≤ 𝑛 positive eigenvalues of 𝐺 correspond to the first 𝑘
coordinates of R𝑛. Since 𝑄𝑇 = 𝑄−1, the given matrix 𝐺 = 𝑄𝐷𝑄𝑇 = (𝑄

√
𝐷) (𝑄

√
𝐷)𝑇

becomes the Gram matrix of the columns of 𝑄
√
𝐷. These columns become the recon-

structed vectors 𝑝1, . . . , 𝑝𝑚−1 ∈ R𝑛.

If there is another diagonalisation 𝑄̃𝑇𝐺𝑄̃ = 𝐷̃ for 𝑄̃ ∈ O(𝑛), then 𝐷̃ differs from 𝐷

by a permutation of eigenvalues, which is realized by an orthogonal map, so we set 𝐷̃ =

𝐷. Then 𝐺 = 𝑄̃𝐷𝑄̃𝑇 = (𝑄̃
√
𝐷) (𝑄̃

√
𝐷)𝑇 is the Gram matrix of the columns of 𝑄̃

√
𝐷.

The new columns differ from the previously reconstructed vectors 𝑝1, . . . , 𝑝𝑚−1 ∈
R𝑛 by the orthogonal map 𝑄𝑄̃𝑇 . Hence the reconstruction is unique under O(𝑛)-
transformations. Computing eigenvectors 𝑝1, . . . , 𝑝𝑚−1 needs a diagonalisation of𝐺 in
time 𝑂 (𝑚3), see section 11.5 in [20]. ⊓⊔

Chapter 3 in [16] discusses realisations of a complete graph given by a distance
matrix in R𝑛. Lemma 2.1.4(a) holds for all clouds, including degenerate ones, e.g. for 3
points in a straight line. Any points 𝑝1, . . . , 𝑝𝑛−1 ∈ 𝐴 have aff (𝑝1, . . . , 𝑝𝑛−1) ≤ 𝑛 − 2.
For example, any two distinct points in 𝐴 ⊂ R3 generate a straight line.

Lemma 2.1.4 (sequence reconstruction). (a) Any sequence of ordered points 𝑝1, . . . , 𝑝𝑚
in R𝑛 can be reconstructed (uniquely under isometry) from the matrix of the Euclidean
distances |𝑝𝑖 − 𝑝 𝑗 | in time 𝑂 (𝑚3). If all distances are divided by 𝑅 = max

𝑖=1,...,𝑚
|𝑝𝑖 |, the

reconstruction of 𝑝1, . . . , 𝑝𝑚 is unique under isometry and uniform scaling in R𝑛.

(b) If 𝑚 ≤ 𝑛, the uniqueness of reconstructions in part (a) remains true if we replace
isometry with rigid motion in R𝑛. ■

Proof of Lemma 2.1.4. (a) By translation, we can fix 𝑝1 at the origin. Let 𝐺 be the

(𝑚−1)×(𝑚−1) matrix 𝑔𝑖 𝑗 =
|𝑝𝑖 |2 + |𝑝 𝑗 |2 − |𝑝𝑖 − 𝑝 𝑗 |2

2
= 𝑝𝑖 ·𝑝 𝑗 , where 𝑖, 𝑗 = 2, . . . , 𝑚,

which is obtained from the squared distances between the points 𝑝1 = 0, 𝑝2, . . . , 𝑝𝑚.
By Lemma 2.1.3 if 𝐺 has 𝑘 ≤ 𝑛 positive eigenvalues, then 𝑝1 = 0, . . . , 𝑝𝑚 can

be uniquely determined under isometry in R𝑘 ⊂ R𝑛 in time 𝑂 (𝑚3). If all distances
are divided by the same radius 𝑅 = max

𝑖=1,...,𝑚
|𝑝𝑖 |, the above construction guarantees

uniqueness under isometry and uniform scaling.

(b) If 𝑚 ≤ 𝑛, any mirror images of 𝑝1, . . . , 𝑝𝑚 ∈ R𝑛, after a suitable rigid motion, can
be assumed to belong to an (𝑛 − 1)-dimensional hyperspace 𝐻 ⊂ R𝑛, where they are
matched by a mirror reflection 𝐻 → 𝐻 with respect to an (𝑛−2)-dimensional subspace
𝑆 ⊂ 𝐻, which is realized by the 180◦ orientation-preserving rotation around 𝑆. ⊓⊔

Lemma 2.1.4(b) for 𝑚 = 𝑛 = 3 implies that any triangle is determined by its sides,
uniquely under rigid motion in R3. For example, sides 3, 4, 5 define a right-angled
triangle whose mirror images are not related by rigid motion within a plane 𝐻 ⊂ R3,
but are matched by a rigid motion in 𝐻 and a 180◦ rotation of R3 around a line in 𝐻.

The difference between the matrices of distances or scalar products can be converted
into a continuous metric by taking a matrix norm. These matrices are preserved under
any mirror reflections. Hence, these invariants are incomplete under rigid motion.
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One can define the sign of orientation on some (or all subsets of) 𝑛 + 1 points from
a given sequence. This extra sign is discrete and vanishes for degenerate configurations
for 𝑛 + 1 points that affinely span a 𝑘-dimensional subspace in R𝑛 for 𝑘 ≤ 𝑛 − 1.

Another attempt to satisfy the Lipschitz continuity in Problem 1.4.5(d) is to multiply
the sign of orientation by the volume of the simplex spanned by 𝑛 + 1 points, say
𝑝1, . . . , 𝑝𝑛+1. In other words, one can take the signed volume of the parallelepiped
spanned by the vectors p𝑖 − p1, 𝑖 = 2, . . . , 𝑛 + 1. If the first 𝑛 + 1 points are degenerate,
then the zero volume of their spanned parallelepiped does not give any extra information
to distinguish mirror images of the full sequence.

More importantly, the resulting signed volume is not Lipschitz continuous already
in dimension 𝑛 = 2. Indeed, let us consider the triangle 𝐴(𝑡) on the vertices (±𝑙, 0) and
(0, 𝑡𝜀), where 𝑙, 𝜀 > 0 are fixed constants (𝑙 is large, 𝜀 > 0 is small), and 𝑡 ∈ [−1, 1]
is a time parameter. The signed area of 𝐴(𝑡) is 𝑡𝑙𝜀, changing from −𝑙𝜀 at 𝑡 = −1 to 𝑙𝜀

at 𝑡 = 1. Then the Lipschitz constant cannot be smaller than 𝜆 =
2𝑙𝜀
2

= 𝑙𝜀. Then the
signed area can have a fixed Lipschitz constant only for bounded triangles, not for all

triangles, because we can choose 𝜀 =
1
√
𝑙

to make 𝜆 = 𝑙𝜀 =
√
𝑙 unbounded.

We will resolve this obstacle to Lipschitz continuity by a different function (the
strength of a simplex) in a later chapter. This section finishes by noting that a naive
extension of the complete isometry invariant (matrix of distances or scalar products)
from the ordered to 𝑚 unordered points requires 𝑚! permutations. This exponential
complexity is ruled out by the polynomial-time requirement in 1.4.5(h). Indeed, 𝑚!
becomes too large already for 𝑚 = 4 points: 4! = 24 matrices of size 4 × 4.

Each distance matrix is symmetric and has zeros on the diagonal, and hence can be
represented by only 6 distances. However, the total number of 24 × 6 = 144 distances
seems overwhelmingly unnecessary to unambiguously and continuously encode 4 un-
ordered points under isometry in R2. Chapter 4 will prove that a smaller 4 × 3 matrix
invariant is complete for any 4 unordered points under isometry in R𝑛.

In 1977, Kendall [13] started to study configuration spaces of ordered points modulo
rigid motion in R𝑛 under the name of size-and-shape spaces [14]. If we consider
sequences equivalent also under uniform scaling, the smaller shape space Σ𝑚2 of 𝑚
ordered points in R2 can be described as a complex projective space C𝑃𝑚−1 due to
the group SO(R2) being identified with the unit circle in the complex space C1 = R2.
However, there is no easy description of the moduli space Σ𝑚3 of 𝑚-point sequences in
R3, which has no multiplicative group structure similar to R2 = C1.

In a general metric space, let a sequence 𝐴 of 𝑚 ordered points be given by their
𝑚×𝑚 distance matrix 𝐷. Multidimensional scaling [15] finds an embedding 𝐴 ⊂ R𝑘 (if
it exists) preserving all distances of 𝑀 for a minimum dimension 𝑘 ≤ 𝑚. The underlying
computation of 𝑚 eigenvalues of the Gram matrix expressed via 𝐷 needs 𝑂 (𝑚3) time.

The resulting representation of an embedded sequence 𝐴 ⊂ R𝑘 uses orthonormal
eigenvectors whose ambiguity up to signs for potential comparisons leads to the time
factor 2𝑘 , which can be close to 2𝑚 and hence exponential in the number 𝑚 of points.
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Further sections in this chapter follow papers [2, 26]. We are grateful to John
Helliwell, Thérèse Malliavin, Elspeth Garman, Lauren Porter, Erica Flapan, and all our
co-authors, especially Mariusz Jaskolski, Wladek Minor, and Alex Wlodawer for their
expert advice and support of mathematical foundations in structural biology.

2.2 The geo-mapping problem for protein backbones in R3

A protein is a large biomolecule consisting of one or several chains of amino acid
residues. The primary structure (sequence) of a protein chain is a string of residue labels
(represented by one or three letters), each denoting one of (usually) 20 standard amino
acids [24]. The secondary structure consists of frequent semi-rigid subchains such as
𝛼-helices and 𝛽-strands [17]. A sequence of a protein is relatively easy to experimentally
determine but important functional properties, such as interactions with drug molecules,
depend on a 3-dimensional geometric fold (a tertiary structure) represented by an
embedding of all its atoms in R3 , see Fig. 2.1 (left).

Fig. 2.1 Left: all main atoms 𝑁𝑖 , 𝐴𝑖 ,𝐶𝑖 of a protein chain form a backbone embedded in R3. Middle:
each triangle △𝑁𝑖𝐴𝑖𝐶𝑖 defines an orthonormal basis 𝒖𝑖 , 𝒗𝑖 , 𝒘𝑖 . The coordinates of the bond vectors
−−−−−→
𝐶𝑖𝑁𝑖+1,

−−−−−−−→
𝑁𝑖+1𝐴𝑖+1,

−−−−−−→
𝐴𝑖+1𝐶𝑖+1 in this basis form the complete Backbone Rigid Invariant BRI. Right:

All rigidly equivalent backbones form a single rigid class. All rigid classes form the Backbone Rigid
Space. The image schematically illustrates four different classes of simple polygonal chains in R3.

In 1973, Nobel laureate Anfinsen conjectured that the sequence of any protein chain
determines its 3D geometric fold [1]. Following this conjecture, neural networks such
as AlphaFold2 and RosettaFold [11, 3] optimise millions of parameters to predict a
protein fold from its sequence, but need re-training [10] on the growing Protein Data
Bank (PDB), which is considered a ‘gold standard’ for experimental structures [4].
The reported accuracies of prediction are often based on the LDDT (Local Distance
Difference Test) [18, p. 2728] and TM-score [27], which fail the metric axioms. Then
clustering can produce pre-determined clusters and may not be trustworthy [21].

Backbones of the same length (number of residues) can be optimally aligned to
minimise the Root Mean Square Deviation (RMSD) between corresponding atoms [8].
This RMSD is slow to compute for all pairs of proteins and gives only distances without
mapping the protein universe (moduli space of proteins under rigid motion).

We develop a different approach by mapping the space of protein backbones in
analytically defined coordinates similar to geographic-style maps of a new planet.
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Any embedded protein in R3 can be rigidly moved, which changes all atomic coor-
dinates. However, the underlying structure remains the same in the sense that different
images of a protein under rigid motion have the same properties in a fixed environment.
Though proteins are flexible, it is important to distinguish their rigid structures that can
interact differently [6] with other molecules, including medical drugs.

Definition 2.2.1 (Backbone Rigid Space BRIS𝑚). A protein backbone is a sequence of
𝑚 ordered triplets of main chain atoms (nitrogen 𝑁𝑖 , 𝛼-carbon 𝐴𝑖 , and carbonyl carbon
𝐶𝑖) given by their positions in R3. The structure of a backbone, or a protein chain (with
all side chains), or a biomolecule consisting of several chains is the equivalence class
of this geometric object under rigid motion in R3. For any 𝑚 ≥ 1, the classes of all
backbones of 𝑚 triplets under rigid motion form the Backbone Rigid Space BRIS𝑚. ▲

Backbones were studied by incomplete invariants such as torsion angles, which allow
false positive pairs of non-equivalent backbones 𝑆 � 𝑄 with 𝐼 (𝑆) = 𝐼 (𝑄). Because all
atoms in a backbone 𝑆 are ordered, their distance matrix determines 𝑆 ⊂ R3, uniquely
under isometry, but has a large quadratic size in the number 𝑚 of residues and fails
to distinguish mirror images. Adding a sign of orientation creates discontinuity for
polygonal chains that are almost mirror-symmetric.

Problem 2.2.2 adapts Geo-Mapping Problem 1.4.5 to protein backbones. The com-
pleteness in 1.4.5(a) is restricted to polygonal chains, where each triplet of atoms
𝑁𝑖 , 𝐴𝑖 , 𝐶𝑖 is not in a straight line, as we have checked for all experimental structures in
the PDB. The polynomial-time condition in 1.4.5(h) is strengthened to linear time.

Problem 2.2.2 (geo-mapping for protein backbones). For any 𝑚 ≥ 1, design a map
𝐼 : BRIS𝑚 → R𝑁 for some 𝑁 satisfying the following conditions.

(a) Completeness: any backbones 𝑆, 𝑄 ⊂ R3 are rigidly equivalent if and only if
𝐼 (𝑆) = 𝐼 (𝑄), i.e. 𝐼 has no false negatives and no false positives.

(b) Reconstruction: any protein backbone 𝑆 ⊂ R3 can be reconstructed from its invariant
value 𝐼 (𝑆) uniquely under rigid motion.

(c) Metric: there is a distance 𝑑 on invariant values satisfying all metric axioms in
Definition 1.3.1(a).

(d) Continuity: there is a constant 𝜆 such that, for any 𝜀 > 0, if 𝑄 is obtained from 𝑆 by
perturbing every atom up to Euclidean distance 𝜀, then 𝑑 (𝐼 (𝑆), 𝐼 (𝑄)) ≤ 𝜆𝜀.

(e) Atom matching: there is a constant 𝜇 such that, for any backbones 𝑆, 𝑄 with 𝛿 =

𝑑 (𝐼 (𝑆), 𝐼 (𝑄)), all their atoms can be matched up to a distance 𝜇𝛿 by a rigid motion.

(f) Realisability: the invariant space 𝐼{𝑋} = {𝐼 (𝐴) | 𝐴 ∈ 𝑋} can be parametrised so
that we can generate any value 𝐼 (𝐴) ∈ 𝐼{𝑋} realisable by some object 𝐴 ∈ 𝑋 .

(g) Respecting subchains: for any subchain of residues 𝑅𝑖 ∪ · · · ∪ 𝑅𝑖+ 𝑗 in a backbone
𝑆, the invariant 𝐼 (𝑅𝑖 ∪ · · · ∪ 𝑅𝑖+ 𝑗 ) can be obtained from 𝐼 (𝑆) in linear time 𝑂 ( 𝑗) with
respect to the length of the subchain.

(h) Linear-time computability: the invariant 𝐼, the metric 𝑑, a reconstruction in (b), and
a rigid motion in (e) can be computed in time𝑂 (𝑚) for any backbone of 𝑚 residues. ⋆
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The completeness in 2.2.2(a) means that 𝐼 is the strongest invariant and hence
distinguishes all protein backbones that cannot be exactly matched by rigid motion.
The reconstruction in 2.2.2(b) is more practical because 𝐼 may not allow an efficiently
computable inverse map 𝐼−1 from an invariant value 𝐼 (𝑆) to a backbone 𝑆 ⊂ R3.

The continuity in 2.2.2(d) fails for invariants based on principal directions that can
discontinuously change in degenerate cases when eigenvalues become equal. The atom
matching in 2.2.2(e) says that, after finding a rigid motion 𝑓 in R3, any atom 𝑝 ∈ 𝑆 has
Euclidean distance at most 𝜇𝛿 to the corresponding atom 𝑞 ∈ 𝑓 (𝑄).

Conditions 2.2.2(d,e) guarantee the Lipschitz continuity of 𝐼 and its inverse on the
image 𝐼 (BRIS𝑚) ⊂ R𝑁 . Though Lemma 2.1.3 gives a two-sided criterion for the
realisability of distances by ordered points 𝑝1, . . . , 𝑝𝑚 ∈ R𝑛, the space of distance
matrices is highly singular and cannot be easily sampled. Since a random matrix of
potential distances for 𝑚 > 𝑛 + 1 is unlikely to be realisable by 𝑚 ordered points in R𝑛,
the realisability condition in 2.2.2(g) is non-trivial for the distance matrix.

Since Problem 2.2.2 asked for an invariant 𝐼 : BRIS𝑚 → R𝑁 , the Euclidean embed-
dability in 1.4.5(g) hold automatically and has been replaced with condition 2.2.2(g),
motivated by secondary structures, which are subchains in full backbones.

The linear time in 2.2.2(h) makes all previous conditions practically useful because
even the distance matrix needs 𝑂 (𝑚2) time and space, substantially slower than linear
time 𝑂 (𝑚) for thousands of residues.

Past work on similarities of proteins is reviewed in [2, section 2]. Section 2.3
introduces the Backbone Rigid Invariant BRI : BRIS𝑚 → R9𝑚−6 to solve Problem 2.2.2
by Theorems 2.3.4, 2.3.7, 2.3.9. The numerical components of BRI play the role of
geocodes, which are geographic-style coordinates on the space BRIS𝑚, where any
protein backbone has a uniquely defined location. Section 2.5 describes how BRI
detected thousands of geometric duplicates in the PDB, some of which need updates.

2.3 Complete and bi-continuous Backbone Rigid Invariant

We start with the simpler triangular invariant that describes the rigid class of each
residue triangle △𝑁𝑖𝐴𝑖𝐶𝑖 on three main atoms: nitrogen 𝑁𝑖 , 𝛼-carbon 𝐴𝑖 , and carbonyl
carbon 𝐶𝑖 , for 𝑖 = 1, . . . , 𝑚, see Fig. 2.1 (middle). For any points 𝐴, 𝐵 ∈ R3, let |−−→𝐴𝐵|
be the Euclidean length of the vector

−−→
𝐴𝐵 from 𝐴 to 𝐵. The scalar and vector products

of vectors 𝒖, v ∈ R3 are denoted by 𝒖 · 𝒗 and 𝒖 × 𝒗, respectively.

Definition 2.3.1 (triangular invariant TRIN). Let a backbone 𝑆 ⊂ R3 have 3𝑚 ordered
atoms 𝑁𝑖 , 𝐴𝑖 , 𝐶𝑖 , 𝑖 = 1, . . . , 𝑚. In the plane of △𝑁𝑖𝐴𝑖𝐶𝑖 , for the 2D basis obtained
by Gaussian orthogonalisation of

−−−→
𝐴𝑖𝑁𝑖 ,

−−−→
𝐴𝑖𝐶𝑖 , the vector

−−−→
𝐴𝑖𝑁𝑖 has the coordinates

𝑥(𝐴𝑖𝑁𝑖) = |−−−→𝐴𝑖𝑁𝑖 | and 𝑦(𝐴𝑖𝑁𝑖) = 0. Let x =

−−−→
𝐴𝑖𝑁𝑖

|−−−→𝐴𝑖𝑁𝑖 |
be the unit vector. Then

−−−→
𝐴𝑖𝐶𝑖 has

the coordinates 𝑥(𝐴𝑖𝐶𝑖) =
−−−→
𝐴𝑖𝐶𝑖 · x and 𝑦(𝐴𝑖𝐶𝑖) = |−−−→𝐴𝑖𝐶𝑖 − 𝑥(𝐴𝑖𝐶𝑖)x| in the direction



30 2 Sequences of ordered points under rigid motion in Euclidean spaces

orthogonal to x. The triangular invariant TRIN(𝑆) is the 𝑚 × 3 matrix whose 𝑖-th row
consists of the coordinates 𝑥(𝐴𝑖𝑁𝑖), 𝑥(𝐴𝑖𝐶𝑖), and 𝑦(𝐴𝑖𝐶𝑖) for 𝑖 = 1, . . . , 𝑚. ▲

The 𝑖-th row of TRIN(𝑆) uniquely determines the rigid class of △𝑁𝑖𝐴𝑖𝐶𝑖 .
On May 4, 2024, the PDB had 213,191 entries with 1,091,420 chains. Protocol 2.3.2

below produced 104, 688 ≈ 49% entries with 707410 ≈ 65% chains in 4 hours 48 min
11 sec. All experiments were run on CPU Core i7-11700 @2.50GHz RAM 32Gb.

Protocol 2.3.2 (selecting a subset of 707K+ chains in the PDB). The PDB was filtered
by removing the following entries and individual chains.
(1) 4513 non-proteins (the entity is labeled as ‘not a protein’).
(2) 178153 disordered chains, where some atoms have occupancies < 1.
(3) 201648 chains with residues having non-consecutive indices.
(4) 9941 incomplete chains missing one of the main atoms 𝑁𝑖 , 𝐴𝑖 , 𝐶𝑖 .
(5) 4364 chains with non-standard amino acids.

To guarantee new condition 2.2.2(e) respecting subchains, Definition 2.3.3 will repre-
sent atoms 𝑁𝑖+1, 𝐴𝑖+1, 𝐶𝑖+1 in a basis of the previous 𝑖-th residue. The first residue needs
only three invariants from Definition 2.3.1 to determine the rigid class of △𝑁1𝐴1𝐶1 in
R3. Due to cleaning in Protocol 2.3.2, all consecutive atoms along any backbone have
distances 𝑑 ≥ 0.01Å and all angles in any residue triangle △𝑁𝑖𝐴𝑖𝐶𝑖 are at least 3◦,
which makes the bases of all residue triangles well-defined in Definition 2.3.3 below.

Definition 2.3.3 (backbone rigid invariant BRI(𝑆) of a protein backbone 𝑆). In the nota-

tions of Definition 2.3.1, define the orthonormal basis vectors 𝒖𝑖 =
−−−→
𝐴𝑖𝑁𝑖

|−−−→𝐴𝑖𝑁𝑖 |
, 𝒗𝑖 =

𝒉𝑖
|𝒉𝑖 |

for

𝒉𝑖 =
−−−→
𝐴𝑖𝐶𝑖 − 𝑏𝑖

−−−→
𝐴𝑖𝑁𝑖 , 𝑏𝑖 =

−−−→
𝐴𝑖𝐶𝑖 ·

−−−→
𝐴𝑖𝑁𝑖

|−−−→𝐴𝑖𝑁𝑖 |2
, and 𝒘𝑖 = 𝒖𝑖 × 𝒗𝑖 . The backbone rigid invariant

BRI(𝑆) is the𝑚×9 matrix whose 𝑖-th row for 𝑖 = 2, . . . , 𝑚 contains the coefficients 𝑥, 𝑦, 𝑧
of the vectors

−−−−−→
𝐶𝑖−1𝑁𝑖 ,

−−−→
𝑁𝑖𝐴𝑖 ,

−−−→
𝐴𝑖𝐶𝑖 in the basis 𝒖𝑖−1, 𝒗𝑖−1,𝒘𝑖−1. So, for 𝑖 = 2, . . . , 𝑚,

the nine columns of BRI(𝑆) contain the coordinates 𝑥(𝐶𝑖−1𝑁𝑖), 𝑦(𝐶𝑖−1𝑁𝑖), 𝑧(𝐶𝑖−1𝑁𝑖)
of

−−−−−→
𝐶𝑖−1𝑁𝑖 , followed by the three coordinates 𝑥(𝑁𝑖𝐴𝑖), 𝑦(𝑁𝑖𝐴𝑖), 𝑧(𝑁𝑖𝐴𝑖) of

−−−→
𝑁𝑖𝐴𝑖 and

three coordinates 𝑥(𝐴𝑖𝐶𝑖), 𝑦(𝐴𝑖𝐶𝑖), 𝑧(𝐴𝑖𝐶𝑖) of
−−−→
𝐴𝑖𝐶𝑖 . In the exceptional case 𝑖 = 1,

the first row of BRI(𝑆) has only three non-zero coordinates 𝑥(𝑁1𝐴1), 𝑥(𝐴1𝐶1) and
𝑦(𝐶1) = 𝑦(𝐴1𝐶1) from the first row of the invariant TRIN(𝑆) in Definition 2.3.1. ▲

For a backbone of 𝑚 residues, the first row of the 𝑚 × 9 matrix BRI(𝑆) contains
only three non-zero coordinates. Hence the matrix BRI(𝑆) can be considered a vector
of length 9(𝑚 − 1) + 3 = 9𝑚 − 6. The simplest metric on BRIs as vectors in R9𝑚−6 is
𝐿∞ equal to the maximum absolute difference between all corresponding coordinates.

A small value 𝛿 of 𝐿∞ (BRI(𝑆),BRI(𝑄)) guarantees by Theorem 2.3.9 that back-
bones 𝑆, 𝑄 are closely matched by rigid motion. Another metric, such as Euclidean
distance or its normalisation by the chain length, has no such guarantees and can be
small even for a few outliers that can affect the rigid structure and hence functional prop-
erties of a protein. Theorem 2.3.4 proves conditions 2.2.2(a,b,c,e,h) in Problem 2.2.2.
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All stated results below have references to the original papers with detailed proofs.

Theorem 2.3.4 (completeness, reconstruction, and subchains [2, Theorem 3.5]). (a)
Under any rigid motion in R3, the matrix TRIN(𝑆) in Definition 2.3.1 is invariant, while
BRI(𝑆) in Definition 2.3.3 is a complete invariant, so any backbones 𝑆, 𝑄 ⊂ R3 are
matched by rigid motion if and only if BRI(𝑆) = BRI(𝑄).
(b) For any backbone 𝑆 of 𝑚 residues, the invariant BRI(𝑆), metric 𝐿∞ on BRIs, and a
reconstruction of 𝑆 ⊂ R3 from BRI(𝑆) can be computed in time 𝑂 (𝑚).
(c) Let 𝑄 be a subchain of 𝑗 consecutive residues in a backbone 𝑆 ⊂ R3. If 𝑄 includes
the first residue of 𝑆, then BRI(𝑄) consists of the first 𝑗 rows of BRI(𝑆). If 𝑄 starts
from the 𝑖-th residue of 𝑆 for 𝑖 > 1, the rows 2, . . . , 𝑗 of BRI(𝑄) coincide with the rows
𝑖 + 1, . . . , 𝑖 + 𝑗 − 1 of BRI(𝑆). The 1st row of BRI(𝑄) is computed from the 𝑖-th row of
BRI(𝑆) in a constant time, so BRI(𝑄) is computed from BRI(𝑆) in time 𝑂 ( 𝑗). ■

Corollary 2.3.5 (completeness under isometry [2, Corollary 3.6]). Any mirror image
𝑆 of a backbone 𝑆 ⊂ R3 has the invariant BRI(𝑆) := BRI(𝑆) obtained by reversing
the signs in all 𝑧-columns of BRI(𝑆). The unordered pair of BRI(𝑆) and BRI(𝑆) is
complete under isometry. ■

Since the realisability in condition 2.2.2(f) did not appear in [2, Problem 1.2], new
Lemma 2.3.6 describes the geometric realisability of non-degenerate polygonal lines in
R3. The physical realisability of protein backbones will be tackled in future work.

Lemma 2.3.6 (realisability of BRI). A sequence of 𝑚 ordered triplets of points
𝑁𝑖 , 𝐴𝑖 , 𝐶𝑖 , 𝑖 = 1, . . . , 𝑚, is called non-degenerate if the vectors

−−−→
𝑁𝑖𝐴𝑖 and

−−−→
𝐴𝑖𝐶𝑖 are

not parallel for 𝑖 = 1, . . . , 𝑚 − 1. The invariant space 𝐼 (BRI), i.e. the collection of
BRI(𝑆) ∈ R9𝑚−6 for all non-degenerate sequences 𝑆 of 𝑚 ordered triplets 𝑁𝑖 , 𝐴𝑖 , 𝐶𝑖 ,
consists of any sequence of numbers 𝑙 > 0, 𝑥, 𝑦 ≠ 0, followed by𝑚−1 triples of vectors
a𝑖 , b𝑖 , c𝑖 , 𝑖 = 2, . . . , 𝑚, such that a𝑖 and b𝑖 are not parallel for 𝑖 = 2, . . . , 𝑚 − 1. ■

Proof. The first three numbers 𝑙 = |𝑁𝑖𝐴𝑖 |, 𝑥 = 𝑥(𝐴𝑖𝐶𝑖), 𝑦 = 𝑦(𝐴𝑖𝐶𝑖) form the
triangular invariant TRIN(𝑆) from Definition 2.3.1. The realisability conditions 𝑙 > 0
and 𝑦 ≠ 0 mean that the vectors

−−−→
𝐴𝑖𝑁𝑖 and

−−−→
𝐴𝑖𝐶𝑖 are not parallel and hence define

the orthonormal basis u1, v1,w1 associated with the first residue triangle △𝑁1𝐴1𝐶1.
Similarly, every next pair of vectors a𝑖 =

−−−→
𝑁𝑖𝐴𝑖 and b𝑖 =

−−−→
𝐴𝑖𝐶𝑖 should not be parallel so

that we can define an orthonormal basis of the (𝑖+1)-st residue for 𝑖 = 2, . . . , 𝑚−1. ⊓⊔

Theorem 2.3.7 will prove the Lipschitz continuity of BRI in condition 2.2.2(c). For
a given backbone 𝑆 and its perturbation 𝑄, let 𝑙𝑁,𝐴 and 𝐿𝑁,𝐴 denote the minimum and
maximum bond length between any 𝛼-carbon 𝐴𝑖 and nitrogen 𝑁𝑖 in 𝑆, 𝑄, respectively.
The maximum bond lengths 𝐿𝐴,𝐶 , 𝐿𝐶,𝑁 are similarly defined for other types of bonds.

Theorem 2.3.7 (Lipschitz continuity of BRI, [2, Theorem 4.1]). For any 𝜀 > 0, let 𝑄
be obtained from a backbone 𝑆 ⊂ R3 by perturbing every atom of 𝑆 up to Euclidean
distance 𝜀. Let ℎ = min𝑖 |𝑦(𝐴𝑖𝐶𝑖) | be the minimum height in triangles △𝑁𝑖𝐴𝑖𝐶𝑖 at
𝐶𝑖 for all residues in the backbones 𝑆, 𝑄. Set 𝐿 = max{𝐿𝐶,𝑁 , 𝐿𝑁,𝐴, 𝐿𝐴,𝐶 }, 𝐾 =

1
𝑙𝑁,𝐴

+ 2
ℎ

(
1 + 2

𝐿𝐴,𝐶

𝑙𝑁,𝐴

)
, and 𝜆 = 2(1 + 2𝐿𝐾). Then 𝐿∞ (BRI(𝑆),BRI(𝑄)) ≤ 𝜆𝜀. ■
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Example 2.3.8 (continuity of BRI). For all 707K+ cleaned chains, the median upper
bound for 𝜆 is about 34.5, but the real values are smaller as in the example below.
Consider the backbone 𝑆 of the chain A (141 residues) from the standard hemoglobin
2hhb in the PDB. We perturb 𝑆 to𝑄 by adding to each coordinate 𝑥, 𝑦, 𝑧 of all atoms in 𝑆
some uniform noise up to various thresholds 𝜀 = 0.01, 0.02, . . . , 0.1Å. Fig. 2.2 (top left)
shows how the distance 𝐿∞ (BRI(𝑆),BRI(𝑄)) averaged over 20 perturbations depends
on 𝜀 As expected by Theorem 2.3.7, the metric 𝐿∞ is perturbed linearly up to 𝜆𝜀 for
𝜆 ≈ 4. _

Since the metric 𝐿∞ between invariants BRI (𝑚 × 9 matrices) can be computed in
linear time 𝑂 (𝑚), Theorem 2.3.7 also completes condition (2.2.2f) in Problem 2.2.2.
Theorem 2.3.9 will prove condition in 2.2.2(d).

Theorem 2.3.9 (inverse continuity of BRI, [2, Theorem 4.8]). For any 𝛿 > 0 and
backbones 𝑆, 𝑄 ⊂ R3 with 𝐿∞ (BRI(𝑆),BRI(𝑄)) < 𝛿, there is a rigid motion 𝑓

of R3 such that any atom of 𝑆 is 𝜇𝛿-close to the corresponding atom of 𝑓 (𝑄) for

𝜇 =
√

3
(8𝐿𝐾)𝑚−1 − 1

8𝐿𝐾 − 1
. Let B̂RI(𝑆) be BRI(𝑆) after multiplying the 𝑖-th row by

(8𝐿𝐾)𝑖−1 − 1
8𝐿𝐾 − 1

for 𝑖 = 2, . . . , 𝑚. Then 𝐿∞ (B̂RI(𝑆), B̂RI(𝑄)) < 𝛿 guarantees a rigid

motion 𝑓 of R3 such that any atom of the backbone 𝑆 is
√

3𝛿-close to the corresponding
atom of 𝑓 (𝑄). ■

2.4 Average invariant, diagrams, and barcodes of backbones

This section simplifies the complete invariant BRI to its average vector in R9 and
introduces the diagram and barcode that visually represent the high-dimensional BRI.

Definition 2.4.1 (average invariant Brain, diagram BID, and barcode BIB). (a) For any
protein backbone 𝑆 of 𝑚 residues, the backbone rigid average invariant Brain(𝑆) ∈ R9

is the vector of nine column averages in BRI(𝑆) excluding the first row.

(b) The backbone invariant diagram BID(𝑆) consists of nine polygonal curves going
through the points (𝑖, 𝑐(𝑖)), 𝑖 = 2, . . . , 𝑚, where 𝑐 is one of the coordinates (columns)
of BRI(𝑆), see Fig. 2.2 (middle).

(c) For each atom type such as 𝑁 , the coordinates (𝑥(𝑁𝑖), 𝑦(𝑁𝑖), 𝑧(𝑁𝑖)) are linearly con-
verted into the RGB color value for 𝑖 = 1, . . . , 𝑚. The resulting color bars for the ordered
atoms 𝑁, 𝐴, 𝐶 form the backbone invariant barcode BIB(𝑆), see Fig. 2.2 (bottom). ▲

Example 2.4.2 (hemoglobins). The PDB contains thousands of hemoglobin structures.
We consider here the structure 2hhb as a standard, and compare it with oxygenated
1hho, which contains an extra oxygen whose transport is facilitated by hemoglobin. In
both cases, we considered the main chains (entity 1, model 1, chain A) of 141 residues.

The top left image in Fig. 2.2 (top) shows that the Lipschitz constant from Theo-
rem 2.3.7 is 𝜆 ≈ 4 for both hemoglobins. Fig. 2.2 (middle) illustrates the complexity of
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Fig. 2.2 Row 1: the Lipschitz continuity of BRI from Theorem 2.3.7 is illustrated on the left by
perturbing hemoglobins in Example 2.3.8, whose main chains A of 141 residues are shown in the
middle (oxygenated 1hho in green, standard 2hhb in cyan) and eight 𝛼-helices found by [12] on the
right. Row 2: the Backbone Invariant Diagram (BID) of the hemoglobins 1hho vs 2hhb in the PDB,
see Definition 2.4.1. Row 3: the Backbone Invariant Barcode (BIB), see Example 2.4.2.

identifying similar proteins with distant coordinates. The similarity under rigid motion
becomes clear by comparing their diagrams and barcodes in Fig. 2.2 (rows 2, 3).

More importantly, a rigidly repeated pattern such as 𝛼-helix or 𝛽-strand has constant
invariants over several residue indices, which are easily detectable in BID and visible in
BIB as intervals of uniform color. The PDB uses the baseline algorithm DSSP (Define
Secondary Structure of Proteins) [12], which depends on several manual parameters
and sometimes outputs 𝛼-helices of only two residues.

For instance, the PDB entries 1hho and 2hhb in Fig. 2.2 (right) include HELX P4
consisting of only residues 50 and 51, and HELX P5 of length 20 over residue indices
𝑖 = 52, . . . , 71. Fig. 2.2 shows that a ‘constant’ interval of little noise appears only for
𝑖 = 54, . . . , 70. Hence new invariants allow a more objective detection of secondary
structures, which will be explored in future work. _

2.5 A fast detection of duplicate chains in the Protein Data Bank

The linear time of the complete invariant BRI(𝑆) has enabled all-vs-all compar-
isons for all tertiary structures in the PDB, which was additionally cleaned by
Protocol 2.3.2. To speed up comparisons, Lemma 2.5.1 proves that the metric
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𝐿∞ (BRI(𝑆),BRI(𝑄)) between complete invariants is not smaller than the faster dis-
tance 𝐿∞ (Brain(𝑆),Brain(𝑄)) between the averaged invariants (vectors of 9 coordi-
nates) from Definition 2.4.1.

Lemma 2.5.1 (metrics on BRI and Brain, [2, Lemma 6.1]). Any protein backbones
𝑆, 𝑄 of the same number of residues satisfy the inequality 𝐿∞ (Brain(𝑆),Brain(𝑄)) ≤
𝐿∞ (BRI(𝑆),BRI(𝑄)). ■

The complete invariants and their statistical summaries were computed in 3 hours 18
min 21 sec. After comparing all (888+ million) pairs of same-length backbones within 1
hour, we found 13907 pairs 𝑆, 𝑄 with the exact zero-distance 𝐿∞ (BRI(𝑆),BRI(𝑄)) = 0
between complete invariants meaning that all these backbones 𝑆, 𝑄 are related by rigid
motion, but they may not be geometrically identical.

However, 9366 of these pairs turned out to have 𝑥, 𝑦, 𝑧 coordinates of all main atoms
identical to the last digit despite many of them (763) coming from different PDB entries.
Table 2.1 lists nine pairs whose geometrically identical chains unexpectedly differ in
the sequences of amino acids. The duplicates from Table 2.1 were shown to the PDB
validation team, who did not know about the found coincidences (in coordinates) and
differences (in amino acids), because the PDB validation is currently done only for an
individual protein (checking atom clashes, outliers etc).

Table 2.1 Chains with identical backbones but different sequences of amino acid residues.

PDB id1 method and PDB id2 all atoms have different

& chain resolutions, Å & chain identical 𝑥, 𝑦, 𝑧 residues

1a0t-B X-ray, 2.4, 2.4 1oh2-B all 3 × 413 9

1ce7-A X-ray, 2.7, 2.7 2mll-A all 3 × 241 1, GLY≠HIS

1ruj-A X-ray, 3, 3 4rhv-A all 3 × 237 1, GLY≠SER

1gli-B/D X-ray, 2.5, 1.7 3hhb-B/D all 3 × 146 1, MET≠VAL

2hqe-A X-ray, 2, 2 2o4x-A all 3 × 217 1, GLN≠GLU

5adx-T EM, 4, 8.2 5afu-Z all 3 × 165 1, ILE≠VAL

5lj3-O EM, 3.8, 10 5lj5-P all 3 × 252 1, ALA≠VAL

8fdz-A X-ray, 2.5, 2.2 8fe0-A all 3 × 200 1, THR≠SER

In the row starting with 2hqe in Table 2.1, the chain IDs A, B refer to two pairs of
duplicates: chain A of 2hqe is identical to chain A of 2o4x, similarly for B. The notation
{B,D} in the row starting with 1gli means 4 duplicates: each of the chains B,D in 1gli
is identical to each of the chains B,D in 3hhb.
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The histograms in [2, Fig. 5] reveal about 220K pairs of near-duplicates among
707K+ cleaned chains up to 𝐿∞ ≤ 0.01Å. The bound of 0.01Å is considered noise
because the smallest inter-atomic distance is about 100 times larger at 1Å = 10−10 m.

The physical meaning of distances follows from the bi-continuity conditions (c,d)
in Problem 2.2.2. If every atom of a backbone 𝑆 is shifted up to Euclidean distance
𝜀, then BRI(𝑆) changes up to 𝜆𝜀 in 𝐿∞. The Lipschitz constant 𝜆 was expressed in
Theorem 2.3.7 and estimated as 𝜆 ≈ 4 for the hemoglobin chains in Example 2.4.2. So
any small perturbation of atoms yields a small value of 𝐿∞ in Angstroms.

The inverse Lipschitz continuity in 2.2.2(d) implies that a small Chebyshev distance
𝐿∞ (BRI(𝑆),BRI(𝑄)) = 𝛿 guarantees that all atoms of the backbones 𝑆, 𝑄 can be
matched (under a suitable rigid motion) up to Euclidean distance 𝜇𝛿 in Theorem 2.3.9.

One potential explanation of identical coordinates is the molecular replacement
method [22], which uses an existing protein structure, often a previous PDB deposit
or part thereof, to solve a new structure. If the newly calculated electron density map
does not allow for further refinement then the coordinates may (reasonably) remain
unchanged. The same coincidences can happen with lower-quality cryo-EM maps in
which an existing PDB structure may be placed but where the resolution may not allow
for further refinement of atomic coordinates [19, 7].

We have checked that the found duplicate backbones also have identical distance
matrices on 3𝑚 ordered atoms, which were slower to compute in time 𝑂 (𝑚2) over two
days on a similar machine. The widely used DALI server [8] also confirmed the found
duplicates by the traditional Root Mean Square Deviation (RMSD) through optimal
alignment. The DALI took about 30 min on average to find a short list of nearest
neighbors of one chain in the whole PDB. Extrapolating this time to all pairwise
comparisons for 707K+ cleaned chains yields 40+ years, slower by orders of magnitude
than 6 hours needed for all comparisons of BRIs on the same desktop computer.

The ultra-fast speed of all-vs-all comparisons by BRI is explained by the hierarchical
nature of this complete invariant. To find near-duplicates in the PDB, we first compared
only average invariants Brain(𝑆) ∈ R9. By Lemma 2.5.1 the full comparisons by BRI
are needed only for a tiny proportion of backbones with the closest vectors Brain(𝑆).
This hierarchical speed-up is unavailable for any distance without underlying invariants.
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Chapter 3
Complete and polynomial-time invariants of
unordered points in R𝒏

Abstract This chapter is the first in the book to focus on Euclidean clouds of unordered
points under rigid motion inR𝑛. We leverage Principal Component Analysis to construct
a direction-based invariant of point clouds, whose continuity and completeness under
isometry proved for principally generic clouds. This invariant is extended to a larger
distribution that is complete for all clouds under rigid motion. The main novelty are
polynomial-time algorithms for these invariants and distance metrics.

3.1 Towards complete and polynomial-time invariants for clouds

All sections in this chapter follow paper [9] with minor updates. Any finite chemical
system, such as a molecule, can be represented as a cloud of atoms whose nuclei are
real physical objects [12], while chemical bonds are not real sticks and only abstractly
represent inter-atomic interactions. In the hardest scenario, all atoms are modelled as
zero-sized points at all atomic centres without any labels such as chemical elements.
For example, the C60 molecule [8] consists of 60 unordered carbons. Allowing different
compositions enables a quantitative comparison of isomers, see Fig. 3.1.

Fig. 3.1 Isomers of C20, benzene C6 H6, phenyllithium C6 H5 Li, chlorobenzene C6 H5 Cl have many
indistinguishable atoms.

This chapter studies finite clouds of unordered points in R𝑛 for a fixed dimension
𝑛. Problem 3.1.1 adjusts Geo-Mapping Problem 1.4.5 to unordered clouds under rigid
motion. The stronger problem with Lipschitz continuity will be solved in Chapter 6.

37
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Problem 3.1.1 (complete and polynomial-time invariants of clouds in R𝑛). Design an
invariant 𝐼 of all clouds of unordered points in R𝑛 satisfying the conditions below.

(a) Completeness: any finie clouds 𝐴, 𝐵 ⊂ R𝑛 of unordered points are related by rigid
motion (𝐴 � 𝐵) if and only if 𝐼 (𝐴) = 𝐼 (𝐵).

(b) Reconstruction: any cloud 𝐴 ⊂ R𝑛 of unordered points can be reconstructed from
its invariant value 𝐼 (𝐴), uniquely under rigid motion in R𝑛.

(c) Metric: there is a distance 𝑑 on the space {𝐼 (𝐴) | unordered clouds 𝐴 ⊂ R𝑛} satis-
fying all metric axioms in Definition 1.3.1(a).

(d) Computability: for a fixed dimension 𝑛, the invariant 𝐼 (𝐴), a reconstruction of
𝐴 ⊂ R𝑛 from 𝐼 (𝐴), and the metric 𝑑 (𝐼 (𝐴), 𝐼 (𝐵)) are computable in times that depend
polynomially on the maximum size max{|𝐴|, |𝐵|} of any clouds 𝐴, 𝐵 ⊂ R𝑛. ⋆

Based on Principal Component Analysis, section 3.2 introduces the Principal Coor-
dinates Invariant (PCI) to uniquely identify under isometry in R𝑛 all point clouds that
allow a unique alignment by principal directions. Section 3.3 defines a symmetrised
metric on PCIs, which is continuous under perturbations in general position and can be
computed (for a fixed dimension 𝑛) in a subquadratic time in the number of unordered
points. Section 3.4 extends the PCI to the Weighted Matrices Invariant (WMI), which
is complete for all point clouds under isometry in R𝑛. Section 3.5 applies the Linear
Assignment Cost and Earth Mover’s Distance to define metrics on WMIs.

For a fixed dimension 𝑛 of the ambient spaceR𝑛, all these invariants and metrics have
polynomial-time algorithms in the number 𝑚 of the given points. For 𝑛 = 2, the time
𝑂 (𝑚3.5 log𝑚) improves the time 𝑂 (𝑚5 log𝑚) of the only previous exact algorithm [4]
for the Hausdorff distance on isometry classes of clouds.

As a potential extension of the side-side-side theorem to 𝑚 unordered points in R𝑛,
the seminal work [2] in 2004 proved that the total distribution of pairwise distances is a
complete invariant under isometry in R𝑛 for generic clouds whose point coordinates are
not solutions of a complicated polynomial equation. However, infinitely many counter-
examples to the full completeness of this invariant were constructed even for 𝑚 = 4
points in R2 [3]. The first two pictures of Fig. 3.2 show the simplest non-isometric
clouds 𝑇 ; 𝐾 of 4 points in R2. Other past work was reviewed in [9, section 2].

Fig. 3.2 First and second: non-isometric sets 𝑇 � 𝐾 of 4 points have the same 6 pairwise distances.
Third: the vertex set RC[𝑙1, 𝑙2 ] of a 2𝑙1 × 2𝑙2 rectangle. Fourth: what is the distance between an
equilateral triangle 𝐴3 and a square 𝐴4? See new invariants and metrics in Examples 3.2.4, 3.3.4, 3.5.7.
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3.2 The Principal Coordinates Invariant of unordered clouds in R𝒏

This section recalls Principal Component Analysis (PCA), whose principal directions
[1] will be used to introduce the Principal Coordinates Invariant (PCI) in Defini-
tion 3.2.3. We assume that all coordinates in R𝑛 have the same units. In practice, we
should first normalise all features given in different units.

Any cloud 𝐴 ⊂ R𝑛 of 𝑚 unordered points has the centre of mass 𝑂 (𝐴) = 1
𝑚

∑
𝑝∈𝐴

𝑝.

Shifting 𝐴 by the vector −𝑂 (𝐴) allows us to always assume that 𝑂 (𝐴) is the origin
0. Then Problem 3.1.1 reduces to invariants only under orthogonal maps from the
orthogonal group 𝑂 (R𝑛) instead of the full Euclidean group E(R𝑛).

Definition 3.2.1 (covariance matrix Cov(𝐴) of a point cloud 𝐴). If we arbitrarily order
points 𝑝1, . . . , 𝑝𝑚 of a cloud 𝐴 ⊂ R𝑛, we get the sample 𝑛 × 𝑚 matrix (or data table)
𝑃(𝐴), whose 𝑖-th column consists of 𝑛 coordinates of the point 𝑝𝑖 ∈ 𝐴, 𝑖 = 1, . . . , 𝑚.

The covariance 𝑛 × 𝑛 matrix Cov(𝐴) = 𝑃(𝐴)𝑃(𝐴)𝑇
𝑛 − 1

is symmetric and positive semi-
definite meaning that 𝑣𝑇Cov(𝐴)𝑣 ≥ 0 for any vector 𝑣 ∈ R𝑛. Hence the matrix Cov(𝐴)
has real eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑛 ≥ 0 satisfying Cov(𝐴)v 𝑗 = 𝜆 𝑗v 𝑗 for an eigenvector
v 𝑗 ∈ R𝑛, which can be scaled by any real 𝑠 ≠ 0. ▲

If all eigenvalues of the covariance matrix Cov(𝐴) are distinct and positive, there
is an orthonormal basis of eigenvectors v1, . . . , v𝑛 ordered according to the decreasing
eigenvalues 𝜆1 > · · · > 𝜆𝑛 > 0. This eigenbasis is unique under reflection v 𝑗 ↔ −v 𝑗 of
each eigenvector, 𝑗 = 1, . . . , 𝑛.

Definition 3.2.2 (principally generic cloud). A point cloud 𝐴 ⊂ R𝑛 is principally
generic if, after shifting 𝑂 (𝐴) to the origin, the covariance matrix Cov(𝐴) has distinct
eigenvalues 𝜆1 > · · · > 𝜆𝑛 > 0. The 𝑗-th eigenvalue 𝜆 𝑗 defines the 𝑗-th principal
direction parallel to an eigenvector v 𝑗 , which is uniquely determined under scaling. ▲

The vertex set of any rectangle in R2, but not a square, is principally generic.

Definition 3.2.3 (matrix PCM and invariant PCI). For 𝑛 ≥ 1, let 𝐴 ⊂ R𝑛 be a principally
generic cloud of points 𝑝1, . . . , 𝑝𝑚 with the centre of mass 𝑂 (𝐴) at 0 ∈ R𝑛. Then 𝐴
has principal directions along unit eigenvectors v1, . . . , v𝑛, defined up to a sign. In the
orthonormal basis 𝑉 = (v1, . . . , v𝑛)𝑇 , any point 𝑝𝑖 ∈ 𝐴 has the principal coordinates
𝑝𝑖 · v1, . . . , 𝑝𝑖 · v𝑛, which can be written as a vertical column 𝑛×1 denoted by𝑉𝑝𝑖 . The
Principal Coordinates Matrix is the 𝑛 × 𝑚 matrix PCM(𝐴) whose 𝑚 columns are the
coordinate sequences𝑉𝑝1, . . . , 𝑉 𝑝𝑚. Two such matrices are equivalent under changing
signs of rows due to the ambiguity v 𝑗 ↔ −v 𝑗 of unit length eigenvectors in the basis
𝑉 . The Principal Coordinates Invariant PCI(𝐴) is an equivalence class of PCM(𝐴). ▲

For simplicity, we skip the dependence on a basis 𝑉 in the notation PCM(𝐴). The
columns of PCM(𝐴) are unordered, though we can write them according to any order
of points in the cloud 𝐴 considered as the vector (𝑝1, . . . , 𝑝𝑚). Then PCM(𝐴) can be
viewed as the matrix product 𝑉𝐴 consisting of the 𝑚 columns 𝑉𝑝1, . . . , 𝑉 𝑝𝑚. One can
minimise the ambiguity under re-ordering of columns and switching signs v 𝑗 ↔ −v 𝑗
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as follows. For each 𝑗 = 1, . . . , 𝑛, choose a sign so that a coordinate with a largest value
|𝑝𝑖 · v 𝑗 | is positive. Then write all columns in the lexicographically decreasing order:
(𝑐1 𝑗 , . . . , 𝑐𝑛 𝑗 ) > (𝑐1𝑘 , . . . , 𝑐𝑛𝑘) if a few first values (possibly none) coincide 𝑐𝑖 𝑗 = 𝑐𝑖𝑘
and then 𝑐𝑖 𝑗 > 𝑐𝑖𝑘 for the next index 𝑖.

Example 3.2.4 (computing PCI). (a) For any 𝑙1 > 𝑙2 > 0, let the rectangular cloud
RC[𝑙1, 𝑙2] consist of the four vertices (±𝑙1,±𝑙2) of the rectangle [−𝑙1, 𝑙1]×[−𝑙2, 𝑙2]. Then

RC[𝑙1, 𝑙2] has the centre at 0 ∈ R2 and the sample 2 × 4 matrix 𝑃 =

©­­­«
𝑙1 𝑙1 −𝑙1 −𝑙1

𝑙2 −𝑙2 𝑙2 −𝑙2

ª®®®¬
whose columns are in a 1-1 correspondence with (arbitrarily) ordered points (𝑙1, 𝑙2),

(𝑙1,−𝑙2), (−𝑙1, 𝑙2), (−𝑙1,−𝑙2). The covariance matrix Cov(RC[𝑙1, 𝑙2]) =
©­­­«

4𝑙21 0

0 4𝑙22

ª®®®¬ has

eigenvalues 𝜆1 = 4𝑙21 > 𝜆2 = 4𝑙22 . If we choose unit length eigenvectors v1 = (1, 0) and
v2 = (0, 1), then PCM(RC[𝑙1, 𝑙2]) coincides with the matrix 𝑃 above. The invariant
PCI(RC[𝑙1, 𝑙2]) is the equivalence class of all matrices obtained from 𝑃 by changing
signs of rows and re-ordering columns.

(b) The vertex set 𝑇 of the trapezium in the first picture of Fig. 3.2 has four points

written in the columns of the sample matrix 𝑃(𝑇) =

©­­­«
2 1 −1 −2

−1/2 1/2 1/2 −1/2

ª®®®¬ so that

the centre of mass 𝑂 (𝑇) is the origin 0. Then Cov(𝑇) =
©­­­«

10 0

0 1

ª®®®¬ has eigenvalues 10, 1

with orthonormal eigenvectors (1, 0), (0, 1), respectively. The invariant PCI(𝑇) is the
equivalence class of the matrix 𝑃(𝑇) above. The vertex set 𝐾 of the kite in the second
picture of Fig. 3.2 consists of four points written in the columns of the sample matrix

𝑃(𝐾) =
©­­­«

5/2 −1/2 −1/2 −3/2

0 1 −1 0

ª®®®¬ so that the centre of mass 𝑂 (𝐾) is the origin 0. Then

Cov(𝐾) =

©­­­«
9 0

0 2

ª®®®¬ has eigenvalues 9, 2 with orthonormal eigenvectors (1, 0), (0, 1),

respectively. The invariant PCI(𝐾) is the equivalence class of the matrix 𝑃(𝐾). _

All results in this chapter have details proofs in the original paper [9].

Theorem 3.2.5 (generic completeness of PCI, [9, Theorem 3.5]). Any principally
generic clouds 𝐴, 𝐵 ⊂ R𝑛 of 𝑚 unordered points are isometric if and only if their PCI
invariants coincide as equivalence classes of matrices: PCI(𝐴) = PCI(𝐵). ■
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Lemma 3.2.6 (time complexity of PCI, [9, Lemma 3.6]). For a principally generic cloud
𝐴 ⊂ R𝑛 of 𝑚 points, a matrix PCM(𝐴) from the invariant PCI(𝐴) in Definition 3.2.3
can be computed in time 𝑂 (𝑛2𝑚 + 𝑛3). ■

Theorem 3.2.5 requires that clouds 𝐴, 𝐵 are principally generic, which holds with
100% probability due to noise. If real clouds are close to symmetric configurations with
equal eigenvalues, to avoid numerical instability, we should use the slower but always
complete invariants from section 3.4.

3.3 A symmetrised metric on principally generic clouds in R𝒏

This section defines a metric on PCI invariants, whose polynomial-time computation and
continuity will be proved in Theorems 3.3.5 and 3.3.6. For any 𝑣 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛,
the maximum norm is | |𝑣 | |∞ = max

𝑖=1,...,𝑛
|𝑥𝑖 |. Below we use the Chebyshev distance

𝐿∞ (𝑢, 𝑣) = | |u − v| |∞ between points 𝑢, 𝑣 ∈ R𝑛 and the bottleneck distance BD from
Example 1.3.1(b) on matrices 𝑃 interpreted as clouds [𝑃] of column-vectors in R𝑛.

Definition 3.3.1 (𝑚-point cloud [𝑃] ⊂ R𝑛 of an 𝑛×𝑚 matrix 𝑃). For any 𝑛×𝑚 matrix
𝑃, let [𝑃] denote the unordered set of its 𝑚 columns considered as vectors in R𝑛. The
set [𝑃] of 𝑚 columns can be interpreted as a cloud of 𝑚 unordered points in R𝑛. ▲

For any 𝑛 × 𝑚 matrices 𝑃,𝑄, let 𝑔 : [𝑃] → [𝑄] be a bijection of columns indexed
by 1, 2, . . . , 𝑚. Then the Chebyshev distance 𝐿∞ (𝑣, 𝑔(𝑣)) between columns 𝑣 ∈ [𝑃] and
𝑔(𝑣) ∈ [𝑄] is the maximum absolute difference of corresponding coordinates inR𝑛. The
minimisation over all column bijections 𝑔 : [𝑃] → [𝑄] gives the bottleneck distance
BD( [𝑃], [𝑄]) = min

𝑔:[𝑃 ]→[𝑄]
max
𝑣∈[𝑃 ]

𝐿∞ (𝑣, 𝑔(𝑣)) between the sets [𝑃], [𝑄] considered as

clouds of unordered points in R𝑛.

An algorithm for detecting a potential isometry 𝐴 � 𝐵 will check if SM(𝐴, 𝐵) = 0
for the metric SM defined via changes of signs. A change of signs in 𝑛 rows can be
represented by a binary string 𝜎 in the product group Z𝑛2 , where Z2 = {±1}, 1 means
no change, −1 means a change.

For instance, the binary string 𝜎 = (1,−1) ∈ Z2
2 acts on the matrix 𝑃 =

PCM(RC[𝑙1, 𝑙2]) from Example 3.2.4 as follows:

𝜎

©­­­«
𝑙1 𝑙1 −𝑙1 −𝑙1

𝑙2 −𝑙2 𝑙2 −𝑙2

ª®®®¬ =

©­­­«
𝑙1 𝑙1 −𝑙1 −𝑙1

−𝑙2 𝑙2 −𝑙2 𝑙2

ª®®®¬ .
Definition 3.3.2 (symmetrised metric SM on matrices and clouds). For any 𝑛 × 𝑚
matrices 𝑃,𝑄, the minimisation for 2𝑛 changes of signs represented by strings 𝜎 ∈ Z𝑛2
acting on rows gives the symmetrised metric SM( [𝑃], [𝑄]) = min

𝜎∈Z𝑛
2

BD( [𝜎(𝑃)], [𝑄]).
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For any principally generic clouds 𝐴, 𝐵 ⊂ R𝑛, the symmetrised metric is SM(𝐴, 𝐵) =
SM( [PCM(𝐴)], [PCM(𝐵)]) for matrices PCM(𝐴), PCM(𝐵) in Definition 3.2.3. ▲

If we denote the action of a column permutation 𝑔 on a matrix 𝑃 as 𝑔(𝑃), the matrix
difference 𝑔(𝑃) − 𝑄 has the maximum norm max

𝑣∈[𝑃 ]
𝐿∞ (𝑣, 𝑔(𝑣)). Then BD( [𝑃], [𝑄])

will be computed by an efficient algorithm for bottleneck matching in Theorem 3.3.5.

Lemma 3.3.3 (metric axioms for the symmetrised metric SM, [9, Lemma 4.4]). (a)
The metric SM(𝑃,𝑄) from Definition 3.3.2 is well-defined on equivalence classes of
𝑛 × 𝑚 matrices 𝑃,𝑄 considered under changes of signs of rows and permutations of
columns, and satisfies all metric axioms.

(b) The metric SM(𝐴, 𝐵) from Definition 3.3.2 is well-defined on isometry classes of
principally generic clouds 𝐴, 𝐵 and satisfies all axioms. ■

Example 3.3.4 (computing the symmetrised metric SM). (a) By Example 3.2.4(a),
the vertex set RC[𝑙1, 𝑙2] of any rectangle with sides 2𝑙1 > 2𝑙2 in the plane has

PCI represented by the matrix PCM(RC[𝑙1, 𝑙2]) =

©­­­«
𝑙1 𝑙1 −𝑙1 −𝑙1

𝑙2 −𝑙2 𝑙2 −𝑙2

ª®®®¬. The vertex set

RC[𝑙′1, 𝑙
′
2] of any other rectangle has a similar matrix whose element-wise subtraction

from PCM(RC[𝑙1, 𝑙2]) consists of ±𝑙1 ± 𝑙′1 and ±𝑙2 ± 𝑙′2. Re-ordering columns and
changing signs of rows minimises the maximum absolute value of these elements to
max{|𝑙1 − 𝑙′1 |, |𝑙2 − 𝑙

′
2 |}, which should equal SM(RC[𝑙1, 𝑙2],RC[𝑙′1, 𝑙

′
2]).

(b) The invariants PCI of the vertex sets 𝑇 and 𝐾 in Fig. 3.2 were computed in
Example 3.2.4(b) and represented by these matrices in Definition 3.2.3:

PCM(𝑇) =
©­­­«

2 1 −1 −2

−1/2 1/2 1/2 −1/2

ª®®®¬ , PCM(𝐾) =
©­­­«

5/2 −1/2 −1/2 −3/2

0 1 −1 0

ª®®®¬ .
The maximum absolute value of the element-wise difference of these matrices is

|1 − (− 1
2 ) | =

3
2 , which cannot be smaller after permuting columns and changing signs

of rows. The symmetrised metric equals SM(𝑇, 𝐾) = BD(PCM(𝑇), PCM(𝐾)) = 3
2 . _

Theorem 3.3.5 (time of the metric SM, [9, Theorem 4.6]). (a) Given any 𝑛 × 𝑚

matrices 𝑃,𝑄, the symmetrised metric SM(𝑃,𝑄) in Definition 3.3.2 is computable in
time 𝑂 (𝑚1.52𝑛 log𝑛 𝑚). If 𝑛 = 2, the time is 𝑂 (𝑚1.5 log𝑚).

(b) The above conclusions hold for SM(𝐴, 𝐵) of any principally generic𝑚-point clouds
𝐴, 𝐵 ⊂ R𝑛 represented by 𝑛 × 𝑚 matrices PCM(𝐴), PCM(𝐵). ■

Theorem 3.3.6 proves the continuity in the weaker sense of 𝜀, 𝛿 because PCI is defined
only for generic clouds anyway. Explicit estimates in the proof from [9, section 4] are
based on recent bounds for perturbations of eigenvectors from of [5, Theorem 3].
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Theorem 3.3.6 (continuity of SM, [9, Theorem 4.9]). For any principally generic cloud
𝐴 ⊂ R𝑛 and any 𝜀 > 0, there is 𝛿 > 0 (depending on 𝐴 and 𝜀) such that if any principally
generic cloud 𝐵 ⊂ R𝑛 has BD(𝐴, 𝐵) < 𝛿, then SM(𝐴, 𝐵) < 𝜀. ■

3.4 A complete invariant for all clouds of unordered points in R𝒏

This section extends the PCI from Definition 3.2.3 to a complete WMI (Weighted
Matrices Invariant) of all possible clouds, which may not be principally generic.

If a cloud 𝐴 ⊂ R𝑛 is not principally generic, some of the eigenvalues 𝜆1 ≥ · · · ≥
𝜆𝑛 ≥ 0 of the covariance matrix Cov(𝐴) coincide or vanish. Let us start with the most
singular case when all eigenvalues are equal to 𝜆 > 0. The case 𝜆 = 0 means that
𝐴 is a single point. Though 𝐴 has no preferred (principal) directions, 𝐴 still has the

well-defined centre of mass 𝑂 (𝐴) = 1
𝑚

∑
𝑝∈𝐴

𝑝, which is at the origin 0 ∈ R𝑛 as always.

For 𝑛 = 2, we consider 𝑚 possible vectors from the origin 0 to every point of 𝐴 \ {0}.

Definition 3.4.1 (Weighted Matrices Invariant WMI(𝐴) for clouds 𝐴 ⊂ R2). Let a
cloud 𝐴 of 𝑚 points 𝑝1, . . . , 𝑝𝑚 in R2 have the centre of mass at the origin 0. For any
point 𝑝𝑖 ∈ 𝐴 \ {0}, let v1 be the unit length vector parallel to 𝑝𝑖 ≠ 0. Let v2 be the
unit length vector orthogonal to v1 whose anti-clockwise angle from v1 to v2 is +𝜋

2
.

The 2 × 𝑚 matrix 𝑀 (𝑝𝑖) consists of the 𝑚 pairs of coordinates of all points 𝑝 ∈ 𝐴

written in the orthonormal basis v1, v2, for example, p𝑖 =
©­­­«
|p𝑖 |

0

ª®®®¬. Each matrix 𝑀 (𝑝𝑖)

is considered under re-ordering of columns. If one point 𝑝 of 𝐴 is the origin 0, there is
no basis defined by 𝑝 = 0, let 𝑀 (𝑝) be the zero matrix in this centred case. If 𝑘 > 1 of
the matrices 𝑀 (𝑝𝑖) are equivalent under re-ordering of columns, we collapse them into

one matrix with the weight
𝑘

𝑚
. The unordered collection of the equivalence classes of

𝑀 (𝑝) with weights for all 𝑝 ∈ 𝐴 is called the Weighted Matrices Invariant WMI(𝐴). ▲

In comparison with the generic case in Definition 3.2.3, for any fixed 𝑖 = 1, . . . , 𝑚,
if 𝑝𝑖 ≠ 0, then the orthonormal basis v1, v2 is uniquely defined without the ambiguity
of signs, which will re-emerge for higher dimensions 𝑛 > 2 in Definition 3.4.3 later.
The vertex sets of regular polygons 𝐴𝑚 have WMI consisting of a single matrix due to
extra symmetries as shown below.

Example 3.4.2 (regular clouds 𝐴𝑚 ⊂ R2). Let 𝐴𝑚 be the vertex set of a regular𝑚-sided
polygon inscribed into a circle of a radius 𝑟, see the last picture in Fig. 3.2. Due to the
𝑚-fold rotational symmetry of 𝐴𝑚, the invariant WMI(𝐴𝑚) consists of a single matrix

(with weight 1) whose columns are the vectors
©­­­«
𝑟 cos 2𝜋𝑖

𝑚

𝑟 sin 2𝜋𝑖
𝑚

ª®®®¬, 𝑖 = 1, . . . , 𝑚. For instance,
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the vertex set 𝐴3 of the equilateral triangle has WMI(𝐴3) =


©­­­«
𝑟 −𝑟/2 −𝑟/2

0 𝑟
√

3/2 −𝑟
√

3/2

ª®®®¬
.

The vertex set 𝐴4 of the square has WMI(𝐴4) =


©­­­«
𝑟 0 0 −𝑟

0 𝑟 −𝑟 0

ª®®®¬
.

Let 𝐵𝑚 be obtained from 𝐴𝑚 by adding the origin 0 ∈ R2. Then WMI(𝐵𝑚) has the
matrix from WMI(𝐴𝑚) with the weight

𝑚

𝑚 + 1
and the zero 2×4 matrix with the weight

1
𝑚 + 1

representing the added origin 0. _

Definition 3.4.3 applies to all point clouds 𝐴 ⊂ R𝑛 including the most singular
case when all eigenvalues of the covariance matrix Cov(𝐴) are equal, so we have no
preferred directions at all.

Definition 3.4.3 (Weighted Matrices Invariant WMI for any cloud 𝐴 ⊂ R𝑛). Let a cloud
𝐴 ⊂ R𝑛 of 𝑚 points 𝑝1, . . . , 𝑝𝑚 have the centre of mass at the origin 0. For any ordered
sequence of points 𝑝1, . . . , 𝑝𝑛−1 ∈ 𝐴, build an orthonormal basis v1, . . . , v𝑛 as follows.
The first unit length vector v1 is 𝑝1 normalised by its length. For 𝑗 = 2, . . . , 𝑛 − 1, the

unit length vector v 𝑗 is 𝑝 𝑗 −
𝑗−1∑
𝑘=1

(𝑝 𝑗 · v𝑘)v𝑘 normalised by its length.

Then every v 𝑗 is orthogonal to all previous vectors v1, . . . , v 𝑗−1 and belongs to the
𝑗-dimensional subspace spanned by 𝑝1, . . . , 𝑝 𝑗 . Define the last unit length vector v𝑛 by
its orthogonality to v1, . . . , v𝑛−1 and the positive sign of the determinant det(v1, . . . , v𝑛)
of the matrix with the columns v1, . . . , v𝑛.

The 𝑛 × 𝑚 matrix 𝑀 (𝑝1, . . . , 𝑝𝑛−1) consists of column vectors of all points 𝑝 ∈ 𝐴
in the basis v1, . . . , v𝑛, for example, 𝑝1 = ( | |𝑝1 | |2, 0, . . . , 0)𝑇 . If 𝑝1, . . . , 𝑝𝑛−1 ∈ 𝐴 are
affinely dependent, let 𝑀 (𝑝1, . . . , 𝑝𝑛−1) be the 𝑛 × 𝑚 matrix of zeros in this centred
case. If 𝑘 > 1 matrices are equivalent under re-ordering of columns, we collapse them

into a single matrix with the weight
𝑘

𝑁
, where 𝑁 = 𝑚(𝑚 − 1) . . . (𝑚 − 𝑛 + 1).

The Weighted Matrices Invariant WMI(𝐴) is the unordered set of equivalence classes
of matrices 𝑀 (𝑝1, . . . , 𝑝𝑛−1) with weights for all sequences of 𝑝1, . . . , 𝑝𝑛−1 ∈ 𝐴. ▲

If Cov(𝐴) has some equal eigenvalues, WMI(𝐴) can be made smaller by choosing
bases only for subspaces of eigenvectors with the same eigenvalue.

Theorem 3.4.4 (completeness of WMI under rigid motion in R𝑛, [9, Theorem 5.4]).
(a) Any clouds 𝐴, 𝐵 ⊂ R𝑛 are related by rigid motion (orientation-preserving isometry)
if and only if there is a bijection WMI(𝐴) → WMI(𝐵) preserving all weights or,
equivalently, some matrices 𝑃 ∈ WMI(𝐴), 𝑄 ∈ WMI(𝐵) are related by re-ordering of
columns. So WMI(𝐴) is a complete invariant of 𝐴 under rigid motion.

(b) Any mirror reflection 𝑓 : 𝐴 → 𝐵 induces a bijection WMI(𝐴) → WMI(𝐵)
respecting their weights and changing the sign of the last row of every matrix. This pair
of WMIs is a complete invariant of 𝐴 under isometry including reflections. ■
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It suffices to store in computer memory only one matrix 𝑀 (𝑝1, . . . , 𝑝𝑛−1) from the
full WMI(𝐴). Any such matrix suffices to reconstruct a point cloud 𝐴, uniquely under
rigid motion in R𝑛 by Theorem 3.2.5, as required in Problem 3.1.1(b). The full invariant
WMI(𝐴) can be computed from the reconstructed cloud 𝐴 ⊂ R𝑛.

Lemma 3.4.5 (time of WMI, [9, Lemma 5.5]). For any cloud 𝐴 ⊂ R𝑛 of 𝑚 points
and a fixed sequence of points 𝑝1, . . . , 𝑝𝑛−1 ∈ 𝐴, the matrix 𝑀 (𝑝1, . . . , 𝑝𝑛−1) from
Definition 3.4.3 can be computed in time𝑂 (𝑛𝑚+𝑛3). All 𝑁 = 𝑚(𝑚−1) . . . (𝑚−𝑛+1) =
𝑂 (𝑚𝑛−1) matrices in the Weighted Matrices Invariant WMI(𝐴) can be computed in
time 𝑂 ((𝑛𝑚 + 𝑛3)𝑁) = 𝑂 (𝑛𝑚𝑛 + 𝑛3𝑚𝑛−1). ■

3.5 Polynomial-time metrics for all clouds of unordered points inR𝒏

This section introduces two metrics on Weighted Matrices Invariants (WMIs), which
are computable in polynomial time by Theorems 3.5.3 and 3.5.6. Since any rigid motion
𝑓 : 𝐴 → 𝐵 induces a bijection WMI(𝐴) → WMI(𝐵), we will use a linear assignment
cost [6] based on permutations of matrices.

Definition 3.5.1 (Linear Assignment Cost LAC). Recall that Definition 3.3.2 introduced
the bottleneck distance BD on matrices considered under re-ordering of columns. For
any clouds 𝐴, 𝐵 ⊂ R𝑛 of 𝑚 points, consider the Linear Assignment Cost LAC(𝐴, 𝐵) =
min
𝑔

∑
𝑃∈WMI(𝐴)

BD(𝑃, 𝑔(𝑃)) minimised [6] over all bijections 𝑔 : WMI(𝐴) → WMI(𝐵)

of full Weighted Matrices Invariants consisting of all 𝑁 = 𝑚(𝑚 − 1) . . . (𝑚 − 𝑛 + 1)
equivalence classes of matrices. ▲

Lemma 3.5.2 (LAC on clouds, [9, Lemma 6.2]). (a) The Linear Assignment Cost from
Definition 3.5.1 satisfies all metric axioms on clouds under rigid motion.

(b) Let𝑂 (𝐴) be any mirror image of a cloud 𝐴 ⊂ R𝑛. Then min{LAC(𝐴, 𝐵),LAC(𝑂 (𝐴), 𝐵)}
is a metric on classes of clouds under isometry. ■

Theorem 3.5.3 (time complexity of LAC on WMIs, [9, Theorem 6.3]). For any clouds
𝐴, 𝐵 ⊂ R𝑛 of𝑚 points, the invariants WMI(𝐴),WMI(𝐵) consists of at most 𝑁 = 𝑚(𝑚−
1) . . . (𝑚−𝑛+1) = 𝑂 (𝑚𝑛−1) matrices. Then the metric LAC(𝐴, 𝐵) from Definition 3.5.1
can be computed in time 𝑂 (𝑚1.5 (log𝑛 𝑚)𝑁2 + 𝑁3) = 𝑂 (𝑚2𝑛−0.5 log𝑛 𝑚 + 𝑚3𝑛−3). If
𝑛 = 2, the time is 𝑂 (𝑚3.5 log𝑚). ■

The worst-case estimate 𝑁 = 𝑂 (𝑚𝑛−1) of the size (number of matrices in) WMI(𝐴)
is very rough. If the covariance matrix Cov(𝐴) has equal eigenvalues, WMI(𝐴) is often
smaller due to extra symmetries of 𝐴.

However, for 𝑛 = 2, even the rough estimate of the LAC time𝑂 (𝑚3.5 log𝑚) improves
the time 𝑂 (𝑚5 log𝑚) for computing the exact Hausdorff distance between 𝑚-point
clouds under Euclidean motion in R2.

Since real noise may include erroneous points, it is practically important to contin-
uously quantify the similarity between close clouds consisting of different numbers of
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points. The weights of matrices allow us to match them more flexibly via the Earth
Mover’s Distance [10] than via strict bijections WMI(𝐴) → WMI(𝐵). The Weighted
Matrices Invariant WMI(𝐴) can be considered as a finite distribution𝐶 = {𝐶1, . . . , 𝐶𝑘}
of matrices (equivalent up to re-ordering columns) with weights.

Definition 3.5.4 (Earth Mover’s Distance on weighted distributions). Let 𝐶 =

{𝐶1, . . . , 𝐶𝑘} and 𝐷 = {𝐷1, . . . , 𝐷𝑙} be finite unordered set of objects with weights

𝑤(𝐶𝑖), 𝑖 = 1, . . . , 𝑘 , and 𝑤(𝐷 𝑗 ), 𝑗 = 1, . . . , 𝑙, respectively such that
𝑘∑
𝑖=1
𝑤(𝐶𝑖) = 1 =

𝑙∑
𝑗=1
𝑤(𝐷 𝑗 ). Let 𝑑 be a ground metric between any 𝐶𝑖 and 𝐷 𝑗 . A flow from 𝐶 to 𝐷 is

a 𝑘 × 𝑙 matrix whose entry 𝑓𝑖 𝑗 represents a flow from 𝐶𝑖 to 𝐷 𝑗 . The Earth Mover’s

Distance is EMD(𝐶, 𝐷) =
𝑘∑
𝑖=1

𝑙∑
𝑗=1

𝑓𝑖 𝑗𝑑 (𝐶𝑖 , 𝐷 𝑗 ) minimised for 𝑓𝑖 𝑗 ∈ [0, 1] subject to

𝑙∑
𝑗=1

𝑓𝑖 𝑗 ≤ 𝑤(𝐶𝑖), 𝑖 = 1, . . . , 𝑘 ,
𝑘∑
𝑖=1

𝑓𝑖 𝑗 ≤ 𝑤(𝐷 𝑗 ), 𝑗 = 1, . . . , 𝑙, and
𝑘∑
𝑖=1

𝑙∑
𝑗=1

𝑓𝑖 𝑗 = 1. ▲

The first condition
𝑙∑
𝑗=1

𝑓𝑖 𝑗 ≤ 𝑤(𝐶𝑖) means that not more than the weight 𝑤(𝐶𝑖)‘flows’

into all objects 𝐷 𝑗 via 𝑓𝑖 𝑗 , 𝑗 = 1, . . . , 𝑙. Similarly, the second condition
𝑘∑
𝑖=1

𝑓𝑖 𝑗 ≤ 𝑤(𝐷 𝑗 )
means that all 𝑓𝑖 𝑗 ‘flow’ from 𝐶𝑖 , 𝑖 = 1, . . . , 𝑘 into 𝐷 𝑗 up to its weight 𝑤(𝐷 𝑗 ).

The last condition
𝑘∑
𝑖=1

𝑙∑
𝑗=1

𝑓𝑖 𝑗 = 1 forces to ‘flow’ all 𝐶𝑖 to all 𝐷 𝑗 . The EMD is a

partial case of more general Wasserstein metrics [11] in transportation theory [7]. For
finite distributions as in Definition 3.5.4, the metric axioms for EMD were proved in
[10, appendix]. EMD can compare any weighted distributions of different sizes. Instead
of the bottleneck distance BD on columns on PCM matrices, one can consider EMD on
the distributions of columns (with equal weights) in these matrices.

Lemma 3.5.5 (time complexity of EMD, [9, Lemma 6.5]). Any matrix 𝑃 of a size
𝑛 × 𝑚(𝑃) can be considered as a distribution of 𝑚(𝑃) columns with equal weights

1
𝑚(𝑃) . For two such matrices 𝑃,𝑄 having the same number 𝑛 of rows but potentially
different numbers 𝑚(𝑃), 𝑚(𝑄) of columns, measure the distance between any columns
by the Chebyshev metric 𝐿∞ in R𝑛. For the matrices 𝑃,𝑄 considered as weighted
distributions of columns, the Earth Mover’s Distance EMD(𝑃,𝑄) can be computed in
time 𝑂 (𝑚3 log𝑚), where 𝑚 = max{𝑚(𝑃), 𝑚(𝑄)}. ■

Theorem 3.5.6 (time of EMD on clouds, [9, Theorem 6.6]). Let clouds 𝐴, 𝐵 ⊂ R𝑛

of up to 𝑚 points have pre-computed invariants WMI(𝐴),WMI(𝐵) of sizes at most
𝑁 ≤ 𝑚(𝑚 − 1) . . . (𝑚 − 𝑛 + 1) = 𝑂 (𝑚𝑛−1). Measure the distance between any matrices
𝑃 ∈ WMI(𝐴) and 𝑄 ∈ WMI(𝐵) as EMD(𝑃,𝑄) from Lemma 3.5.5. Then the Earth
Mover’s Distance EMD(WMI(𝐴),WMI(𝐵)) from Definition 3.5.4 can be computed in
time 𝑂 (𝑚3 (log𝑚)𝑁2 + 𝑁3 log 𝑁) = 𝑂 ((𝑚2𝑛+1 + 𝑛𝑚3𝑛−3) log𝑚). ■

Example 3.5.7 (EMD for a square and an equilateral triangle). Let 𝐴4 and 𝐴3 be the
vertex sets of a square and equilateral triangle inscribed into the circle of a radius 𝑟
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in Example 3.4.2. PCM(𝐴3) =

©­­­«
𝑟 −𝑟/2 −𝑟/2

0 𝑟
√

3/2 −𝑟
√

3/2

ª®®®¬ and PCM(𝐴4) =

©­­­«
𝑟 0 0 −𝑟

0 𝑟 −𝑟 0

ª®®®¬.

Notice that switching the signs of the 2nd row keeps the PCI matrices the same up to

permutation of columns. The weights of the three columns in PCM(𝐴3) are
1
3

. The

weights of the four columns in PCM(𝐴4) are
1
4

. The EMD optimally matches the

identical first columns of PCM(𝐴3) and PCM(𝐴4) with weight
1
4

contributing the cost

0. The remaining weight
1
3
− 1

4
=

1
12

of the first column
©­­­«
𝑟

0

ª®®®¬ in PCM(𝐴3) can be equally

distributed between the closest (in the 𝐿∞ distance) columns
©­­­«

0

±𝑟

ª®®®¬ contributing the cost

𝑟

12
. The column

©­­­«
−𝑟

0

ª®®®¬ in PCM(𝐴4) has equal distances 𝐿∞ =
𝑟

2
to the last columns

©­­­«
−𝑟/2

±𝑟
√

3/2

ª®®®¬ in PCM(𝐴3) contributing the cost
𝑟

8
. Finally, the distance 𝐿∞ =

𝑟

2
between

the columns
©­­­«

0

±𝑟

ª®®®¬ and
©­­­«

−𝑟/2

±𝑟
√

3/2

ª®®®¬ with the common signs is counted with the weight
5

24

and contributes the cost
5𝑟
48

. The final optimal flow ( 𝑓 𝑗𝑘) matrix

©­­­­­­­«
1/4 1/24 1/24 0

0 5/24 0 1/8

0 0 5/24 1/8

ª®®®®®®®¬
gives EMD(PCM(𝐴3), PCM(𝐴4)) =

𝑟

12
+ 𝑟

8
+ 5𝑟

48
=

5𝑟
16

. _
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Chapter 4
Persistence vs easier, faster, and stronger
invariants of point clouds

Abstract This chapter adapts the general Geo-Mapping Problem to finite clouds under
isometry in a metric space. We start by discussing Sorted Pairwise Distances, which
distinguish all generic clouds under Euclidean isometry. Then we introduce the stronger
invariant PDD (Pointwise Distance Distribution), which was recently proved to be
complete for all 4-point clouds under isometry in any R𝑛.

4.1 A dendrogram and its stable-under-noise mergegram

This section follows papers [9, 10] with slightly updated notations and connects persis-
tent homology [8, 4, 7] in Topological Data Analysis (TDA) with a classical Minimum
Spanning Tree (MST) and a new concept of a mergegram in Definition 4.1.5.

Recall that a (point) cloud is a finite set 𝐴 of𝑚 unordered points in any metric space.

Definition 4.1.1 (graphs and metric graphs). (a) An graph consists of a finite set of
vertices 𝐴 and a finite set of edges 𝑒 that are unordered pairs of vertices 𝑝, 𝑞 ∈ 𝐴, which
are called endpoints of 𝑒. An isomorphism between graphs is a bijection 𝑓 on vertices
such that any vertices 𝑝, 𝑞 are connected by the same number of edges as 𝑓 (𝑝), 𝑓 (𝑞).

(b) If the vertex set 𝐴 of a graph 𝐺 is in a metric space 𝑀 with a metric 𝑑𝑀 , then
an edge between vertices 𝑝, 𝑞 ∈ 𝐴 has the length 𝑑𝑀 (𝑝, 𝑞). Then 𝐺 is called a metric
graph, considered under isometry of 𝑀 that bijectively maps all vertices and edges. ▲

In general, a (metric) graph has no other structures, such as an embedding of its vertex
set into R𝑛. A (metric) graph can include loops (edges whose endpoints coincide) and
multiple edges that share the same endpoints.

Definition 4.1.2 (paths, trees, and a Minimum Spanning Tree MST(𝐴) of a cloud). (a)
In a graph 𝐺 with a vertex set 𝐴, a path is a sequence of edges (𝑝1, 𝑝2), (𝑝2, 𝑝3), . . . ,
(𝑝𝑘−1, 𝑝𝑚) for 𝑝1, . . . , 𝑝𝑚 ∈ 𝐴, where any consecutive edges share a common vertex.

49
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(b) Any vertices of a graph 𝐺 are called path-connected if there is path between them.
A connected component 𝐸 of 𝐺 is any equivalence class under this relation on vertices,
additionally with all edges of 𝐺 between any vertices 𝑝, 𝑞 of 𝐸 .

(c) A path is called a cycle if the initial and final vertices coincide: 𝑝1 = 𝑝𝑘 , e.g. a loop
is a cycle of one edge. A tree is a connected graph without cycles.

(d) For any point cloud 𝐴 ⊂ 𝑀 in a metric space, a Minimum Spanning Tree MST(𝐴)
is a metric tree that has the vertex set 𝐴 and a minimum total length of edges. For any
𝛼 ≥ 0, let MST(𝐴;𝛼) denote MST(𝐴) after removing all edges longer than 𝛼. ▲

If a point cloud 𝐴 has pairs of points at equal distances, then a Minimum Spanning
Tree MST(𝐴) may not be unique under isomorphism. If 𝐴 is the set of four vertices of
a square in R2, then MST(𝐴) can consist of any three of four edges of this square.

The subgraph MST(𝐴;𝛼) ⊂ MST(𝐴) may not be connected but still has no cycles.
MST(𝐴) is related to the single-linkage clustering below, which is an example of a
more general dendrogram introduced below through partitions and merge sets.

Definition 4.1.3 (the partition set PS(𝐴)). For any set 𝐴, a partition of 𝐴 is a finite
set of disjoint non-empty subsets 𝐴1, . . . , 𝐴𝑘 ⊂ 𝐴 whose union is 𝐴. The partition set
PS(𝐴) consists of all partitions of 𝐴. ▲

The partition set PS(𝐴) of the abstract set 𝐴 = {0, 1, 2} consists of the five partitions

({0}, {1}, {2}), ({0, 1}, {2}), ({0, 2}, {1}), ({1, 2}, {0}), ({0, 1, 2}).

For example, the collections ({0}, {1}) and ({0, 1}, {0, 2}) are not partitions of 𝐴.

Definition 4.1.4 (a dendrogram Δ of merge sets and its mergegram MG(Δ)). A den-
drogram Δ over any set 𝐴 is a function Δ : [0,+∞) → PS(𝐴) that depends on a scale
𝛼 ≥ 0 and satisfies the following conditions.
(a) There exists a scale 𝛽 ≥ 0 such that Δ(𝛽) consists of the single set 𝐴 for 𝛼 ≥ 𝛽.
(b) If 𝛼 ≤ 𝛽, then Δ(𝛼) refines Δ(𝛽) so that any set from Δ(𝛼) is a subset of some set
from Δ(𝛽). These inclusions of subsets induce the map Δ[𝛼, 𝛽] : Δ(𝛼) → Δ(𝛽).
(c) There are finitely many merge scales 𝛼𝑖 such that

𝛼0 = 0 and 𝛼𝑖+1 = sup{𝛼 | Δ[𝛼, 𝛽] is the identity for 𝛼′ ∈ [𝛼𝑖 , 𝛼)}, 𝑖 = 0, . . . , 𝑚 − 1.

Since the map Δ(𝛼𝑖) → Δ(𝛼𝑖+1) is not the identity, there is a subset 𝐵 ∈ Δ(𝛼𝑖+1) whose
preimage has at least two subsets from Δ(𝛼𝑖). Then 𝐵 ⊂ 𝐴 is a merge set with the birth
scale 𝛼𝑖 . All sets of Δ(0) are merge sets at the birth scale 0. The life(𝐵) is the interval
[𝛼𝑖 , 𝛽) from its birth scale 𝛼𝑖 to its death scale 𝛽 = sup{𝛼 | Δ[𝛼𝑖 , 𝛽] (𝐵) = 𝐵}. ▲

In Definition 4.1.4, condition (a) says that a partition of a set 𝐴 is trivial for all
large scales. Condition (b) means that if the scale 𝛼 is increasing, then any sets from
a partition Δ(𝛼) can only merge but cannot split into smaller subsets. Condition (c)
implies that there are only finitely many mergers, when two or more subsets of 𝐴 merge
into a larger set. A dendrograms is often drawn as a tree whose nodes represent all sets
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from the partitions Δ(𝛼𝑖) at merge scales. Edges of this tree connect any set 𝐵 ∈ Δ(𝛼𝑖)
with its preimages under Δ(𝛼𝑖) → Δ(𝛼𝑖+1), see the middle picture in Fig. 4.1.

Similar to MST(𝐴), the isomorphism class of this tree can discontinuously change
under perturbations of 𝐴. Definition 4.1.5 summarises a dendrogram into an isometry
invariant of 𝐴 whose Lipschitz continuity will be proved in Theorem 4.1.10.

Definition 4.1.5 (the mergegram MG(Δ) of a dendrogram Δ). The mergegram
MG(Δ) ⊂ R2 of a dendrogram Δ is the multiset that has one pair (birth, death) ∈ R2

for each merge set 𝐵 of Δ with life(𝐵) = [birth, death). If any life interval appears 𝑘
times, then the pair (birth,death) has the multiplicity 𝑘 in the mergegram MG(Δ). ▲

Fig. 4.1 A dendrogram Δ on 𝐴 = {0, 1, 2} and its mergegram MG(Δ) , see Example 4.1.6.

partition Δ(2) at scale 𝛼2 = 2 {0, 1, 2}

map Δ[1, 2] : Δ(1) → Δ(2) ↑ ↖

partition Δ(1) at scale 𝛼1 = 1 {0, 1} {2}

map Δ[0, 1] : Δ(0) → Δ(1) ↗ ↑ ↑

partition Δ(0) at scale 𝛼0 = 0 {0} {1} {2}
birth

death

1 2

1

2

Example 4.1.6 (the mergegram of a dendrogram on 𝐴 = {0, 1, 2}). For the set 𝐴
in Fig. 4.1, the partition Δ(1) consists of {0, 1} and {2}. The maps Δ[𝛼, 𝛽] induced
by inclusions of sets respect the compositions in the sense that Δ[𝛽, 𝛾] ◦ Δ[𝛼, 𝛽] =

Δ[𝛼, 𝛾] for any 𝛼 ≤ 𝛽 ≤ 𝛾. For example, Δ[0, 1] ({0}) = {0, 1} = Δ[0, 1] ({1}) and
Δ[0, 1] ({2}) = {2}, so Δ[0, 1] is a non-identity map from the partition Δ(0) of 3
singleton sets to Δ(1). At the scale 𝛼0 = 0 the merge sets {0} and {1} have life = [0, 1),
the merge set {2} has life = [0, 2). At the scale 𝛼1 = 1 the single merge set {0, 1}
has life = [1, 2). At the scale 𝛼2 = 2 the single merge set {0, 1, 2} has life = [2,+∞).
Hence, the mergegram MG(Δ) in the last image of Fig. 4.1 consists of the pairs (0, 2),
(1, 2), (2,+∞), which all have multiplicity 1 (shown by a red dot), and the pair (0,1),
which has multiplicity 2 (shown by an extra red circle around a red dot). _

Given a metric space (𝑀, 𝑑) and a finite set 𝐴 ⊂ 𝑀 , the single-linkage dendrogram
Δ𝑆𝐿{𝐴} from Definition 4.1.7 below satisfies Definition 4.1.5(b) by [9, Lemma 3.3].

Definition 4.1.7 (single-linkage dendrogram and mergegram MG(𝐴) of a cloud 𝐴).
Let 𝐴 be a finite set in a metric space 𝑀 with a distance metric 𝑑 : 𝑀 ×𝑀 → [0,+∞).
For 𝛼 > 0, any points 𝑝, 𝑞 ∈ 𝐴 belong to one single-linkage cluster if and only if there
is a finite sequence of points 𝑝 = 𝑝1, . . . , 𝑝𝑚 = 𝑞 ∈ 𝐴 such that any two successive
points have a distance at most 𝛼, i.e. 𝑑 (𝑝𝑖 , 𝑝𝑖+1) ≤ 𝛼 for 𝑖 = 1, . . . , 𝑚 − 1.

Let Δ𝑆𝐿 (𝛼) denote the set of all single-linkage clusters, which form a partition of
𝐴 at the scale 𝛼 in the sense of Definition 4.1.5(a). The single-linkage dendrogram is
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the map Δ𝑆𝐿{𝐴} : [0,+∞) → PS(𝐴), 𝛼 ↦→ Δ𝑆𝐿 (𝛼). The single-linkage mergegram
MG(ΔSL{𝐴}) is briefly called the mergegram MG(𝐴) of the cloud 𝐴. ▲

[9, Algorithm 8.1] computes the mergegram MG(𝐴) in the same asymptotic time as
MST(𝐴). Recall that 𝛼(𝑛) is the very slow growing inverse Ackermann function [5].

Theorem 4.1.8 (time of a mergegram, [9, Theorem 8.2]). For a fixed dimension 𝑛 and
any cloud 𝐴 ⊂ R𝑛 of 𝑚 unordered points, the mergegram MG(𝐴) can be computed in
the same time 𝑂 (𝑚 log𝑚 𝛼(𝑚)) as MST(𝐴). ■

The big O notation in Theorem 4.1.8 hides some parameters that depend on the
dimension 𝑛, but not on 𝐴, see details in [14].

Example 1.3.3(b) introduced the Hausdorff distance HD and the bottleneck distance
BD between any sets 𝐴, 𝐵 within a common metric space. Definition 4.1.9 adapts BD
to multisets by considering bijections between all points repeated according to their
multiplicities, which can be countable infinite, as for the set Z of integers.

Definition 4.1.9 (bottleneck distance BD between multisets in R2). Let 𝐶, 𝐷 be
multisets of finitely many pairs (𝑥, 𝑦) ∈ R2, 𝑥 < 𝑦, of finite multiplicities. Let
{𝑥 = 𝑦} denote the set of diagonal pairs (𝑥, 𝑥) ∈ R2 of infinite multiplicity. For
𝛿 ≥ 0, a 𝛿-matching is a bijection ℎ : 𝐶 ∪ {𝑥 = 𝑦} → 𝐷 ∪ {𝑥 = 𝑦} such that
𝐿∞ (ℎ(𝑎), 𝑎) ≤ 𝛿 in the Chebyshev metric for any point 𝑎 ∈ 𝐶. The bottleneck distance
is BD(𝐶, 𝐷) = inf{𝛿 | there is a 𝛿-matching ℎ : 𝐶 ∪ {𝑥 = 𝑦} → 𝐷 ∪ {𝑥 = 𝑦}}. ▲

Theorem 4.1.10 (stability of a mergegram, [10, Theorem 5.8]). The mergegrams of
any point clouds 𝐴, 𝐵 in a metric space satisfy BD(MG(𝐴)),MG(𝐵)) ≤ HD(𝐴, 𝐵). ■

Theorem 4.1.10 implies that any small perturbation of 𝐴 in the Hausdorff distance
leads to a similarly small perturbation of MG(𝐴) in the bottleneck distance BD.

4.2 The mergegram is stronger than the 0D persistence of a cloud

This section follows [10, section 4] and recalls the concept of 0D persistence. The
main aim is to show that any 0D persistence and single-linkage dendrogram in general
position can be reconstructed from the mergegram of a point cloud in any metric space.

Definition 4.2.1 (persistence moduleV). A persistence moduleV over the real numbers
R is a collection of vector spaces 𝑉𝛼, which are indexed by 𝛼 ∈ R and have linear maps
𝑣[𝛼, 𝛽] : 𝑉𝛼 → 𝑉𝛽 , 𝛼 ≤ 𝛽 such that 𝑣[𝛼, 𝛼] is the identity on 𝑉𝛼 and the composition
is respected: 𝑣[𝛽, 𝛾] ◦ 𝑣[𝛼, 𝛽] = 𝑣[𝛼, 𝛾] for any 𝛼 ≤ 𝛽 ≤ 𝛾. ▲

The set R of reals can be considered as a category in the following sense. The objects
of R are all real numbers. Any real numbers 𝑎 ≤ 𝑏 define a single morphism 𝑎 → 𝑏.
The composition of morphisms 𝑎 → 𝑏 and 𝑏 → 𝑐 is the morphism 𝑎 ≤ 𝑐. Then a
persistence module is a functor from R to the category of vector spaces.

A simple example of a persistence moduleV is an interval module below. An interval
𝐽 between points 𝑝 < 𝑞 in the real line R can be one of the following types: closed
[𝑝, 𝑞], open (𝑝, 𝑞), half-open or half-closed [𝑝, 𝑞) and (𝑝, 𝑞], all encoded as follows:
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[𝑝− , 𝑞+] := [𝑝, 𝑞], [𝑝+, 𝑞−] := (𝑝, 𝑞), [𝑝+, 𝑞+] := (𝑝, 𝑞], [𝑝− , 𝑞−] := [𝑝, 𝑞).

The endpoints 𝑝 and 𝑞 can have infinite values ±∞, but without superscripts.

Example 4.2.2 (interval module I(𝐽)). Let 𝐽 ⊂ R be an interval. The interval module
I(𝐽) is defined by the following vector spaces 𝐼𝛼 and linear maps 𝑖[𝛼, 𝛽] : 𝐼𝛼 → 𝐼𝛽

𝐼𝛼 =


Z2, for 𝛼 ∈ 𝐽,

0, otherwise;
𝑖[𝛼, 𝛽] =


id, for 𝛼 ≤ 𝛽 within 𝐽,

0, otherwise.
_

The direct sum W = U ⊕ V of persistence modules U,V is the persistence module
with the vector spaces𝑊𝛼 = 𝑈𝛼 ⊕ 𝑉𝛼 and linear maps 𝑤[𝛼, 𝛽] = 𝑢[𝛼, 𝛽] ⊕ 𝑣[𝛼, 𝛽].

A persistence modules that is decomposable as a direct sum of interval modules can
be described in a simple combinatorial way by a persistence diagram in R2.

Definition 4.2.3 (persistence diagram PD(V)). Let a persistence module V be a finite
direct sum of interval modules: V �

⊕
𝑙∈𝐿

i(𝑥∗
𝑙
, 𝑦∗
𝑙
), where ∗ denotes a sign + or −. The

persistence diagram of V is the multiset PD(V) = {(𝑥𝑙 , 𝑦𝑙) | 𝑙 ∈ 𝐿} \ {𝑥 = 𝑦} of points
above the diagonal {𝑥 = 𝑦} in R2, where a coordinate 𝑦𝑙 can be +∞. ▲

Below we introduce the persistence module based on 0-dimensional homology,
which suffices to define for graphs. As usual in Topological Data Analysis, we consider
linear combinations with coefficients in Z2, which can be replaced with any field.

Definition 4.2.4 (0D homology𝐻0 (𝐺) of a graph𝐺). For any graph𝐺, the 0D homology
𝐻0 (𝐺) is the vector space (over Z2) generated by connected components of 𝐺. ▲

If 𝐺 consists of 𝑚 isolated vertices, then 𝐻0 (𝐺) is the direct sum Z𝑚2 of 𝑚 copies of
Z2. Any inclusion of graphs 𝐹 ⊂ 𝐺 induces a linear map 𝐻0 (𝐹) → 𝐻0 (𝐺).

Definition 4.2.5 (0D persistence PD0 (𝐴) of a point cloud 𝐴). For any point cloud 𝐴 in a
metric space, the graphs MST(𝐴;𝛼) form an ascending filtration {MST(𝐴;𝛼)}𝛼≥0 such
that MST(𝐴;𝛼) ⊂ MST(𝐴;𝛼) for any 𝛼 ≤ 𝛽. This filtration induces the persistence
module 𝐻0{MST(𝐴;𝛼)}𝛼≥0 of vector spaces 𝐻0 (MST(𝐴;𝛼)). The 0D persistence
PD0 (𝐴) is the persistence diagram of the module 𝐻0{MST(𝐴; 𝛼2 )}𝛼≥0. ▲

The division by 2 in the scale 𝛼
2 is traditional for the following reasons. For any points

𝑝, 𝑞 ∈ 𝐴 at a distance 𝑑 (𝑝, 𝑞) = 𝛼, the closed balls 𝐵̄(𝑝; 𝑟) and 𝐵̄(𝑞; 𝑟) with centres
𝑝, 𝑞 merge when their radius 𝑟 reaches 𝛼

2 . [20, Lemma 3.2] proved that MST(𝐴;𝛼) has
the minimum length among all graphs that span 𝐴 within the 𝛼-offset

⋃
𝑝∈𝐴

𝐵̄(𝑝;𝛼).

Example 4.2.6 (0D persistence vs mergegram for a 5-point cloud). Fig. 4.2 illustrates
how the 0D persistence and mergegram can be obtained from the single-linkage den-
drogram for the point cloud 𝐴 = {0, 1, 3, 7, 10} in the real line R.

Imagine that we gradually blur original data points by growing disks of the same
radius 𝛼 around the given points. The disks of the closest points 0, 1 start overlapping
at the scale 𝛼 = 0.5 when these points merge into one cluster {0, 1}. This merger is
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Fig. 4.2 Top: the 5-point cloud 𝐴 = {0, 1, 3, 7, 10} ⊂ R. Bottom from left to right: single-linkage
dendrogram Δ𝑆𝐿 {𝐴} from Definition 4.1.7, the 0D persistence diagram PD{𝐴} in Definition 4.2.3,
the mergegram MG(𝐴) from Definition 4.1.5, where double circles show pairs of multiplicity 2.

shown by blue arcs joined at the node at 𝛼 = 0.5 in the single-linkage dendrogram, see
the left picture at the bottom of Fig. 4.2. The persistence diagram PD0 (𝐴) in the middle
picture at the bottom of Fig. 4.2 represents this merger by the pair (0, 0.5) meaning that
a singleton cluster of point 1 ∈ 𝐴 was born at the scale 𝛼 = 0 and then died later at the
scale 𝛼 = 0.5 by merging into another cluster of point 0 ∈ 𝐴.

When clusters {0, 1, 3} and {7, 10} merge at 𝛼 = 2, this merger was earlier encoded
in the persistence diagram by the single pair (0, 2) meaning that one cluster inherited
from (say) point 7 was born at 𝛼 = 0 and died at 𝛼 = 2. The new mergegram in the
bottom right picture of Fig. 4.2 represents the above merger by the following two pairs.
The pair (1, 2) means that the cluster {0, 1, 3} is merging at the current scale 𝛼 = 2 and
was previously formed at the smaller scale 𝛼 = 1. The pair (1.5, 2) means that another
cluster {7, 10} is merging at the scale 𝛼 = 2 and was previously formed at 𝛼 = 1.5.

The 0D persistence diagram represents the cluster of the whole cloud 𝐴 by the pair
(0,+∞), because 𝐴 was inherited from a singleton cluster starting from 𝛼 = 0. The
mergegram represents the same cluster 𝐴 by the pair (2,+∞), because 𝐴 was formed
during the last merger of {0, 1, 3} and {7, 10} at 𝛼 = 2 and continues to live as 𝛼 → +∞.
In Δ𝑆𝐿{𝐴}, every vertical arc going up from a scale 𝑏 to 𝑑 contributes one pair (𝑏, 𝑑)
to the mergegram MG(𝐴). So both singleton clusters {7}, {10} merging at 𝛼 = 1.5
contribute one pair (0, 1.5) of multiplicity two shown by two red circles in Fig. 4.2. _

Let 𝛽 be the length of a longest edge in a Minimum Spanning Tree MST(𝐴).
For any 𝛼 ≥ 𝛽, the graph MST(𝐴;𝛼) coincides with MST(𝐴) consisting of a single
component. Hence, the 0D homology module 𝐻0{MST(𝐴;𝛼))} contains the interval
module I( [𝛽,+∞)) and then the 0D persistence PD0 (𝐴) has the pair (𝛽,+∞).

Lemma 4.2.7 is considered a folklore result, which is proved below, because we
could not find a reference to a published proof.

Lemma 4.2.7 (Δ𝑆𝐿{𝐴} and MST(𝐴) determine PD0 (𝐴)). For any point cloud 𝐴 in
a metric space, the 0D persistence PD0 (𝐴) is uniquely determined by (a) the single-
linkage dendrogram Δ𝑆𝐿{𝐴}, and (b) a Minimum Spanning Tree MST(𝐴). ■

Proof. (a) Let 0 < 𝛼1 < · · · < 𝛼𝑚 < 𝛼𝑚+1 = +∞ be all distinct merge scales in Δ𝑆𝐿{𝐴}
from Definition 4.1.7. If 𝑘 ≥ 2 subsets of 𝐴 merge into a larger subset of 𝐴 at a scale
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𝛼𝑖 , the multiplicity of 𝛼𝑖 equals 𝜇𝑖 = 𝑘 − 1. Then the persistence diagram PD0 (𝐴) in
Definition 4.2.5 consists of the pairs (0, 𝛼𝑖) with multiplicities 𝜇𝑖 , 𝑖 = 1, . . . , 𝑚 + 1.

(b) Let MST(𝐴) have edge-lengths 𝛼1 ≤ · · · ≤ 𝛼𝑛−1 with multiplicities 𝜇𝑖 ≥ 1. Then
Δ𝑆𝐿{𝐴} has merge scales 𝛼𝑖 , so the connected components of MST(𝐴;𝛼) remain fixed
between any successive merge scales. Then the persistence diagram PD0 (𝐴) consists
of the 𝑛 − 1 pairs (0, 𝛼𝑖2 ) with multiplicities 𝜇𝑖 , plus the infinite pair (0,+∞). ⊓⊔

Theorem 4.2.8 implies that the mergegram MG(𝐴), as an isometry invariant of a
point cloud 𝐴, is at least as strong as the 0D persistence diagram PD0 (𝐴).

Theorem 4.2.8 (a mergegram determines 0D persistence, [9, Theorem 5.3]). For any
point cloud 𝐴 in a metric space, let the mergegram MG(𝐴) be a multiset {(𝑏𝑖 , 𝑑𝑖)}𝑘𝑖=1 of
pairs with multiplicities. Then the persistence diagram PD0 (𝐴) is the difference of the
multisets {(0, 𝑑𝑖)}𝑘𝑖=1 − {(0, 𝑏𝑖)}𝑘𝑖=1 containing each pair (0, 𝛼) exactly #𝑏 − #𝑑 times,
where #𝑏 is the number of births 𝑏𝑖 = 𝛼 and #𝑑 is the number of deaths 𝑑𝑖 = 𝛼. All
pairs (0, 0) are ignored, alternatively we take {(0, 𝑑𝑖)}𝑘𝑖=1 only with 𝑑𝑖 > 0. ■

Theorem 4.2.8 is illustrated by Example 4.2.6, where 𝐴 = {0, 1, 3, 7, 10} has the
persistence diagram PD0 (𝐴) = {(0, 0.5), (0, 1), (0, 1.5), (0, 2), (0,+∞)}, which can be
obtained from the mergegram

MG(𝐴) = {(0, 0.5), (0, 0.5), (0, 1), (0, 1.5), (0, 1.5), (0.5, 1), (1, 2), (1.5, 2), (2,+∞)}

as follows. The pair (0, 0.5) ∈ PD0 (𝐴) of multiplicity 2 comes from two deaths and
one birth scale 𝛼 = 0.5 in MG(𝐴). Similarly each of the pairs (0, 1), (0, 1.5), (0, 2) ∈
PD0 (𝐴) of multiplicity 2 comes from two deaths and one birth equal to one of the scales
𝛼 ∈ {1, 1.5, 2}.

Example 4.2.9 (the mergegram is stronger than 0D persistence). Fig. 4.3 and 4.4 show
the dendrograms, identical 0D persistence diagrams and different mergegrams for the
non-isometric clouds 𝐴 = {0, 1, 3, 7} and 𝐵 = {0, 1, 5, 7} in R. This example together
with Theorem 4.2.8 justify that the mergregram MG(𝐴) is strictly stronger than 0D
persistence PD0 (𝐴) as an isometry invariant of a point cloud 𝐴.

Fig. 4.3 Left: single-linkage dendrogram Δ𝑆𝐿 {𝐴} for the cloud 𝐴 = {0, 1, 3, 7} ⊂ R. Middle: the
0D persistence diagram PD0 (𝐴) . Right: the mergegram MG(𝐴) , see Definition 4.1.5.
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Fig. 4.4 Left: the single-linkage dendrogram Δ𝑆𝐿 {𝐵} for the cloud 𝐵 = {0, 1, 5, 7} ⊂ R. Middle:
the 0D persistence diagram PD0 (𝐵) . Right: mergegram MG(𝐵) .

Theorem 4.2.10 below can be contrasted with the weakness of 0D persistence
PD0 (𝐴)} consisting of only pairs (0, 𝛼) whose finite deaths are half-lengths of edges in
a Minimum Spanning Tree MST(𝐴). In Example 4.2.6 these scales 𝛼 ∈ {0.5, 1, 1.5, 2}
are insufficient to reconstruct the single-linkage dendrogram Δ𝑆𝐿{𝐴} in Fig. 4.2. Such
a unique reconstruction is possible by using the stronger mergegram below.

Theorem 4.2.10 (the mergegram determines a dendrogram, [10, Theorem 4.6]). Let 𝐴
be a point cloud in general position such that all merge scales of 𝐴 in the single-linkage
dendrogram Δ𝑆𝐿{𝐴} from Definition 4.1.4 are different. Then Δ𝑆𝐿{𝐴} is reconstructed
from MG(𝐴), uniquely up to a permutation of nodes in Δ𝑆𝐿{𝐴} at the scale 𝛼 = 0. ■

4.3 Generic point clouds that are indistinguishable by persistence

This section follows paper [21] and describes generic families of non-isometric clouds
that have identical persistence in dimension 0 and 1, or empty 1D persistence.

Definition 4.3.1 extends the filtration of subgraphs MST(𝐴;𝛼) of a Minimum Span-
ning Tree MST(𝐴), see Definition 4.2.5, to high-dimensional simplicial complexes.

Definition 4.3.1 (a filtration of complexes {𝐶 (𝐴;𝛼)}). Let 𝐴 be any finite set.

(a) A simplicial complex 𝐶 on 𝐴 is a finite set of subsets 𝜎 ⊂ 𝐴 (called simplices) such
that all subsets of 𝜎 ⊂ 𝐴 and hence all intersections of simplices are simplices of 𝐶.

(b) The dimension of a simplex 𝜎 on 𝑘 + 1 points is 𝑘 . We assume that all points of
𝐴 are 0-dimensional simplices, also called vertices of 𝐶. A 1-dimensional simplex (or
edge) 𝑒 between points 𝑝, 𝑞 ∈ 𝐴 is the unordered pair denoted as [𝑝, 𝑞].

(c) An ascending filtration {𝐶 (𝐴;𝛼)} is a family of complexes on the vertex set 𝐴,
paremetrised by a scale 𝛼 ∈ R so that 𝐶 (𝐴;𝛼) ⊆ 𝐶 (𝐴; 𝛽) for any 𝛼 ≤ 𝛽. ▲

Example 4.3.2 introduces the simplicial complexes VR(𝐴;𝛼) and Čech(𝐴;𝛼) on any
finite set 𝐴 inside an ambient metric space 𝑀 , although 𝐴 = 𝑀 is possible. A Delaunay
complex Del(𝐴;𝛼) ⊂ R𝑁 will be defined for a finite set 𝐴 only in R𝑁 because of extra
complications arising if a point set 𝐴 lives in a more general metric space [1].
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Example 4.3.2 (geometric complexes VR, Čech, and Del). Let 𝐴 be any finite set in a
metric space 𝑀 . Fix a scale 𝛼 ≥ 0. Each complex 𝐶 (𝐴;𝛼) below has the vertex set 𝐴.

(a) The Vietoris-Rips complex VR(𝐴;𝛼) has all simplices on points 𝑝1, . . . , 𝑝𝑘 ∈ 𝐴

whose pairwise distances are at most 2𝛼, so 𝑑 (𝑝𝑖 , 𝑝 𝑗 ) ≤ 2𝛼 for 𝑖 ≠ 𝑗 in {1, . . . , 𝑘}.

(b) The Čech complex Čech(𝐴;𝛼) has all simplices on points 𝑝1, . . . , 𝑝𝑘 ∈ 𝐴 such
that the full intersection ∩𝑘

𝑖=1𝐵̄(𝑝𝑖;𝛼) is not empty.

(c) For any finite set of points 𝐴 ⊂ R𝑁 , the convex hull of 𝐴 is the intersection of all
closed half-spaces of R𝑁 containing 𝐴. Each point 𝑝𝑖 ∈ 𝐴 has the Voronoi domain

𝑉 (𝑝𝑖) = {𝑞 ∈ R𝑁 | |𝑞 − 𝑝𝑖 | ≤ |𝑞 − 𝑝 𝑗 | for any point 𝑝 𝑗 ∈ 𝐴, 𝑝 𝑗 ≠ 𝑝𝑖}.

The Delaunay complex Del(𝐴;𝛼) has all simplices on points 𝑝1, . . . , 𝑝𝑘 ∈ 𝐴 such that
∩𝑘
𝑖=1 (𝑉 (𝑝𝑖) ∩ 𝐵̄(𝑝𝑖;𝛼)) ≠ ∅ [6]. Alternatively, a simplex 𝜎 on points 𝑝1, . . . , 𝑝𝑘 ∈ 𝐴 is

called a Delaunay simplex if there is an (𝑁 − 1)-dimensional sphere 𝑆𝑁−1 that passes
through the points 𝑝1, . . . , 𝑝𝑘 and does not enclose any points of 𝐴 [18].

In a degenerate case, the smallest (𝑘−2)-dimensional sphere 𝑆𝑘−2 above can contain
more than 𝑘 points of 𝐴. If 𝜎 is enlarged to the convex hull 𝐻 of all points in 𝐴∩ 𝑆𝑘−2,
then Del(𝐴;𝛼) becomes a polyhedral Delaunay mosaic.

For simplicity, we can choose any triangulation of 𝐻 into Delaunay simplices. When
the scale 𝛼 becomes too large, Del(𝐴;𝛼) ⊂ R𝑁 stops growing and becomes a Delaunay
triangulation of the convex hull of 𝐴, which is unique in general position.

The complexes of the types above will be called geometric complexes for brevity. _

Recall that all vector spaces are considered with coefficients in Z2.

Definition 4.3.3 (1D homology 𝐻1 (𝐶) of a complex). Let𝐶 be any simplicial complex.
For any 1D simplex (edge) 𝑒 with endpoints 𝑝, 𝑞, define the boundary operator 𝜕1 (𝑒) =
𝑝+𝑞. For any 2D simplex (face)𝜎 with boundary edges 𝑒1, . . . , 𝑒𝑚, define the boundary
operator 𝜕2 ( 𝑓 ) =

𝑚∑
𝑖=1
𝑒𝑖 . Both 𝜕1, 𝜕2 extend to linear combinations by linearity.

The 1D homology 𝐻1 (𝐶) is the quotient space of all linear combinations 𝐸 of edges
with 𝜕1 (𝐸) = 0 over the subspace of 𝜕2 (𝐹) for all linear combinations 𝐹 of faces. ▲

Let a 2D simplex𝜎 on 3 vertices 𝑣1, 𝑣2, 𝑣3 have 3 edges 𝑒1, 𝑒2, 𝑒3 with 𝜕1 (𝑒1) = 𝑣2+𝑣3,
𝜕1 (𝑒2) = 𝑣3 + 𝑣1, 𝜕1 (𝑒3) = 𝑣1 + 𝑣2. The space of 1D cycles 𝐸 , which have 𝜕1 (𝐸) = is
generated by 𝑒1+𝑒2+𝑒3. The space of faces generated by 𝑓 maps to 𝜕2 (𝜎) = 𝑒1+𝑒2+𝑒3.
Hence, the 1D homology 𝐻1 (𝜎) is trivial as the quotient space in Definition 4.3.3.
Geometrically, the only cycle 𝑒1 + 𝑒2 + 𝑒3 of 𝜎 is bounded by the triangle 𝜎.

Any inclusion of complexes 𝐶 (𝐴;𝛼) ⊂ 𝐶 (𝐴; 𝛽) for 𝛼 ≤ 𝛽 in an ascending filtration
induces a linear map in 1D homology: 𝐻1 (𝐶 (𝐴;𝛼)) → 𝐻1 (𝐶 (𝐴; 𝛽)).

Definition 4.3.4 (1D persistence diagram PD1{𝐶 (𝐴;𝛼)} of a filtration). For any fil-
tration {𝐶 (𝐴;𝛼)} of complexes on a cloud 𝐴 in a metric space, a homology class
𝛾 ∈ 𝐻1 (𝐶 (𝐴;𝛼𝑖)) is born at 𝛼𝑖 = birth(𝛾) if 𝛾 is not in the full image under the
induced homomorphism 𝐻1 (𝐶 (𝐴;𝛼)) → 𝐻1 (𝐶 (𝐴;𝛼𝑖)) for any 𝛼 < 𝛼𝑖 . The class 𝛾
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dies at 𝛼 𝑗 = death(𝛾) ≥ 𝛼𝑖 when the image of 𝛾 under 𝐻1 (𝐶 (𝐴;𝛼𝑖)) → 𝐻1 (𝐶 (𝐴;𝛼 𝑗 ))
merges into the image under 𝐻1 (𝐶 (𝐴;𝛼)) → 𝐻1 (𝐶 (𝐴;𝛼 𝑗 )) for some 𝛼 < 𝛼𝑖 .

Let 𝛼1, . . . , 𝛼𝑚 be all scales when a homology class is born or dies in 𝐻1 (𝐶 (𝐴;𝛼)).
Let 𝜇𝑖 𝑗 be the number of independent classes in 𝐻1 (𝐶 (𝐴;𝛼)) that are born at 𝛼𝑖 and die
at 𝛼 𝑗 . Then the 1D persistence diagram PD1{𝐶 (𝐴;𝛼)} ⊂ R2 is defined the multi-set
consisting of the points (𝛼𝑖 , 𝛼 𝑗 ) with integer multiplicities 𝜇𝑖 𝑗 ≥ 1. ▲

Definition 4.3.5 (short, medium, long edges in a filtration). Let {𝐶 (𝐴;𝛼)} be any
filtration of complexes on a finite vertex set 𝐴, see Definition 4.3.1. Let an edge 𝑒 =

[𝑝, 𝑞] between points 𝑝, 𝑞 ∈ 𝐴 enter the complex 𝐶 (𝐴;𝛼) at the scale 𝛼 = 𝑑 (𝑝, 𝑞)/2.

(a) Consider the graph (1-dimensional skeleton) 𝐶′ (𝐴;𝛼) with vertex set 𝐴 and all
edges from 𝐶 (𝐴;𝛼) except the edge 𝑒. If the endpoints of 𝑒 are in different connected
components of 𝐶′ (𝐴;𝛼), then the edge 𝑒 is called short in the filtration {𝐶 (𝐴;𝛼)}.
(b) The edge 𝑒 is called long in {𝐶 (𝐴;𝛼)} if 𝐴 has a vertex 𝑣 such that 𝐶 (𝐴;𝛼) has the
2-simplex △𝑝𝑞𝑣 and both edges [𝑝, 𝑣], [𝑣, 𝑞] are in 𝐶 (𝐴;𝛼′) for some 𝛼′ < 𝛼.

(c) If 𝑒 is neither short nor long, then the edge 𝑒 is called medium in {𝐶 (𝐴;𝛼)}. ▲

Fig. 4.5 Classes of edges by Definition 4.3.5 in Example 4.3.6.

Example 4.3.6 (classes of edges on 3 and 4 points). (a) For any 3-point cloud 𝐴 ⊂ R𝑁 ,
let the edges of 𝐴 have lengths |𝑒1 | ≤ |𝑒2 | < |𝑒3 |. By Definition 4.3.5, in {VR(𝐴;𝛼)} the
edge 𝑒3 is long whilst the edges 𝑒1, 𝑒2 are short, see Fig. 4.5 (left). If |𝑒1 | < |𝑒2 | = |𝑒3 |,
then the edge 𝑒1 is short but both edges 𝑒2, 𝑒3 are medium, not long. If |𝑒1 | = |𝑒2 | = |𝑒3 |,
then all three edges are medium.

(b) Let𝐶 (𝐴;𝛼) be any geometric complex from Example 4.3.2 on a point cloud 𝐴 ⊂ R2.
If 𝐴 consists of four vertices of the unit square, all square sides are medium whilst both
diagonals are long, see Fig. 4.5 (right). If 𝐴 consists of four vertices of a rectangle that
is not a square, the two shorter sides are short, the longer sides are medium and both
diagonals are long. _

Definition 4.3.7 (a tail of points). For a fixed filtration {𝐶 (𝐴;𝛼)} on a point cloud
𝐴 from Definition 4.3.1, a tail 𝑇 in a metric space is any ordered sequence 𝑇 =

{𝑝1, . . . , 𝑝𝑛}, where any edge [𝑝𝑖 , 𝑝𝑖+1] between successive points is short, and any
edge [𝑝𝑖 , 𝑝 𝑗 ] between non-successive points is long for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. ▲

Definition 4.3.8 (angular deviation 𝜔(𝑇 ; 𝑅) and angular thickness 𝜃 (𝑇 ; 𝑅)). In R𝑁 , a
ray is any half-infinite line 𝑅 going from a point 𝑣 (the vertex of 𝑅). Let𝑇 = {𝑝1, . . . , 𝑝𝑛}
be any sequence of ordered points in R𝑁 .
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(a) The angular deviation𝜔(𝑇 ; 𝑅) of the tail𝑇 with respect to the ray 𝑅 is the maximum
angle ∠(𝑅, [𝑝, 𝑞]) ∈ [0, 𝜋2 ] over all distinct points 𝑝, 𝑞 ∈ 𝑇 .

(b) The angular thickness 𝜃 (𝑇 ; 𝑅) of the tail 𝑇 with respect to the ray 𝑅 is the maximum
angle ∠(𝑅, [𝑝1, 𝑝𝑖]) for 𝑖 = 2, . . . , 𝑛. ▲

Fig. 4.6 A tail 𝑇 around a ray 𝑅 with vertex 𝑣 in R2, see Definition 4.3.8. Left: all marked angles are
not greater than the angular deviation 𝜔 (𝑇;𝑅) . Right: the angular thickness 𝜃 (𝑇;𝑅) can be smaller
than the angular deviation 𝜔 (𝑇;𝑅) .

Lemma 4.3.9 (tails in R𝑁 , [21, Lemma 3.5]). In R𝑁 , let 𝑅 be a ray with a vertex 𝑣 = 𝑝1
and 𝑇 be any sequence of points 𝑝1, . . . , 𝑝𝑛 with an angular deviation 𝜔(𝑇 ; 𝑅) < 𝜋

4 .

(a) For any 𝑖 < 𝑗 < 𝑘 , the angle ∠𝑝𝑖 𝑝 𝑗 𝑝𝑘 is non-acute. The edge between the non-
successive points 𝑝𝑖 , 𝑝𝑘 is long in any filtration {𝐶 (𝑇 ;𝛼)} in Example 4.3.2.

(b) Any edge between successive points 𝑝 𝑗−1, 𝑝 𝑗 , 𝑗 = 2, . . . , 𝑛, is short in {𝐶 (𝑇 ;𝛼)}.
Hence 𝑇 has no medium edges in {𝐶 (𝑇 ;𝛼)} and is a tail by Definition 4.3.7. ■

Theorem 4.3.10 (adding a tail to a long wedge keeps 1D persistence, [21, Theorem 4.4]).
Let 𝐴 ⊂ R𝑁 be a finite set, 𝑣 ∈ 𝐴 be on the boundary of the convex hull of 𝐴, and 𝑅 be
a ray with a vertex 𝑣 so that 𝜇(𝑅; 𝐴) = min

𝑝∈𝐴−{𝑣}
∠(𝑅, [𝑣, 𝑝]) ≥ 𝜋

2 . Let 𝑇 be a tail with

the vertex 𝑣 such that 𝜇(𝑅; 𝐴) ≥ 𝜃 (𝑇 ; 𝑅) + 𝜋
2 . Assume that 𝐴 ∪𝑇 is in general position

such that every subset 𝑃 ⊂ 𝐴∪𝑇 of at most 𝑁 +1 points is affinely independent, and no
point of (𝐴 ∪ 𝑇) \ 𝑃 lies on the smallest (𝑁 − 1)-dimensional circumsphere of 𝑃. For
any filtration from Example 4.3.2, we have that PD1{𝐶 (𝐴∪𝑇 ;𝛼)} = PD1{𝐶 (𝐴;𝛼)}. ■

4.4 Geo-mapping problem for generic clouds in a metric space

This section continues to study finite clouds of unordered points under isometry in
any metric space, and R𝑛 remains an important partial case. Problem 4.4.4 adjusts
Geo-Mapping Problem 1.4.5 to include only realistically achievable conditions in an
arbitrary metric space. One realistic condition is a general position, as formally defined
below.

Definition 4.4.1 (general position in a metric space). Let 𝐴 be a set of 𝑚 points in a
metric space 𝑀 with a metric 𝑑𝑀 . A cloud 𝐴 is called generic (or in a general position

in 𝑀) if all
𝑚(𝑚 − 1)

2
inter-point distances 𝑑𝑀 (𝑝, 𝑞) for 𝑝, 𝑞 ∈ 𝐴 are not solutions of

a certain polynomial equation. ▲
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To give an example of a general position in Definition 4.4.1, recall the the lexico-
graphic order on ordered pairs: (𝑖, 𝑗) < (𝑘, 𝑙) if 𝑖 < 𝑗 or 𝑖 = 𝑗 and 𝑘 < 𝑙.

Example 4.4.2 (a polynomial for a general position). Let 𝑝1, . . . , 𝑝𝑚 be all points of
a set 𝐴 in a space 𝑀 with a metric 𝑑𝑀 . Set 𝑃(𝐴) =

∏
(𝑖, 𝑗 )≠(𝑘,𝑙)

(𝑑𝑖, 𝑗 − 𝑑𝑘,𝑙), where

𝑑𝑖, 𝑗 = 𝑑𝑀 (𝑝𝑖 , 𝑝 𝑗 ) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. If 𝑚 = 3, then 𝑃(𝐴) = (𝑑1,2 − 𝑑1,3) (𝑑1,2 −
𝑑2,3) (𝑑1,3 − 𝑑2,3). By Definition 4.4.1, the polynomial condition 𝑃(𝐴) ≠ 0 describes
the general position for all clouds 𝐴 ⊂ 𝑀 that have distinct distances. _

The concept of a general position allows us to weaken the concept of a complete
invariant from Definition 1.2.5(b) to a generically complete invariant below.

Definition 4.4.3 (generically complete invariant). Let ∼ be an equivalence relation on
finite sets in a metric space 𝑀 . An invariant 𝐼 under this equivalence is generically
complete if the implication 𝐼 (𝐴) = 𝐼 (𝐵) ⇒ 𝐴 ∼ 𝐵 holds for all sets 𝐴, 𝐵 ⊂ 𝑀 in a
general position for a certain polynomial on inter-point distances in Definition 4.4.1. ▲

Instead of the full completeness in Problem 1.4.5, Problem 4.4.4 asks for a more
realistic generic completeness under isometry in the sense of Definition 4.4.3.

Problem 4.4.4 (geo-mapping for generic clouds under isometry in a metric space). For
a space 𝑀 with a metric 𝑑𝑀 , find an isometry invariant 𝐼 of generic clouds of unordered
points in 𝑀 with values in a metric space satisfying the following conditions.

(a) Generic completeness: any generic clouds 𝐴, 𝐵 ⊂ 𝑀 are isometric in 𝑀 , i.e. 𝐴 ≃ 𝐵,
if and only if 𝐼 (𝐴) = 𝐼 (𝐵).

(b) Reconstruction: any generic cloud 𝐴 ⊂ 𝑀 can be reconstructed from its invariant
value 𝐼 (𝐴), uniquely under isometry in 𝑀 .

(c) Metric: there is a distance 𝑑 on the invariant space {𝐼 (𝐴) | 𝐴 ⊂ 𝑀} satisfying all
metric axioms in Definition 1.3.1(a).

(d) Continuity: there is a constant 𝜆 such that, for any 𝜀 > 0, if 𝐵 is obtained from 𝐴 by
perturbing every point of 𝐴 up to 𝜀 in the metric 𝑑𝑀 , then 𝑑 (𝐼 (𝐴), 𝐼 (𝐵)) ≤ 𝜆𝜀.

(e) Computability: for a fixed metric space 𝑀 , the invariant 𝐼 (𝐴), the metric
𝑑 (𝐼 (𝐴), 𝐼 (𝐵)), and a reconstruction of 𝐴 ⊂ 𝑀 from 𝐼 (𝐴) can be computed in a
time that depends polynomially on the maximum size max{|𝐴|, |𝐵|} of clouds 𝐴, 𝐵. ⋆

Definition 4.4.5 introduces the invariant that nearly solved Problem 4.4.4 in 2004 by
[2, Theorem 2.6] under Euclidean isometry in R𝑛. Though this seminal work [2] talks
about reconstructing point configurations, the main result actually proves the generic
completeness of the following invariant under isometry in R𝑛 as stated in 4.4.4(a).

Definition 4.4.5 (Sorted Pairwise Distances SPD). For any finite cloud 𝐴 of unordered
points in a metric space 𝑀 , the vector SPD(𝐴) of Sorted Pairwise Distances consists

of all
𝑚(𝑚 − 1)

2
distances between all points of 𝐴, written in increasing order. ▲

Any isometry in a metric space 𝑀 preserves distances and hence SPD(𝐴) for any
cloud 𝐴 ⊂ 𝑀 . In the Euclidean case 𝑀 = R𝑛, if 𝐴 consists f 𝑚 = 3 points, SPD(𝐴)
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coincides with the geocode of three inter-point distances, which classified all triangles
under isometry in Example 1.5.3(a). For a cloud 𝐴 ⊂ R𝑛 of any 𝑚 unordered points, [2,
Theorem 2.6] proved that SPD(𝐴) is generically complete under isometry in R𝑛. We
leave as an exercise that SPD(𝐴) is Lipschitz continuous, for example, in any Minkowski
metric 𝐿𝑞 , because this Lipschitz continuity will be proved for stronger invariants in the
next section. Since SPD(𝐴) needs a quadratic time of the size |𝐴| = 𝑚, this invariant
solves Problem 4.4.4 for generic clouds in R𝑛.

Fig. 4.7 Non-isometric clouds of 4 points with the same 6 pairwise distances. Left: the trapezium 𝑇

has the vertices (±2, 1) , (±4, −1) . Right: the kite 𝐾 has the vertices (5, 0) , (−3, 0) , (−1, ±2) .

However, infinitely many counterexamples to the completeness of SPD have been
known at least since 1979 [3] even for 𝑚 = 4 points in R2. Fig. 4.7 shows the most
famous pair of a trapezium and a kite, which inspired the flagship image of Geometric
Data Science in Fig. 1.4 (right). Fig. 4.8 illustrates infinitely many non-isometric 4-point
clouds in R2, which share three points 𝑝1, 𝑝2, 𝑝3 in green and differ only in points 𝑝±4 ,
but share 3 distances 𝑑1, 𝑑2, 𝑑3 from 𝑝±4 to three others.

Fig. 4.8 Infinitely many non-isometric clouds𝐶+ ; 𝐶− depending on free parameters 𝑎, 𝑏, 𝑐, 𝑑 > 0
[3].

We can leverage the Euclidean structure of R𝑛 to introduce a simpler invariant below.
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Definition 4.4.6 (Sorted Radial Distances SRD). For any finite cloud 𝐴 of unordered
points in R𝑛, a translation can fix the centre of mass 𝐴̄ of 𝐴 at the origin 0 ∈ R𝑛. The
vector SRD(𝐴) of Sorted Radial Distances consists of all 𝑚 Euclidean distances from
𝐴̄ = 0 to all points of 𝐴, written in decreasing order. ▲

The orders of distances in Definitions 4.4.5 and 4.4.6 are motivated by applications to
molecules. The most characteristic inter-atomic distances are the smallest ones between
bonded atoms at the beginning of the SPD, written in increasing order.

On another hand, the simpler invariant SRD(𝐴) describes the global shape of a
molecule by the largest distances to atoms from the centre of mass.

Example 4.4.7 (SPD and SRD for 4-point clouds in Fig. 4.7). The vertex sets 𝑇, 𝐾 of
the trapezium and kite in Fig. 4.7 have SPD = (2

√
2, 2

√
2, 4, 2

√
10, 2

√
10, 8), but are

distinguished by SRD(𝑇) = (
√

17,
√

17,
√

5,
√

5) and SRD(𝐾) = (5, 3,
√

5,
√

5). _

The next two sections follow the finite (non-periodic) case of paper [25].

4.5 Pointwise Distance Distributions of unordered points

This section defines our main isometry invariant, which we first introduced for periodic
point sets [24] in 2022 and only after that understood its importance in the finite case,
where it was previously studied under the name of a local distribution of distances [15].

Definition 4.5.1 (Pointwise Distance Distribution PDD(𝐴; 𝑘) for a finite cloud 𝐴). Let
𝐴 = {𝑝1, . . . , 𝑝𝑚} be a finite cloud of unordered points in a metric space 𝑀 .

Fix an integer 𝑘 ≥ 1. For every point 𝑝 ∈ 𝐴, let 𝑑1 (𝑝) ≤ · · · ≤ 𝑑𝑘 (𝑝) be the distances
from 𝑝 to its 𝑘 nearest neighbours in 𝐴. The matrix 𝐷 (𝐴; 𝑘) has 𝑚 rows consisting
of the distances 𝑑1 (𝑝𝑖), . . . , 𝑑𝑘 (𝑝𝑖) for 𝑖 = 1, . . . , 𝑚. If any 𝑙 ≥ 2 rows coincide, we

collapse them into a single row with the weight
𝑙

𝑚
.

The resulting matrix of maximum 𝑚 rows and 𝑘 + 1 columns, including the extra
column of weights, is called the Pointwise Distance Distribution PDD(𝐴; 𝑘). ▲

The rows of PDD(𝐴; 𝑘) are unordered, though we might write them in a lexicographic
order only for convenience. Hence PDD(𝐴; 𝑘) can be considered a weighted distribution
of (say) 𝑚 rows of 𝑘 distances. Each row can also be interpreted as a point in R𝑘 .

Then PDD(𝐴; 𝑘) can be viewed as a cloud of 𝑚 unordered points in R𝑘 . The crucial
difference with the original cloud 𝐴 under isometry in R𝑛 is the fixed coordinate system
for PDD(𝐴; 𝑘) ⊂ R𝑘 , not under any equivalence.

Example 4.5.2 (PDD for 4-point clouds 𝑇, 𝐾 in Fig. 4.7). Table 4.1 shows the 4 × 3
matrices 𝐷 (𝑆; 3) from Definition 4.5.1. The matrix 𝐷 (𝑇 ; 3) in Table 4.1 has two pairs
of identical rows, so the matrix PDD(𝑇 ; 3) consists of two rows of weight 1

2 below.

The matrix 𝐷 (𝐾; 3) in Table 4.1 has only one pair of identical rows, so PDD(𝐾; 3)
has three rows of weights 1

2 , 1
4 , 1

4 . Then 𝑇, 𝐾 are distinguished by PDDs even for 𝑘 = 1.
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Table 4.1 Each point of 𝑇, 𝐾 ⊂ R2 in Figure 4.7 has three distances to other points in increasing
order. After keeping only distances (not neighbours), the resulting PDDs distinguish 𝑇 ; 𝐾 .

points of 𝑇 distance to neighbour 1 distance to neighbour 2 distance to neighbour 3

(−4, −1) 2
√

2 to (−2, +1) 2
√

10 to (+2, +1) 8 to (+4, −1)

(+4, −1) 2
√

2 to (+2, +1) 2
√

10 to (−2, +1) 8 to (−4, −1)

(−2, +1) 2
√

2 to (−4, −1) 8 to (+2, +1) 2
√

10 to (+4, −1)

(+2, +1) 2
√

2 to (+4, −1) 4 to (−2, +1) 2
√

10 to (−4, −1)

points of 𝐾 distance to neighbour 1 distance to neighbour 2 distance to neighbour 3

(−3, 0) 2
√

2 to (−1, −2) 2
√

2 to (−1, +2) 8 to (5, 0)

(+5, 0) 2
√

10 to (−1, −2) 2
√

10 to (−1, +2) 8 to (−3, 0)

(−1, −2) 2
√

2 to (−3, 0) 4 to (−1, +2) 2
√

10 to (5, 0)

(−1, +2) 2
√

2 to (−3, 0) 4 to (−1, −2) 2
√

10 to (5, 0)

PDD(𝑇) =
©­­­«

1/2 2
√

2 4 2
√

10

1/2 2
√

2 2
√

10 8

ª®®®¬ ≠ PDD(𝐾) =

©­­­­­­­«
1/4 2

√
2 2

√
2 8

1/2 2
√

2 4 2
√

10

1/4 2
√

10 2
√

10 8

ª®®®®®®®¬
. _

Since any isometry preserves distances, PDD(𝐴; 𝑘) is an isometry invariant of 𝐴. The
brute-force algorithm for PDD(𝐴; 𝑘) needs only a quadratic time in the size |𝐴| = 𝑚. In a
general metric space with certain expansion constants, we found counter-examples [11]
to past estimates for a parametrised complexity a nearest neighbour search and proved
new linear-time complexities [12] with extra parameters depending, for example, on a
dimension 𝑛. Hence, the invariant PDD(𝐴; 𝑘) satisfies the computability in 4.4.4(e).

Interpreting PDD(𝐴; 𝑘) as a discrete distribution of rows (or points in R𝑘) with
weights as probabilities allows us to compare PDDs by many metrics on probability
distributions. If we use the Earth Mover’s Distance from Definition 3.5.4 with a ground
metric 𝐿𝑞 on rows of PDD, we denote the resulting metric by EMD𝑞 for all parameters
𝑞 ∈ [1,+∞]. For PDD(𝐴; 𝑘), the notation EMD without any subscript means that the
ground metric is the Root Mean Square RMS =

𝐿2√
𝑘

.

The EMD satisfies all metric axioms [16, appendix], needs 𝑂 (𝑚3 log𝑚) time for
distributions of a maximum size 𝑚, and can be approximated in 𝑂 (𝑚) time [19].

Theorem 4.5.3 (Lipschitz continuity of PDD for a finite cloud, [25, Theorem 4.2(a)]).
Let 𝐴 be a finite cloud in a space 𝑀 with a metric 𝑑𝑀 . For any 𝜀 > 0, let 𝐵 be
obtained from 𝐴 by perturbing every point of 𝐴 up to 𝜀 in the metric 𝑑𝑀 . Fix any real
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𝑞 ∈ [1,+∞] and an integer 𝑘 ≥ 1. Interpret 𝑞
√
𝑘 as 1 in the limit case 𝑞 = +∞. Then

EMD𝑞 (PDD(𝐴; 𝑘), PDD(𝐵; 𝑘)) ≤ 2𝜀 𝑞
√
𝑘 . ■

For any cloud 𝐴 ⊂ R𝑛 of 𝑚 unordered points, the vector SPD(𝐴) of Sorted Pairwise
Distances obtained from PDD(𝐴;𝑚−1) by writing all distances in a single distribution
and collapsing each pair of equal distances into one. Indeed, any distance |𝑝𝑖 − 𝑝 𝑗 |
appears in both rows 𝑖, 𝑗 of PDD(𝐴;𝑚 − 1). Due to Example 4.5.2, PDD(𝐴;𝑚 − 1)
is strictly stronger than SPD(𝐴). Due to this strength, the generic completeness of
PDD(𝐴;𝑚 − 1) under isometry in R𝑛 is much easier to prove than for SPD(𝐴).
Theorem 4.5.4 (generic completeness of PDD for a finite cloud, [25, Theorem 5.1]).
Any cloud 𝐴 ⊂ R𝑛 of 𝑚 unordered points with distinct inter-point distances can be
reconstructed from PDD(𝐴;𝑚 − 1), uniquely under isometry.

Proof. Since all inter-point distances are distinct, every such distance |𝑝 − 𝑞 | between
points 𝑝, 𝑞 ∈ 𝐴 appears twice in PDD(𝐴;𝑚 − 1): once in the row of 𝑝 and once in the
row of 𝑞. Hence, after choosing an arbitrary order of points, we can use PDD(𝐴;𝑚 − 1)
to reconstruct the classical distance matrix on ordered points. This distance matrix
determines 𝐴 ⊂ R𝑛 uniquely under isometry [17]. ⊓⊔

The following open conjecture should be understandable to schools students.

Conjecture 4.5.5 (completeness of PDD in R2). Any cloud 𝐶 ⊂ R2 of 𝑚 unordered
points can be reconstructed from PDD(𝐶;𝑚 − 1), uniquely under isometry in R2. ⋆

In R3, the known non-isometric clouds with the same PDD inspired the stronger
invariant, which will distinguish all these examples in the next chapter. In a general
metric space, Problem 4.4.4 is notoriously hard, but provides targets for further research.

4.6 Extending the side-side-side theorem from 3 to 4 points in R𝒏

Many authors considered criteria of congruence for plane quadrilaterals [22], whose
vertices are (cyclically) ordered. If a quadrilateral has fixed side lengths, the resulting
moduli space under rigid motion in R2 was explicitly described in [13, section 1.3].

In any R𝑛, the 𝑚 × 𝑚 matrix of pairwise distances [17] and the Gram matrix of
scalar products [23] are complete and continuous invariants of 𝑚 ordered points under
isometry, all known at least since 1935. The extension of this approach to 𝑚 unordered
points leads to the exponential complexity because of 𝑚! permutations on 𝑚 points.

For 𝑚 = 4 unordered points, Theorem 4.6.1 will prove the completeness of
PDD(𝐶;𝑚 − 1) under isometry in any R𝑛. For any 𝑚, the invariant PDD(𝐶;𝑚 − 1)
can be computed in quadratic time 𝑂 (𝑚2). For 𝑚 = 4, PDD(𝐶; 3) contains only 12
numbers (6 pairs of distances between 4 points), while 4! = 24 distance matrices on 4
points contain at least 144 numbers if we consider only distances above the diagonal.

Theorem 4.6.1 (completeness of PDD for 𝑚 ≤ 4 points, [25, Theorem 5.3]). The
Pointwise Distance Distribution PDD(𝐶;𝑚 − 1) from Definition 4.5.1 is a complete
isometry invariant of all clouds 𝐶 ⊂ R𝑛 of any 𝑚 ≤ 4 unordered points. ■
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Since Theorem 4.6.1 finally extends the side-side-side criterion of congruence to
𝑚 = 4 unordered points, without relying on brute-force permutations, we include the
detailed proof, which previously appeared only in supplementary materials of [25].

If a cloud 𝐴 of 𝑚 points has a line or plane of symmetry 𝐿 in R2 or R3, then all
points 𝐴 \ 𝐿 split into pairs of points that are symmetric in 𝐿 and hence have equal rows
in PDD(𝐴;𝑚 − 1). Lemma 4.6.2 shows that the converse holds for 𝑚 = 4.

Lemma 4.6.2 (PDD detects symmetry of 𝑚 = 4 points, [25, Lemma SM3.5]). For any
cloud 𝐴 ⊂ R𝑛 of 𝑚 = 4 points for 𝑛 = 2, 3, if PDD(𝐴; 3) has two equal rows, then 𝐴 is
either (1) mirror symmetric in the plane passing through two points of 𝐴 orthogonally
to the line segment joining the other points of 𝐴, or (2) symmetric by the 180◦ degree
rotation around the line through the mid-points of two pairs of points of 𝐴. If 𝑛 = 2,
then 𝐴 defines a kite, or a parallelogram or an isosceles trapezoid; see Fig. 4.9. ■

Fig. 4.9 Left: in R2, the convex and non-convex kites have two equal rows {𝑎, 𝑏, 𝑐} in PDD(𝐴; 3) and
are distinguished by 𝑑 = | 𝑝3− 𝑝4 |, see Lemma 4.6.2. Middle: an isosceles trapezoid and parallelogram
have PDD(𝐴; 3) with two pairs of equal rows {𝑎, 𝑏, 𝑐} and {𝑎, 𝑏, 𝑑}, e.g. a rectangle for 𝑐 = 𝑑. Top
right: a trisosceles cloud. Bottom right: a 3-chain-equal cloud, see Example 4.6.3.

Proof of Lemma 4.6.2. Let points 𝑝1, 𝑝2 ∈ 𝐴 have the same row 𝑎 ≤ 𝑏 ≤ 𝑐 in
PDD(𝐶; 3). One of the distances 𝑎, 𝑏, 𝑐 is between the points 𝑝1, 𝑝2. Without loss
of generality, assume that |𝑝1 − 𝑝2 | = 𝑐. Then 𝑝1, 𝑝2 have distances 𝑎, 𝑏 to the points
𝑝3, 𝑝4 ∈ 𝐴 \ {𝑝1, 𝑝2}, but it is unknown which distance corresponds to which point.

Isosceles case. Let |𝑝1 − 𝑝3 | = 𝑎 = |𝑝2 − 𝑝3 | and |𝑝1 − 𝑝4 | = 𝑏 = |𝑝2 − 𝑝4 |, see
Fig. 4.9 (left). Then 𝐴 has two equal triangles △𝑝1𝑝3𝑝4 = △𝑝2𝑝3𝑝4 and two isosceles
triangles △𝑝3𝑝1𝑝2 and △𝑝4𝑝1𝑝2 with equal sides at 𝑝3, 𝑝4, respectively. Let 𝐿 be the
plane that passes through 𝑝3, 𝑝4 and is orthogonal to the line segment [𝑝1, 𝑝2]. Then
the mirror reflection in 𝐿 swaps 𝑝1, 𝑝2. If 𝑛 = 2, 𝐴 defines a (non-)convex kite.

Non-isosceles case. Then |𝑝1 − 𝑝3 | = 𝑎 = |𝑝2 − 𝑝4 | and |𝑝2 − 𝑝3 | = 𝑏 = |𝑝1 − 𝑝4 |,
see Fig. 4.9 (middle). Let 𝐿 be the perpendicular bisector of the line segment [𝑝3, 𝑝4].
The mirror reflection in 𝐿 swaps 𝑝3 ↔ 𝑝4 and either swaps 𝑝1 ↔ 𝑝2 (then 𝐴 defines
an isosceles trapezoid in R2) or maps 𝑝2 to 𝑝′2, so that 𝑝1, 𝑝

′
2, 𝑝3, 𝑝4 satisfy the previous

case. In the latter case, the composition with the reflection in the plane through 𝑝3, 𝑝4
orthogonal to [𝑝1, 𝑝

′
2] is the 180◦ degree rotation that swaps the points as 𝑝1 ↔ 𝑝2 and

𝑝3 ↔ 𝑝4. If 𝑛 = 2, then 𝐴 defines a parallelogram, see Fig. 4.9 (bottom middle). ⊓⊔
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Example 4.6.3 (trisosceles and 3-chain-equal clouds in R3). Fig. 4.9 (right) shows
trisosceles and 3-chain-equal clouds that have 3 pairs of equal distances and a chain of

3 equal distances, their PDDs are

©­­­­­­­­­­­«
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𝑎 𝑐 𝑑
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, respectively. _

Proof of Theorem 4.6.1. Case 𝑚 = 2. Any cloud 𝐴 ⊂ R𝑛 of 𝑚 = 2 unordered points
𝑝1, 𝑝2 (labelled only for convenience) has PDD(𝐴; 1) consisting of the single distance
|𝑝1 − 𝑝2 |, which uniquely determines 𝐴 under isometry in any R𝑛.

Case 𝑚 = 3. Any cloud 𝐴 ⊂ R𝑛 of 𝑚 = 3 unordered points with pairwise distances

𝑎 ≤ 𝑏 ≤ 𝑐 has PDD(𝐴; 2) =

©­­­­­­­«
𝑎 𝑏

𝑎 𝑐

𝑏 𝑐

ª®®®®®®®¬
. The (lexicographically) first row of PDD(𝐴; 2)

gives us 𝑎 ≤ 𝑏. Each of the remaining two rows of PDD(𝐴; 2) should contain at least
one value of 𝑎 or 𝑏, including in all degenerate cases such as 𝑎 = 𝑏. Removing these
repeated values from the other two rows gives us 𝑐, also in the case 𝑏 = 𝑐. So PDD(𝐴; 2)
identifies 𝑎 ≤ 𝑏 ≤ 𝑐 and hence 𝐴, uniquely under isometry in any R𝑛.

Case 𝑚 = 4, then 𝑛 ≤ 3. For a cloud 𝐴 ⊂ R3 of 𝑚 = 4 unordered points, PDD(𝐴; 3)
is a 4 × 3 matrix. Assume that PDD(𝐴; 3) has two equal rows 𝑎 ≤ 𝑏 ≤ 𝑐.

Isosceles case. In the first case of Lemma 4.6.2 in Fig. 4.9 (left), PDD(𝐴; 3) has two
more rows {𝑎, 𝑎, 𝑑} and {𝑏, 𝑏, 𝑑} including two repeated distances (say, 𝑎, 𝑏) among
𝑎, 𝑏, 𝑐. We can form two isosceles triangles with sides 𝑎, 𝑎, 𝑐 and 𝑏, 𝑏, 𝑐, which can be
rotated in R3 around their common side of the length 𝑐, but their positions are fixed
under isometry in R3 by the distance 𝑑 between their non-shared vertices.

Non-isosceles case. In the second case of Lemma 4.6.2 in Fig. 4.9 (middle),
PDD(𝐴; 3) has two pairs of equal rows of (unordered) distances {𝑎, 𝑏, 𝑐} and {𝑎, 𝑏, 𝑑}.
Each of these triples uniquely determines a pair of equal triangles with a common side
that are symmetric in the perpendicular bisector to this side. For example, if we start with
a fixed position of [𝑝3, 𝑝4] in R3, the union of equal triangles △𝑝1𝑝3𝑝4 = △𝑝2𝑝3𝑝4 in
Fig. 4.9 (middle) is uniquely determined under isometry by the length 𝑑 of [𝑝1, 𝑝2]. In
R2, the parallelogram and isosceles trapezoid are distinguished by this distance 𝑑.

Now we can assume that all rows of PDD(𝐴; 3) are different. Then all points can
be uniquely labelled as 𝑝1, 𝑝2, 𝑝3, 𝑝4 according to the lexicographic order of rows. Our
aim is to get PDD({𝑝2, 𝑝3, 𝑝4}; 2), reconstruct △𝑝2𝑝3𝑝4, and then uniquely add 𝑝1.

Case of a row with 3 equal distances. Let PDD(𝐴; 3) have a row of (say) 𝑝1
with 3 equal distances 𝑎. After removing the row of 𝑝1, the distance 𝑎 from the
rows of 𝑝2, 𝑝3, 𝑝4, we get PDD({𝑝2, 𝑝3, 𝑝4}; 2). This smaller 3 × 2 matrix determines
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△𝑝2𝑝3𝑝4, uniquely under isometry in R3. For a fixed △𝑝2𝑝3𝑝4, the position of 𝑝1 in R3

is determined by its distance 𝑎 to 𝑝2, 𝑝3, 𝑝4, uniquely under the mirror reflection relative
to the plane of △𝑝2𝑝3𝑝4. If 𝑛 = 2, then 𝑝1 is the unique circumcenter of △𝑝2𝑝3𝑝4.

Case of a row with 3 unique distances. Let PDD(𝐶; 3) have a row of (say) 𝑝1,
where each of the distances 𝑎, 𝑏, 𝑐 (say, to 𝑝2, 𝑝3, 𝑝4) appears in at most one other row
(then 𝑎, 𝑏, 𝑐 are distinct). After removing the row of 𝑝1, the distance 𝑎 from the row
𝑝2, the distance 𝑏 from the row of 𝑝3, and the distance 𝑐 from the row of 𝑝4, we get
PDD({𝑝2, 𝑝3, 𝑝4}; 2). This 3×2 matrix determines △𝑝2𝑝3𝑝4, uniquely under isometry
in R3. Then the position of 𝑝1 in R3 is determined by its distances 𝑎, 𝑏, 𝑐 to 𝑝2, 𝑝3, 𝑝4,
respectively, under a mirror reflection relative to the plane of the triangle △𝑝2𝑝3𝑝4.

Case of one distance in 4 rows. Then two pairs of points have disjoint edges of the

same length, e.g. |𝑝1− 𝑝2 | = 𝑎 = |𝑝3− 𝑝4 |, so PDD(𝐴; 3) =

©­­­­­­­­­­­«

𝑎 𝑏 𝑐

𝑎 𝑑 𝑒

𝑎 𝑏 𝑑

𝑎 𝑐 𝑒

ª®®®®®®®®®®®¬
for 𝑏 = |𝑝1− 𝑝3 |,

𝑐 = |𝑝1 − 𝑝4 |, 𝑑 = |𝑝2 − 𝑝3 |, 𝑒 = |𝑝2 − 𝑝4 |. Then 𝑐 ≠ 𝑑 and 𝑏 ≠ 𝑒, else PDD(𝐴; 3) has
two equal rows (considered above), similarly when 𝑏 = 𝑐 and 𝑑 = 𝑒.

If 𝑎 equals one of 𝑏, 𝑐, 𝑑, 𝑒 (say, 𝑒), then 𝐴 is a 3-chain-equal cloud in Fig. 4.9 (bottom
right) and the argument below still works. If 𝑏 ≠ 𝑐, we remove the row of 𝑝1, the
distance 𝑏 from the only row of 𝑝3 containing 𝑏, the distance 𝑐 from the only row of
𝑝4 containing 𝑐, and then remove 𝑎 from the remaining row of 𝑝2. This reduction to
PDD({𝑝2, 𝑝3, 𝑝4}; 2) allows us to reconstruct 𝐴, uniquely under isometry in R3 as in
the case of a row with 3 unique distances. If 𝑏 = 𝑐 but 𝑑 ≠ 𝑒, we remove the row of 𝑝2,
the distance 𝑑 from the only row of 𝑝3 containing 𝑑, the distance 𝑒 from the only row
of 𝑝4 containing 𝑒, and then remove 𝑎 from the remaining row of 𝑝1, which allows us
to uniquely reconstruct 𝐴 as in the case of a row with 3 unique distances above.

The final case: no distance appears in all 4 distinct rows, but every row has a distance
appearing in 3 rows, hence at least four times, including two times in the same row.
Then 𝐴 is a trisosceles cloud in Fig. 4.9 (top right). If any of the remaining distances
𝑎, 𝑏, 𝑐 are equal, PDD(𝐴; 3) has two equal rows (the case considered above). Then we
remove any row (say 𝑎, 𝑏, 𝑏) with two repeated distances, the distance 𝑏 from the only
two rows containing 𝑏, and the distance 𝑎 from the remaining row.

This reduction to PDD({𝑝2, 𝑝3, 𝑝4}; 2), allows us to reconstruct △𝑝2𝑝3𝑝4, uniquely
under isometry in R3. Though 𝑝1 has equal distances to two of the vertices (say 𝑝2, 𝑝3),
the ambiguity of reconstructing 𝑝1 in R3 by its distances to 𝑝2, 𝑝3, 𝑝4, is only under the
mirror reflections relative to the bisector plane of [𝑝2, 𝑝3] and the plane of△𝑝2𝑝3𝑝4. ⊓⊔

Chapters 5 and 6 will extend the PDD to the stronger invariants in a metric space
(SDD) and complete invariant (SCD) under rigid motion in any R𝑛, as shown in
Fig. 4.10.
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Fig. 4.10 A hierarchy of invariants from the fastest (linear-time SRD and quadratic-time SPD) to
the stronger PDD and SDD in Chapter 5 up to the Simplexwise Centered Distribution (SCD) in
Chapter 6, which will satisfy the majority of conditions in Geo-Mapping Problem 1.4.5 for any finite
𝑛-dimensional clouds of unordered points under rigid motion in Theorems 6.2.3, 6.4.4, and 6.4.5.
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Chapter 5
Higher order distance distributions of unordered
points in a metric space

Abstract This chapter presents further advances towards a solution of the geo-mapping
problem under isometry in any metric space, as stated in the previous chapter. The Point-
wise Distance Distribution (PDD) will be extended to stronger isometry invariant by
collection distances to ℎ-point subsets. The resulting Simplexwise Distance Distribu-
tion (SDD) is Lipschitz continuous and computable in a polynomial time of the number
of points, for a fixed order ℎ. For ℎ = 2, the SDD distinguishes all (infinitely many)
known counter-examples to the completeness of the PDD under isometry in R3.

5.1 Simplexwise Distance Distributions of a cloud in a metric space

This chapter follows paper [8] and its extension [6] to metric spaces with measures.

We continue solving Problem 4.4.4 to find geocodes of finite clouds in any met-
ric space. The first section extends the Pointwise Distance Distribution (PDD) from
Definition 4.5.1 to a stronger invariant, which requires a few auxiliary definitions.

The key idea of a stronger invariant is to use a base sequence of ℎ > 1 ordered points
instead of ℎ = 1 point in the PDD.

The lexicographic order u < v on vectors u = (𝑢1, . . . , 𝑢ℎ) and v = (𝑣1, . . . , 𝑣ℎ)
means that if the first 𝑖 coordinates (where 𝑖might be 0) of 𝑢, 𝑣 coincide, then 𝑢𝑖+1 < 𝑣𝑖+1.
Let 𝑆ℎ denote the permutation group on indices 1, . . . , ℎ.

Definition 5.1.1 (Relative Distance Distribution RDD(𝐶; 𝐴)). Let 𝐶 be a cloud of 𝑚
unlabelled points in a space with a metric 𝑑. A base sequence 𝐴 = (𝑝1, . . . , 𝑝ℎ) ∈ 𝐶ℎ
consists of 1 ≤ ℎ < 𝑚 distinct points. Let 𝐷 (𝐴) be the triangular distance matrix
whose entry 𝐷 (𝐴)𝑖, 𝑗−1 is 𝑑 (𝑝𝑖 , 𝑝 𝑗 ) for 1 ≤ 𝑖 < 𝑗 ≤ ℎ, all other entries are zeros.

Any permutation 𝜉 ∈ 𝑆ℎ acts on 𝐷 (𝐴) by mapping 𝐷 (𝐴)𝑖 𝑗 to 𝐷 (𝐴)𝑘𝑙 , where 𝑘 ≤ 𝑙
is the pair of indices 𝜉 (𝑖), 𝜉 ( 𝑗) − 1 written in increasing order. For any other point
𝑞 ∈ 𝐶 − 𝐴, write distances from 𝑞 to 𝑝1, . . . , 𝑝ℎ as a column. The ℎ × (𝑚 − ℎ)-matrix
𝑅(𝐶; 𝐴) is formed by these 𝑚 − ℎ lexicographically ordered columns. The action of
𝜉 on 𝑅(𝐶; 𝐴) maps any 𝑖-th row to the 𝜉 (𝑖)-th row, after which all columns can be

71
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written in the lexicographic order. The Relative Distance Distribution RDD(𝐶; 𝐴) is
the equivalence class of the pair [𝐷 (𝐴), 𝑅(𝐶; 𝐴)] of matrices under permutations
𝜉 ∈ 𝑆ℎ. ▲

For ℎ = 1 and a base sequence 𝐴 = (𝑝1), the matrix 𝐷 (𝐴) is empty and 𝑅(𝐶; 𝐴)
is a single row of distances (in the increasing order) from 𝑝1 to all other points 𝑞 ∈ 𝐶.
For ℎ = 2 and a base sequence 𝐴 = (𝑝1, 𝑝2), the matrix 𝐷 (𝐴) is the single number
𝑑 (𝑝1, 𝑝2) and 𝑅(𝐶; 𝐴) consists of two rows of distances from 𝑝1, 𝑝2 to all other 𝑞 ∈ 𝐶.

Fig. 5.1 Left: triangular cloud 𝐶 of points 𝑝1, 𝑝2, 𝑝3 with inter-point distances 𝑎 ≤ 𝑏 ≤ 𝑐. Middle:
right-angled cloud 𝑅 of points (0, 0) , (4, 0) , (0, 3) . Right: square cloud 𝑆 of points (1, 0) , (−1, 0) ,
(0, 1) , (−1, 0) .

Example 5.1.2 (RDD for a 3-point cloud 𝐶). Let 𝐶 ⊂ R2 consist of 𝑝1, 𝑝2, 𝑝3 with
inter-point distances 𝑎 ≤ 𝑏 ≤ 𝑐 ordered counter-clockwise as in Fig. 5.1 (left). Then

RDD(𝐶; 𝑝1) = [∅; (𝑏, 𝑐)], RDD(𝐶;
©­­­«
𝑝2

𝑝3

ª®®®¬) = [𝑎;
©­­­«
𝑐

𝑏

ª®®®¬],

RDD(𝐶; 𝑝2) = [∅; (𝑎, 𝑐)], RDD(𝐶;
©­­­«
𝑝3

𝑝1

ª®®®¬) = [𝑏;
©­­­«
𝑎

𝑐

ª®®®¬],
RDD(𝐶; 𝑝3) = [∅; (𝑎, 𝑏)], RDD(𝐶;

©­­­«
𝑝1

𝑝2

ª®®®¬) = [𝑐;
©­­­«
𝑏

𝑎

ª®®®¬] .
We have written RDD(𝐶; 𝐴) for a base sequence 𝐴 = (𝑝𝑖 , 𝑝 𝑗 ) of ordered points
represented by a column. Swapping the points 𝑝1 ↔ 𝑝2 makes the last RDD above

equivalent to RDD
(
𝐶;

©­­­«
𝑝2

𝑝1

ª®®®¬
)
=

[
𝑐;

©­­­«
𝑎

𝑏

ª®®®¬
]
. _
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Though RDD(𝐶; 𝐴) is defined up to a permutation 𝜉 ∈ 𝑆ℎ of ℎ points in 𝐴 ∈ 𝐶ℎ,
comparisons of RDDs will be practical for ℎ = 2, 3 with metrics independent of 𝜉.

Definition 5.1.3 (Simplexwise Distance Distribution SDD(𝐶; ℎ)). Let 𝐶 be a cloud
of 𝑚 unlabelled points in a metric space. For an integer 1 ≤ ℎ < 𝑚, the Simplexwise
Distance Distribution SDD(𝐶; ℎ) of order ℎ is the unordered set of RDD(𝐶; 𝐴) for all
unordered ℎ-point subsets 𝐴 ⊂ 𝐶. ▲

For order ℎ = 1 and any 𝑚-point cloud 𝐶, the distribution SDD(𝐶; 1) can be
considered as a matrix of 𝑚 rows of ordered distances from every point 𝑝 ∈ 𝐶 to all
other 𝑚 − 1 points. If we lexicographically order these 𝑚 rows and collapse any 𝑙 > 1
identical rows into a single one with the weight 𝑙/𝑚, then we get the Pointwise Distance
Distribution PDD(𝐶;𝑚 − 1) introduced in Definition 4.5.1.

Definition 5.1.4 (moments of a weighted distribution). Let 𝐴 be any unordered set of
real numbers 𝑎1, . . . , 𝑎𝑚 with weights 𝑤1, . . . , 𝑤𝑚, respectively, such that

𝑚∑
𝑖=1
𝑤𝑖 = 1.

The 1st moment (average) is the 𝜇1 (𝐴) =
𝑚∑
𝑖=1
𝑤𝑖𝑎𝑖 . The 2nd moment is 𝜇2 (𝐴) =√︄

1
𝑚

𝑚∑
𝑖=1
𝑤𝑖𝑎

2
𝑖
. For 𝑡 ≥ 3, the 𝑡-th moment is 𝑡

√︂
𝑚1−𝑡

𝑚∑
𝑖=1
𝑤𝑖𝑎

𝑡
𝑖
, see [5, section 2.7]. ▲

The vector SPD(𝐴) of Sorted Pairwise Distances was introduced in Definition 4.4.5.

Definition 5.1.5 (Simplexwise Distance Moments SDM). For any𝑚-point cloud𝐶 in a
metric space, let 𝐴 ⊂ 𝐶 be a subset of ℎ unordered points. The vector R(𝐶; 𝐴) ∈ R𝑚−ℎ

is obtained from the ℎ × (𝑚 − ℎ) matrix 𝑅(𝐶; 𝐴) in Definition 5.1.1 by writing the
vector of 𝑚 − ℎ column averages in increasing order.

The pair [SPD(𝐴); R(𝐶; 𝐴)] is the Average Distance Distribution ADD(𝐶; 𝐴) con-
sidered a vector of length ℎ (ℎ−3)

2 + 𝑚. The unordered collection of ADD(𝐶; 𝐴) for all(𝑚
ℎ

)
unordered subsets 𝐴 ⊂ 𝐶 is the Average Simplexwise Distribution ASD(𝐶; ℎ).

The Simplexwise Distance Moment SDM(𝐶; ℎ, 𝑡) is the 𝑡-th moment of ASD(𝐶; ℎ)
considered a probability distribution of

(𝑚
ℎ

)
vectors, separately for each coordinate. ▲

Fig. 5.2 Left: trapezium cloud 𝑇 of points (1, 1) , (−1, 1) , (−2, 0) , (2, 0) . Right: kite cloud 𝐾 of
points (0, 1) , (−1, 0) , (0, −1) , (3, 0) .
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Example 5.1.6 (SDD and SDM for the 4-point clouds 𝑇, 𝐾). Fig. 5.2 shows the
non-isometric 4-point clouds 𝑇, 𝐾 with the same Ordered Pairwise Distances: SPD =

{
√

2,
√

2, 2,
√

10,
√

10, 4}, see infinitely many examples in [1]. The arrows on the edges
of 𝑇, 𝐾 show orders of points in each pair of vertices for RDDs. Then 𝑇, 𝐾 are distin-
guished under isometry by SDD(𝑇 ; 2) ≠ SDD(𝐾; 2) in Table 5.1. The 1st coordinate
of SDM(𝐶; 2, 1) ∈ R3 is the average of the six distances from SPD (the same for 𝑇, 𝐾)
but the other two coordinates (column averages from 𝑅(𝐶; 𝐴) matrices) differ. _
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ADD(𝑇; 𝐴) in ASD(𝑇; 2) ADD(𝐾 ; 𝐴) in ASD(𝐾 ; 2)
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Table 5.1 Top: Relative Distance Distributions from Definition 5.1.1 for all 6 base sequences 𝐴 in the
4-point clouds 𝑇, 𝐾 in Fig. 5.2. The symbol ×2 indicates a doubled RDD. The three bottom rows show
coordinates of SDM(𝐶; 2, 1) ∈ R3 from Definition 5.1.5 for ℎ = 2, 𝑡 = 1 and 𝐶 = 𝑇, 𝐾 . Different
elements are highlighted and imply that all invariants SDD,ADD, SDM distinguish 𝑇 ; 𝐾 .
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Some of the
(𝑚
ℎ

)
RDDs in SDD(𝐶; ℎ) can concide as in Example 5.1.6. If we

collapse any 𝑙 > 1 identical RDDs into a single RDD with the weight 𝑙/
(𝑚
ℎ

)
, SDD can

be considered as a weighted probability distribution of RDDs.
In a general metric space, a point cloud 𝐶 is usually given by a distance matrix on

(arbitrarily ordered) points of𝐶. Hence, we assume that the distance between any points
of 𝐶 is accessible in a constant time.

Theorem 5.1.7 (invariance and time of SDD, [6, Theorem 3.6]). For any order ℎ ≥ 1
and any cloud 𝐶 of 𝑚 unlabelled points in a metric space, SDD(𝐶; ℎ) is an isometry
invariant, which can be computed in time𝑂 (𝑚ℎ+1/(ℎ−1)!). For any 𝑡 ≥ 1, the invariant
SDM(𝐶; ℎ, 𝑡) ∈ R𝑚+ ℎ (ℎ−3)

2 has the same asymptotic time. ■

5.2 The expressiveness of Simplexwise Distance Distributions

This section shows that SDD(𝐶; 2) distinguishes all infinitely many known pairs [3,
Fig. S4] of non-isometric clouds 𝑆, 𝑄 ⊂ R3 that have equal PDD(𝑆) = PDD(𝑄)

Examples 5.2.1 and 5.2.2 distinguish clouds of 5 points and 7 points, respectively,
in R3 by comparing their SDDs of order 2. In Example 5.2.3, the invariant SDD(𝐶; 2)
distinguishes 6-point clouds in a family of pairs depending on three parameters.

Example 5.2.1 (5-point clouds). Fig. 5.3 shows the 5-point clouds 𝑆± ⊂ R3 taken from
[3, Figure S4(A)]. The clouds 𝑆± are not isometric, because 𝑆+ has the triple of points
𝐵+, 𝐺+, 𝑅+ with pairwise distances

√
2,
√

6,
√

6, but 𝑆− has no such a triple.

Fig. 5.3 See Example 5.2.1 Left: (𝑥, 𝑦)-projection of the 5-point cloud 𝑆− ⊂ R3 consisting of
the green points 𝐺− = (−1, −1, 0) and 𝐺+ = (1, 1, 0) , the red points 𝑅− = (−2, 0, −2) and
𝑅+ = (2, 0, 2) , and the blue point 𝐵− = (0, 1, −1) . Right: to get 𝑆+ ⊂ R3 from the cloud 𝑆− , replace
the point 𝐵− with another point 𝐵+ = (0, 1, 1) .

Table 5.2 highlights differences between distance matrices. If we order distances to
neighbours, the matrices in Table 5.3 differ only in one pair.

If we ignore the labels of all points in columns, Table 5.3 implies that 𝑆± have
identical Pointwise Distance Distribution (PDD). For easier visualisation, the matrix
below is obtained by lexicographically ordering the rows in Table 5.3:
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distances of 𝑆− 𝑅− 𝑅+ 𝐺− 𝐺+ 𝐵−

𝑅− (−2, 0, −2) 0
√

32
√

6
√

14
√

6

𝑅+ (+2, 0, +2)
√

32 0
√

14
√

6
√

14

𝐺− (−1, −1, 0)
√

6
√

14 0
√

8
√

6

𝐺+ (+1, +1, 0)
√

14
√

6
√

8 0
√

2

𝐵− (0, +1, −1)
√

6
√

14
√

6
√

2 0

distances of 𝑆+ 𝑅− 𝑅+ 𝐺− 𝐺+ 𝐵+

𝑅− (−2, 0, −2) 0
√

32
√

6
√

14
√

14

𝑅+ (+2, 0, +2)
√

32 0
√

14
√

6
√

6

𝐺− (−1, −1, 0)
√

6
√

14 0
√

8
√

6

𝐺+ (+1, +1, 0)
√

14
√

6
√

8 0
√

2

𝐵+ (0, +1, +1)
√

14
√

6
√

6
√

2 0

Table 5.2 Distance matrices of the clouds 𝑆∓ ⊂ R3 in Fig. 5.3.

𝑆− distances to 1st neighbour 2nd neighbour 3rd neighbour 4th neighbour

𝑅− = (−2, 0, −2)
√

6
√

6
√

14
√

32

𝑅+ = (+2, 0, +2)
√

6
√

14
√

14
√

32

𝐺− = (−1, −1, 0)
√

6
√

6
√

8
√

14

𝐺+ = (+1, +1, 0)
√

2
√

6
√

8
√

14

𝐵− = (0, +1, −1)
√

2
√

6
√

6
√

14

𝑆+ distances to 1st neighbour 2nd neighbour 3rd neighbour 4th neighbour

𝑅− = (−2, 0, −2)
√

6
√

14
√

14
√

32

𝑅+ = (+2, 0, +2)
√

6
√

6
√

14
√

32

𝐺− = (−1, −1, 0)
√

6
√

6
√

8
√

14

𝐺+ = (+1, +1, 0)
√

2
√

6
√

8
√

14

𝐵+ = (0, +1, −1)
√

2
√

6
√

6
√

14

Table 5.3 For each point from the 5-point cloud 𝑆+ in Fig. 5.3, the distances to neighbours from
Table 5.2 are ordered in each row.

PDD(𝑆±) = SDD(𝑆±; 1) =

©­­­­­­­­­­­­­­­«

√
2

√
6

√
6

√
14

√
2

√
6

√
8

√
14

√
6

√
6

√
8

√
14

√
6

√
6

√
14

√
32

√
6
√

14
√

14
√

32

ª®®®®®®®®®®®®®®®¬

.
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Now we show that SDD(𝑆−; 2) ≠ SDD(𝑆+; 2). For ℎ = 2, the Simplexwise Distance
Distribution SDD(𝐶; ℎ) consists of RDD(𝐶; 𝐴) for 2-point subsets 𝐴 ⊂ 𝐶. Both sets
𝑆± have a single pair of points (𝐺+, 𝐵−) and (𝐺+, 𝐵+) at distance

√
2. Hence it suffices

to show that the Relative Distance Distributions differ for this pair:

RDD
©­­­«𝑆− ,

©­­­«
𝐺+

𝐵−

ª®®®¬
ª®®®¬ =


√

2,

©­­­­­­­«

√
8
√

14
√

6
√

6
√

6
√

14

𝐺− 𝑅− 𝑅+

ª®®®®®®®¬


,

RDD
©­­­«𝑆+,

©­­­«
𝐺+

𝐵+

ª®®®¬
ª®®®¬ =


√

2,

©­­­­­­­«

√
8

√
14

√
6

√
6

√
14

√
6

𝐺− 𝑅− 𝑅+

ª®®®®®®®¬


.

The last rows in the above 3× 3 matrices indicate a complementary point 𝑞 ∈ 𝐶 − 𝐴
for indexing columns of the 2 × 3 matrices 𝑅(𝐶; 𝐴) in Definition 5.1.1. The resulting
RDDs differ because any permutation of rows or columns of 𝑅(𝑆+; {𝐺+, 𝐵+}) keeps
the pair

√
6,
√

6 in the same column but 𝑅(𝑆−; {𝐺+, 𝐵+}) has no pair
√

6,
√

6 in one
column. Hence SDD(𝑆−; 2) ≠ SDD(𝑆+; 2). _

Fig. 5.4 See Example 5.2.2. Left: (𝑥, 𝑦)-projection of the 7-point cloud 𝑄− ⊂ R3, which consists
of the red point 𝑅 = (−2, 0, −2) , green point 𝐺 = (2, 0, 2) , four blue points 𝐵±1 = (±1, ±1, 0) ,
𝐵±2 = (±1, 2, 0) , orange point𝑂− = (0, 0, −1) . Right: to get the cloud𝑄+ from the cloud𝑄− ⊂ R3,
replace the point𝑂− with𝑂+ = (0, 0, +1) .

Example 5.2.2 (7-point clouds). The clouds 𝑄± in Fig. 5.4 taken from [3, Figure
S4(B)] have distances in Table 5.4. Both sets have only two pairs of points at distance√

6. Hence it suffices to compare RDDs for these pairs below.
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distances of 𝑄− 𝑅 𝐺 𝐵−1 𝐵+1 𝐵−2 𝐵+2 𝑂−

𝑅 = (−2, 0, −2) 0
√

32
√

6
√

14 3
√

17
√

5

𝐺 = (+2, 0, +2)
√

32 0
√

14
√

6
√

17 3
√

13

𝐵−1 = (−1, −1, 0)
√

6
√

14 0
√

8 3
√

13
√

3

𝐵+1 = (+1, +1, 0)
√

14
√

6
√

8 0
√

5 1
√

3

𝐵−2 = (−1, 2, 0) 3
√

17 3
√

5 0 2
√

6

𝐵+2 = (+1, 2, 0)
√

17 3
√

13 1 2 0
√

6

𝑂− = (0, 0, −1)
√

5
√

13
√

3
√

3
√

6
√

6 0

distances of 𝑄+ 𝑅 𝐺 𝐵−1 𝐵+1 𝐵−2 𝐵+2 𝑂+

𝑅 = (−2, 0, −2) 0
√

32
√

6
√

14 3
√

17
√

13

𝐺 = (+2, 0, +2)
√

32 0
√

14
√

6
√

17 3
√

5

𝐵−1 = (−1, −1, 0)
√

6
√

14 0
√

8 3
√

13
√

3

𝐵+1 = (+1, +1, 0)
√

14
√

6
√

8 0
√

5 1
√

3

𝐵−2 = (−1, 2, 0) 3
√

17 3
√

5 0 2
√

6

𝐵+2 = (+1, 2, 0)
√

17 3
√

13 1 2 0
√

6

𝑂+ = (0, 0, +1)
√

13
√

5
√

3
√

3
√

6
√

6 0

Table 5.4 The distance matrices of the 7-point clouds 𝑄∓ in Fig. 5.4 taken from [3, Figure S4(B)].

𝑅

©­­­«𝑄−;
©­­­«
𝐺

𝐵+1

ª®®®¬
ª®®®¬ =

©­­­­­­­«

√
32

√
14

√
17 3

√
13

√
6

√
8

√
5 1

√
3

𝑅 𝐵−1 𝐵−2 𝐵+2 𝑂−

ª®®®®®®®¬
,
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𝑅

©­­­«𝑄−;
©­­­«
𝑅

𝐵−1

ª®®®¬
ª®®®¬ =

©­­­­­­­«

√
32

√
14 3

√
17

√
5

√
14

√
8 3

√
13

√
3

𝐺 𝐵+1 𝐵−2 𝐵+2 𝑂−

ª®®®®®®®¬
.

The pair above has submatrices
©­­­«

3
√

13

1
√

3

ª®®®¬ and
©­­­«

3
√

5

3
√

3

ª®®®¬ but the pair below has no such

submatrices.

𝑅

©­­­«𝑄+;
©­­­«
𝐺

𝐵+1

ª®®®¬
ª®®®¬ =

©­­­­­­­«

√
32

√
14

√
17 3

√
5

√
6

√
8

√
5 1

√
3

𝑅 𝐵−1 𝐵−2 𝐵+2 𝑂+

ª®®®®®®®¬
,

𝑅

©­­­«𝑄+;
©­­­«
𝑅

𝐵−1

ª®®®¬
ª®®®¬ =

©­­­­­­­«

√
32

√
14 3

√
17

√
13

√
14

√
8 3

√
13

√
3

𝐺 𝐵+1 𝐵−2 𝐵+2 𝑂+

ª®®®®®®®¬
The pair of RDD

©­­­«𝑄−;
©­­­«
𝐺

𝐵+1

ª®®®¬
ª®®®¬ and RDD

©­­­«𝑄−;
©­­­«
𝑅

𝐵−1

ª®®®¬
ª®®®¬ differs from the pair

RDD
©­­­«𝑄+;

©­­­«
𝐺

𝐵+1

ª®®®¬
ª®®®¬ and RDD

©­­­«𝑄+;
©­­­«
𝑅

𝐵−1

ª®®®¬
ª®®®¬. Hence SDD(𝑄−; 2) ≠ SDD(𝑄+; 2). _

Example 5.2.3 (6-point clouds). The clouds 𝑇± in Fig. 5.5, which was motivated by
[3, Figure S4(C)], have the points 𝑅, 𝐺,𝑂± from the clouds 𝑄± in Example 5.2.2 and
three new points 𝐶1 (𝑥1, 𝑦1, 0), 𝐶2 (𝑥2, 𝑦2, 0), 𝐶3 (𝑥3, 𝑦3, 0) such that |𝑅𝐶1 | = |𝐺𝐶2 |,
|𝑅𝐶2 | = |𝐺𝐶3 |, |𝑅𝐶3 | = |𝐺𝐶1 |. Denote by 2𝑙1, 2𝑙2, 2𝑙3 the lengths of these three pairs
of line segments after their projection to the 𝑥𝑦-plane so that

(5.2.3.1)


(𝑥2 + 2)2 + 𝑦2

2 = |𝑅𝐶2 |2 − 4 = (2𝑙1)2,

(𝑥3 − 2)2 + 𝑦2
3 = |𝐺𝐶3 |2 − 4 = (2𝑙1)2;
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Fig. 5.5 See Example 5.2.3. Left: (𝑥, 𝑦)-projection of the 6-point cloud 𝑇− ⊂ R3 consisting of
the red point 𝑅 = (−2, 0, −2) , green point 𝐺 = (2, 0, 2) , three blue points 𝐶1 = (𝑥1, 𝑦1, 0) ,
𝐶2 = (𝑥2, 𝑦2, 0) , 𝐶3 = (𝑥3, 𝑦3, 0) , and orange point 𝑂− = (0, 0, −1) so that |𝑅𝐶1 | = 2𝑙3 = |𝐺𝐶2 |,
|𝑅𝐶2 | = 2𝑙1 = |𝐺𝐶3 |, |𝑅𝐶3 | = 2𝑙2 = |𝐺𝐶1 |. Right: to get the cloud 𝑇+ ⊂ R3 from the cloud 𝑇− ,
replace the point𝑂− with𝑂+ = (0, 0, +1) .

(5.2.3.2)


(𝑥3 + 2)2 + 𝑦2

3 = |𝑅𝐶3 |2 − 4 = (2𝑙2)2,

(𝑥1 − 2)2 + 𝑦2
1 = |𝐺𝐶1 |2 − 4 = (2𝑙2)2;

(5.2.3.3)


(𝑥1 + 2)2 + 𝑦2

1 = |𝑅𝐶1 |2 − 4 = (2𝑙3)2,

(𝑥2 − 2)2 + 𝑦2
2 = |𝐺𝐶2 |2 − 4 = (2𝑙3)2.

Comparing the 1st part of (5.2.3.1) with the 2nd part of (5.2.3.3), we get (2𝑙1)2 −

4𝑥2 = (2𝑙3)2 + 4𝑥2, so 𝑥2 =
𝑙21 − 𝑙

2
3

2
. Similarly, 𝑥3 =

𝑙22 − 𝑙
2
1

2
, 𝑥1 =

𝑙23 − 𝑙
2
2

2
so that

𝑥1 + 𝑥2 + 𝑥3 = 0. From the second part of (5.2.3.2), we get 𝑥2
1 − 4𝑥1 + 4 + 𝑦2

1 = 4𝑙22 , so

|𝑂±𝐶1 |2 = 𝑥2
1 + 𝑦

2
1 + 1 = 4𝑙22 + 4𝑥1 − 3 = 2𝑙22 + 2𝑙23 − 3,

similarly |𝑂±𝐶2 |2 = 2𝑙23 + 2𝑙21 − 3, |𝑂±𝐶3 |2 = 2𝑙21 + 2𝑙22 − 3.

Then |𝐶1𝐶2 |2 = (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 = 𝑥2
1 + 𝑦

2
1.

The last columns in Tables 5.6 and 5.7 show the pairs of distances that distin-
guish 𝑇+ ; 𝑇− . The distributions �SDD(𝑇±; 2) can differ only by �RDDs of the pairs
{𝑅,𝑂±}, {𝐺,𝑂±}, {𝑅,𝐶𝑖}, {𝐺,𝐶𝑖}, where 𝑖 ∈ {1, 2, 3} is considered modulo 3 so



5.2 The expressiveness of Simplexwise Distance Distributions 81

distances of 𝑇− 𝑅 𝐺 𝐶1 𝐶2 𝐶3 𝑂−

𝑅 = (−2, 0, −2) 0
√

32 2
√︃
𝑙23 + 1 2

√︃
𝑙21 + 1 2

√︃
𝑙22 + 1

√
5

𝐺 = (+2, 0, +2)
√

32 0 2
√︃
𝑙22 + 1 2

√︃
𝑙23 + 1 2

√︃
𝑙21 + 1

√
13

𝐶1 = (𝑥1, 𝑦1, 0) 2
√︃
𝑙23 + 1 2

√︃
𝑙22 + 1 0 |𝐶1𝐶2 | |𝐶3𝐶1 |

√︃
2𝑙22 + 2𝑙23 − 3

𝐶2 = (𝑥2, 𝑦2, 0) 2
√︃
𝑙21 + 1 2

√︃
𝑙23 + 1 |𝐶1𝐶2 | 0 |𝐶2𝐶3 |

√︃
2𝑙23 + 2𝑙21 − 3

𝐶3 = (𝑥3, 𝑦3, 0) 2
√︃
𝑙22 + 1 2

√︃
𝑙21 + 1 |𝐶3𝐶1 | |𝐶2𝐶3 | 0

√︃
2𝑙21 + 2𝑙22 − 3

𝑂− = (0, 0, −1)
√

5
√

13
√︃

2𝑙22 + 2𝑙23 − 3
√︃

2𝑙23 + 2𝑙21 − 3
√︃

2𝑙21 + 2𝑙22 − 3 0

distances of 𝑇+ 𝑅 𝐺 𝐶1 𝐶2 𝐶3 𝑂+

𝑅 = (−2, 0, −2) 0
√

32 2
√︃
𝑙23 + 1 2

√︃
𝑙21 + 1 2

√︃
𝑙22 + 1

√
13

𝐺 = (+2, 0, +2)
√

32 0 2
√︃
𝑙22 + 1 2

√︃
𝑙23 + 1 2

√︃
𝑙21 + 1

√
5

𝐶1 = (𝑥1, 𝑦1, 0) 2
√︃
𝑙23 + 1 2

√︃
𝑙22 + 1 0 |𝐶1𝐶2 | |𝐶3𝐶1 |

√︃
2𝑙22 + 2𝑙23 − 3

𝐶2 = (𝑥2, 𝑦2, 0) 2
√︃
𝑙21 + 1 2

√︃
𝑙23 + 1 |𝐶1𝐶2 | 0 |𝐶2𝐶3 |

√︃
2𝑙23 + 2𝑙21 − 3

𝐶3 = (𝑥3, 𝑦3, 0) 2
√︃
𝑙22 + 1 2

√︃
𝑙21 + 1 |𝐶3𝐶1 | |𝐶2𝐶3 | 0

√︃
2𝑙21 + 2𝑙22 − 3

𝑂+ = (0, 0, +1)
√

13
√

5
√︃

2𝑙22 + 2𝑙23 − 3
√︃

2𝑙23 + 2𝑙21 − 3
√︃

2𝑙21 + 2𝑙22 − 3 0

Table 5.5 The distance matrices of the 6-point clouds 𝑇∓ in Fig. 5.5 motivated by [3, Figure S4(C)].

that 1 − 1 ≡ 3 (mod 3). In rows of corresponding pairs of points, some pairs of
distances are the same in both �SDD(𝑇±; 2), but other pairs differ. If 𝑙1, 𝑙2, 𝑙3 are pair-
wise distinct, the rows {𝑅,𝑂−}, {𝐺,𝑂+} include three different pairs of distances, so�SDD(𝑇−; 2) ≠ �SDD(𝑇+; 2).

Table 5.5 contains all pairwise distances between the points of 𝑇∓. We show that 𝑇±
differ by the simplified invariants �SDD(𝑇±; 2) below. In each column of 𝑅(𝐶; 𝐴), we
additionally allow any permutation of elements independent of other columns, so we
could order each column (a pair of distances) lexicographically. Denote the resulting
simplification of RDD by �RDD. Then �SDD(𝑇±; 2) have identical �RDDs for the 2-point
subsets 𝐴 from the list {𝑅, 𝐺}, {𝑂±, 𝐶𝑖}, {𝐶𝑖 , 𝐶 𝑗 } for distinct 𝑖, 𝑗 = 1, 2, 3.

For example, both �RDD(𝑇±; {𝑅, 𝐺}) start with the distance |𝑅 −𝐺 | =
√

32 and then
include the same four pairs (

√
5,
√

13), (2
√︃
𝑙2
𝑖
+ 1, 2

√︃
𝑙2
𝑖−1 + 1) for 𝑖 ∈ {1, 2, 3} modulo

3, which should be ordered and written lexicographically.
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𝑇− pair distance common pairs in �SDD(𝑇±; 2) pairs that differ in �SDD(𝑇− ; 2)

{𝑅, 𝑂− }
√

5 (
√

13,
√

32) to 𝐺

(2
√︃
𝑙23 + 1,

√︃
2𝑙22 + 2𝑙23 − 3) to 𝐶1,

(2
√︃
𝑙21 + 1,

√︃
2𝑙23 + 2𝑙21 − 3) to 𝐶2,

(2
√︃
𝑙22 + 1,

√︃
2𝑙21 + 2𝑙22 − 3) to 𝐶3

{𝐺,𝑂− }
√

13 (
√

5,
√

32) to 𝑅

(2
√︃
𝑙22 + 1,

√︃
2𝑙22 + 2𝑙23 − 3) to 𝐶1,

(2
√︃
𝑙23 + 1,

√︃
2𝑙23 + 2𝑙21 − 3) to 𝐶2,

(2
√︃
𝑙21 + 1,

√︃
2𝑙21 + 2𝑙22 − 3) to 𝐶3

{𝑅, 𝐶𝑖+1} 2
√︃
𝑙2
𝑖
+ 1

(2
√︃
𝑙2
𝑖−1 + 1,

√
32) to 𝐺,

(2
√︃
𝑙2
𝑖+1 + 1, |𝐶𝑖+1𝐶𝑖−1 | ) to 𝐶𝑖−1,

(2
√︃
𝑙2
𝑖−1 + 1, |𝐶𝑖𝐶𝑖+1 | ) to 𝐶𝑖

(
√

5,
√︃

2𝑙2
𝑖−1 + 2𝑙2

𝑖
− 3) to𝑂−

{𝐺,𝐶𝑖−1} 2
√︃
𝑙2
𝑖
+ 1

(2
√︃
𝑙2
𝑖+1 + 1,

√
32) to 𝑅,

(2
√︃
𝑙2
𝑖−1 + 1, |𝐶𝑖+1𝐶𝑖−1 | ) to 𝐶𝑖+1,

(2
√︃
𝑙2
𝑖+1 + 1, |𝐶𝑖−1𝐶𝑖 | ) to 𝐶𝑖

(
√

13,
√︃

2𝑙2
𝑖
+ 2𝑙2

𝑖+1 − 3) to𝑂−

Table 5.6 Pairs of distances in the simplified invariant �SDD(𝑇− ; 2) . For comparison with �SDD(𝑇+; 2) ,
see Table 5.7 . The highlighted differences imply that �SDD(𝑇− ; 2) ≠ �SDD(𝑇+; 2) , so 𝑇− ; 𝑇+.

Hence, it makes sense to compare �SDD(𝑇±; 2) only by the remaining �RDD(𝑇±; 𝐴)
for 𝐴 from the list {𝑅,𝑂±}, {𝐺,𝑂±}, {𝑅,𝐶𝑖}, {𝐺,𝐶 𝑗 } in Tables 5.6 and 5.7.

Without loss of generality, assume that 𝑙1 ≥ 𝑙2 ≥ 𝑙3. If all the lengths are distinct, then
𝑙1 > 𝑙2 > 𝑙3. Then the rows for {𝑅,𝑂−} and {𝐺,𝑂+} differ in Tables 5.6 and 5.7 even
after ordering each pair so that a smaller distance precedes a larger one, and after writing
all pairs lexicographically. So �SDD(𝑇−; 2) ≠ �SDD(𝑇+; 2) unless two of 𝑙𝑖 are equal.
If (say) 𝑙1 = 𝑙2, the lexicographically ordered rows of {𝑅,𝑂−} and {𝐺,𝑂+} coincide
in �SDD(𝑇±; 2), similarly for the rows of {𝐺,𝑂−} and {𝑅,𝑂+}. Hence, it suffices to
compare only the six rows for the remaining pairs {𝑅,𝐶𝑖}, {𝐺,𝐶 𝑗 } in �SDD(𝑇±; 2).

For 𝑙1 = 𝑙2, we get 𝑥3 =
𝑙22 − 𝑙

2
1

2
= 0 and 𝑥1 = −𝑥2 =

𝑙23 − 𝑙
2
2

2
. In equation (5.2.3.3)

the equality (𝑥1 + 2)2 + 𝑦2
1 = (𝑥2 − 2)2 + 𝑦2

2 with 𝑥1 = −𝑥2 implies that 𝑦2
1 = 𝑦2

2. The
more degenerate case 𝑙1 = 𝑙2 = 𝑙3, means that 𝑥1 = 𝑥2 = 𝑥3 = 0 and 𝑦2

1 = 𝑦2
2 = 𝑦2

3,
hence at least two of 𝐶1, 𝐶2, 𝐶3 should coincide. The above contradiction means that it
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𝑇+ pair distance common pairs in �SDD(𝑇±; 2) pairs that differ in �SDD(𝑇+; 2)

{𝐺,𝑂+}
√

5 (
√

13,
√

32) to 𝑅

(2
√︃
𝑙22 + 1,

√︃
2𝑙22 + 2𝑙23 − 3) to 𝐶1,

(2
√︃
𝑙23 + 1,

√︃
2𝑙23 + 2𝑙21 − 3) to 𝐶2,

(2
√︃
𝑙21 + 1,

√︃
2𝑙21 + 2𝑙22 − 3) to 𝐶3

{𝑅, 𝑂+}
√

13 (
√

5,
√

32) to 𝐺

(2
√︃
𝑙23 + 1,

√︃
2𝑙22 + 2𝑙23 − 3) to 𝐶1,

(2
√︃
𝑙21 + 1,

√︃
2𝑙23 + 2𝑙21 − 3) to 𝐶2,

(2
√︃
𝑙22 + 1,

√︃
2𝑙21 + 2𝑙22 − 3) to 𝐶3

{𝑅, 𝐶𝑖+1} 2
√︃
𝑙2
𝑖
+ 1

(2
√︃
𝑙2
𝑖−1 + 1,

√
32) to 𝐺,

(2
√︃
𝑙2
𝑖+1 + 1, |𝐶𝑖+1𝐶𝑖−1 | ) to 𝐶𝑖−1,

(2
√︃
𝑙2
𝑖−1 + 1, |𝐶𝑖𝐶𝑖+1 | ) to 𝐶𝑖

(
√

13,
√︃

2𝑙2
𝑖−1 + 2𝑙2

𝑖
− 3) to𝑂+

{𝐺,𝐶𝑖−1} 2
√︃
𝑙2
𝑖
+ 1

(2
√︃
𝑙2
𝑖+1 + 1,

√
32) to 𝑅,

(2
√︃
𝑙2
𝑖−1 + 1, |𝐶𝑖+1𝐶𝑖−1 | ) to 𝐶𝑖+1,

(2
√︃
𝑙2
𝑖+1 + 1, |𝐶𝑖−1𝐶𝑖 | ) to 𝐶𝑖

(
√

5,
√︃

2𝑙2
𝑖
+ 2𝑙2

𝑖+1 − 3) to𝑂+

Table 5.7 Pairs of distances in the simplified invariant �SDD(𝑇+; 2) . For comparison with �SDD(𝑇− ; 2) ,
see Table 5.6. The highlighted differences imply that �SDD(𝑇− ; 2) ≠ �SDD(𝑇+; 2) , so 𝑇− ; 𝑇+.

remains to consider the case 𝑙1 = 𝑙2 > 𝑙3 when 𝑥1 = −𝑥2 ≠ 0 = 𝑥3 and 𝑦1 = ±𝑦2, see
Fig. 5.5.

If 𝑦1 = 𝑦2, the clouds 𝑇± are isometric by (𝑥, 𝑦, 𝑧) ↦→ (−𝑥, 𝑦,−𝑧). If 𝑦1 = −𝑦2
and 𝑦3 = 0, the clouds 𝑇± are isometric by the isometry (𝑥, 𝑦, 𝑧) ↦→ (−𝑥,−𝑦,−𝑧). If
𝑦1 = −𝑦2 and 𝑦3 ≠ 0, then 𝐶1 = (𝑥1, 𝑦1, 0), 𝐶2 = (−𝑥1,−𝑦1, 0), 𝐶3 ≠ (0, 0, 0). Then
among the six remaining rows, only the rows of {𝑅,𝐶1}, {𝐺,𝐶2} have points at the
distance 2

√︃
𝑙23 + 1, see Tables 5.6 and 5.7 for 𝑖 = 3 considered modulo 3. Then 𝑖+1 ≡ 1

(mod 3), 𝑖 − 1 ≡ 2 (mod 3), so 𝑙𝑖+1 = 𝑙1 = 𝑙2 = 𝑙𝑖−1.

Looking at the rows of {𝑅,𝐶1}, {𝐺,𝐶2}, the three common pairs in each of
SDD(𝑇±; 2) include the same distance 2

√︃
𝑙21 + 1 = 2

√︃
𝑙22 + 1 but differ by |𝐶𝑖−1𝐶𝑖 | =

|𝐶2𝐶3 | ≠ |𝐶3𝐶1 | = |𝐶𝑖𝐶𝑖+1 | as 𝐶1 = ±𝐶2, 𝐶3 ≠ (0, 0, 0).
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This couple of different rows implies that SDD(𝑇−; 2) ≠ SDD(𝑇+; 2) due to the
swapped distances

√
5,
√

13 in the remaining pairs, see Tables 5.8 for the clouds 𝑇± in
Fig. 5.5 with 𝑙1 = 𝑙2 =

√
13
2 , 𝑙3 =

√
5

2 . _

𝑇− pair distance dist. to neighb. 1 dist. to neighb. 2 dist. to neighb. 3 dist. to neighb. 4

{𝑅, 𝐶1} 3 (
√

2,
√

17) to 𝐶3 (
√

5,
√

6) to𝑂− (
√

17,
√

20) to 𝐶2 (
√

17,
√

32) to 𝐺

{𝐺,𝐶2} 3 (
√

6,
√

13) to𝑂− (
√

17,
√

20) to 𝐶1 (
√

17,
√

26) to 𝐶3 (
√

17,
√

32) to 𝑅

𝑇+ pair distance dist. to neighb. 1 dist. to neighb. 2 dist. to neighb. 3 dist. to neighb. 4

{𝑅, 𝐶1} 3 (
√

2,
√

17) to 𝐶3 (
√

6,
√

13) to𝑂+ (
√

17,
√

20) to 𝐶2 (
√

17,
√

32) to 𝐺

{𝐺,𝐶2} 3 (
√

5,
√

6) to𝑂+ (
√

17,
√

20) to 𝐶1 (
√

17,
√

26) to 𝐶3 (
√

17,
√

32) to 𝑅

Table 5.8 The above rows show that SDD(𝑇− ; 2) ≠ SDD(𝑇+; 2) for the clouds 𝑇± with 𝐶1 =

(−1, 2, 0) , 𝐶2 = (1, −2, 0) , 𝐶3 = (0, 3, 0) so that 𝑙1 = 𝑙2 =
√

5
2 , 𝑙3 =

√
13
2 in Tables 5.6 and 5.7.

Examples 5.2.1, 5.2.2, and 5.2.3 motivate the following conjecture.

Conjecture 5.2.4 (completeness of SDD(𝐶; ℎ) in R𝑛). For any 𝑛 ≥ 2, there is some 2 ≤
ℎ ≤ 𝑛 such that the Simplexwise Distance Distribution SDD(𝐶; ℎ) from Definition 5.1.3
is a complete isometry invariant of all clouds 𝐶 ⊂ R𝑛. ⋆

5.3 Continuous metrics on Simplexwise Distance Distributions

This section defines Lipschitz continuous metrics on SDDs, which can be computable in
a polynomial time of the number 𝑚 of points, for a fixed order ℎ. The 𝑚 − ℎ permutable
columns of the matrix 𝑅(𝐶; 𝐴) in RDD from Definition 5.1.1 can be interpreted as𝑚−ℎ
unlabelled points in Rℎ. Since any isometry is bijective, the simplest metric respecting
bijections is the bottleneck distance BD from Example 1.3.3(b).

Definition 5.3.1 (the max metric 𝑀∞ on RDDs). For any 𝑚-point clouds and ordered
ℎ-point base sequences 𝐴 ⊂ 𝐶 and 𝐴′ ⊂ 𝐶′, set

𝑑 (𝜉) = max{𝐿∞ (𝜉 (𝐷 (𝐴)), 𝐷 (𝐴′)),BD(𝜉 (𝑅(𝐶; 𝐴)), 𝑅(𝐶′; 𝐴′))}

for a permutation 𝜉 ∈ 𝑆ℎ on ℎ points. Then the max metric on Relative Distance
Distributions is defined as 𝑀∞ (RDD(𝐶; 𝐴),RDD(𝐶′; 𝐴′)) = min

𝜉 ∈𝑆ℎ
𝑑 (𝜉). ▲

We will use only ℎ = 𝑛 for Euclidean space R𝑛, so the factor ℎ! in Definition 5.3.1
is practically small for 𝑛 = 2, 3. For ℎ = 1 and a 1-point sequence 𝐴 ⊂ 𝐶, the matrix
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𝐷 (𝐴) is empty, so 𝑑 (𝜉) = BD(𝜉 (𝑅(𝐶; 𝐴)), 𝑅(𝐶′; 𝐴′)). The metric 𝑀∞ on RDDs will
be used for intermediate costs to get metrics on unordered collections of RDDs (SDDs)
by using the standard tools in Definitions 3.5.4 and 5.3.2 below.

Definition 5.3.2 (Linear Assignment Cost of a matrix [4]). For any 𝑘×𝑘 matrix of costs

𝑐(𝑖, 𝑗) ≥ 0, 𝑖, 𝑗 ∈ {1, . . . , 𝑘}, the Linear Assignment Cost LAC = 1
𝑘

min
𝑔

𝑘∑
𝑖=1
𝑐(𝑖, 𝑔(𝑖)) is

minimized for all bijections 𝑔 on the indices 1, . . . , 𝑘 . ▲

The normalisation factor 1
𝑘

in LAC makes this metric better comparable with EMD
in Definition 3.5.4 whose weights sum up to 1. For both LAC and EMD, the matrix of
initial costs will consist of max metrics between all RDDs in two given SDDs.

Theorem 5.3.3(b) extends the 𝑂 (𝑚1.5 log𝑛 𝑚) algorithm for fixed clouds of 𝑚 unla-
belled points in [2, Theorem 6.5] to the harder case of isometry classes but keeps the
polynomial time in 𝑚 for a fixed dimension 𝑛.

Theorem 5.3.3 (time of metrics on SDDs, [6, Theorem 5.5]). (a) For any 𝑚-point
clouds 𝐶,𝐶′ in their own metric spaces and ℎ ≥ 1, let the Simplexwise Distance
Distributions SDD(𝐶; ℎ) and SDD(𝐶′; ℎ) consist of 𝑘 =

(𝑚
ℎ

)
RDDs with equal weights

1
𝑘

without collapsing identical RDDs.

(b) Using the 𝑘 × 𝑘 matrix of costs computed by the max metric 𝑀∞ between
RDDs from SDD(𝐶; ℎ) and SDD(𝐶′; ℎ), the Linear Assignment Cost LAC from
Definition 5.3.2 satisfies all metric axioms on SDDs and can be computed in time
𝑂 (ℎ!(ℎ2 + 𝑚1.5 logℎ 𝑚)𝑘2 + 𝑘3 log 𝑘).
(b) Let SDD(𝐶; ℎ) and SDD(𝐶′; ℎ) have a maximum size 𝑙 ≤ 𝑘 after collapsing
identical RDDs. Using the same matrix of max metrics as in part (b), the EMD from
Definition 3.5.4 satisfies all metric axioms on SDDs and can be computed in time
𝑂

(
ℎ!(ℎ2 + 𝑚1.5 logℎ 𝑚)𝑙2 + 𝑙3 log 𝑙

)
. ■

Theorem 5.3.4 substantially generalizes the fact that perturbing two points in their
𝜀-neighbourhoods changes the distance between these points by at most 2𝜀.

Theorem 5.3.4 (Lipschitz continuity of SDDs, [6, Theorem 5.8]). In any metric
space, let 𝐶′ be obtained from a cloud 𝐶 by perturbing every point of 𝐶 within its
𝜀-neighbourhood. For any order ℎ ≥ 1, SDD(𝐶; ℎ) changes by at most 2𝜀 in the
LAC and EMD metrics. The lower bound holds: EMD

(
SDD(𝐶; ℎ), SDD(𝐶′; ℎ)

)
≥

|SDM(𝐶; ℎ, 1) − SDM(𝐶′; ℎ, 1) |∞. ■

5.4 Measured Simplexwise Distributions for metric-measure spaces

This section adapts Simplexwise Distance Distributions SDD to metric-measure spaces.

Definition 5.4.1 (metric-measure space). A metric-measure space (𝑋, 𝑑𝑋, 𝜇𝑋) is a
compact space 𝑋 with a metric 𝑑𝑋 and a Borel measure 𝜇𝑋 such that 𝜇𝑋 (𝑋) < +∞. An
isomorphism between metric-measure spaces is an isometry 𝑓 : 𝑋 → 𝑌 that respects
the measures in the sense that 𝜇𝑌 (𝑈) = 𝜇𝑋 ( 𝑓 −1 (𝑋)) for any subset𝑈 ⊂ 𝑌 . ▲
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Dividing 𝜇𝑋 (𝑈) by the measure 𝜇𝑋 (𝑋) < +∞ for any 𝑈 ⊂ 𝑋 , we can assume
that 𝜇𝑋 (𝑋) = 1, so 𝜇𝑋 is a probability measure. Any metric space 𝑋 of 𝑚 points can

be considered a metric-measure space with the uniform measure 𝜇𝑋 (𝑝) =
1
𝑚

for all

𝑝 ∈ 𝑋 . On two points 0, 1 in R, the metric-measure spaces 𝑋 = ({0, 1}, 1, { 1
2 ,

1
2 }) and

𝑌 = ({0, 1}, 1, { 1
3 ,

2
3 }) are isometric but not isomorphic because of different weights.

Problem 4.4.4 becomes much harder if we replace isometries between metric spaces
with isomorphisms between metric-measure spaces because all known isometry in-
variants should be further refined to distinguish under isomorphism. Definition 5.4.2
extends the local distribution of distances from [7, Definition 5.5] to orders ℎ > 1.

Definition 5.4.2 (Measured Simplexwise Distribution MSD). Let (𝑋, 𝑑𝑋, 𝜇𝑋) be any
metric-measure space. For any base sequence 𝐴 = (𝑝1, . . . , 𝑝ℎ) of ℎ ≥ 1 ordered points
of 𝑋 , write the triangular distance matrix 𝐷 (𝐴) from Definition 5.1.1 row-by-row as the
vector v(𝐴) ∈ Rℎ (ℎ−1)/2

+ so that v𝑘 = 𝑑𝑋 (𝑝𝑖 , 𝑝 𝑗 ) for 𝑘 = ℎ(𝑖−1) + 𝑗 −1, 1 ≤ 𝑖 < 𝑗 ≤ ℎ.
For a vector d = (𝑑1, . . . , 𝑑ℎ) ∈ Rℎ+ of distance thresholds, the vector m(𝐴; d) ∈ Rℎ+
consists of ℎ values 𝜇𝑋 ({𝑞 ∈ 𝑋 | 𝑑𝑋 (𝑞, 𝑝𝑖) ≤ 𝑑𝑖}) for 𝑖 = 1, . . . , ℎ.

The Measured Simplexwise Distribution of order ℎ ≥ 1 is the function MSD[𝑋; ℎ] :
𝑋ℎ × Rℎ+ → Rℎ (ℎ+1)/2

+ mapping any 𝐴 ∈ 𝑋ℎ and d ∈ Rℎ+ to the pair [v(𝐴),m(𝐴; d)]
considered as a concatenated vector in Rℎ (ℎ+1)/2

+ . ▲

For ℎ = 1, the vector v(𝐴) is empty and the Measured Simplexwise Distribution
of order ℎ = 1 coincides with the local distribution of distances [7, Definition 5.5]
MSD[𝑋; 1] : 𝑋 × R+ → R+ mapping any point 𝑝 ∈ 𝑋 and a threshold 𝑑 ∈ R+ to the
measure value 𝜇𝑋 ({𝑞 ∈ 𝑋 | 𝑑𝑋 (𝑞, 𝑝) ≤ 𝑑}).

Any permutation 𝜉 on indices 1, . . . , ℎ naturally permutes the components of
MSD[𝑋; ℎ]. If 𝑋 consists of 𝑚 points, MSD[𝑋; ℎ] reduces to the finite collection
of

(𝑚
ℎ

)
vectors VID(𝐴) paired with fields VSM(𝐴; d) : Rℎ+ → Rℎ+ only for unordered

ℎ-point subsets 𝐴 ⊂ 𝑋 , which can be refined to a stronger analogue of SDD below.

Fig. 5.6 Non-isomorphic metric-measure spaces 𝑋,𝑌 from [7, Fig. 8] have equal local distributions
of distances but are distinguished by the new Weighted Simplexwise Distribution of order 1 and the
Measured Simplexwise Distributions of order 2, see details in Example 5.4.4. All edges have length 1

2 .
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Definition 5.4.3 (Weighted Simplexwise Distribution WSD). Let 𝑋 be a finite metric-
measure space whose any point 𝑝 has a weight 𝑤( 𝑝). For ℎ ≥ 1 and a base sequence
𝐴 = (𝑝1, . . . , 𝑝ℎ) of ℎ ordered points of 𝑋 in Definition 5.1.1, endow any distance
𝑑 (𝑝, 𝑞) in 𝐷 (𝐴) with the unordered pair 𝑤(𝑝), 𝑤(𝑞) of weights. For every point 𝑞 ∈
𝑋 − 𝐴, put the weight 𝑤(𝑞) in the extra (ℎ + 1)-st row of the matrix 𝑀 (𝑋; 𝐴) whose
columns are indexed by unordered 𝑞 ∈ 𝑋 − 𝐴. If ℎ = 1 and 𝐴 = 𝑝1, set 𝐷 (𝐴) = 𝑤(𝑝1).

The Weighted Distance Distribution WDD(𝑋; 𝐴) is the equivalence class of the pair
[𝐷 (𝐴);𝑀 (𝑋; 𝐴)] under permutations 𝜉 ∈ 𝑆ℎ acting on 𝐴. The Weighted Simplexwise
Distribution WSD(𝑋) is the unordered collection of WDD(𝑋; 𝐴) for all subsets 𝐴 ⊂ 𝑋

of unordered ℎ points. ▲

For finite metric-measure spaces, a metric on WDDs can be defined similar to 𝑀∞
from Definition 5.3.1 by combining the weights and distances. Then LAC and EMD
from Definitions 5.3.2 and 3.5.4 can be computed as in Theorem 5.3.3.

Example 5.4.4 (the strength of WSD for 9-point trees). Fig. 5.6 shows metric-measure
spaces 𝑋,𝑌 on 9 points visualised as trees [7, Fig. 8]. All edges have length 1

2 and induce
the shortest-path metrics 𝑑𝑋, 𝑑𝑌 . The sum of weights in every small branch of 3 nodes
is 1

3 . These metric-measure spaces 𝑋,𝑌 have all inter-point distances only 1 and 2, and
equal local distributions of distances MSD[𝑋; 1] = MSD[𝑌 ; 1] by [7, Example 5.6].

Indeed, both MSDs can be considered the same set of 9 piecewise constant functions
𝜇(𝑝) taking values 𝑤(𝑝), 1

3 , and 1 on the intervals [0, 1), [1, 2), [2,+∞), respectively.

However, WSDs have more pointwise data: WSD[𝑋; 1] has 𝐴(𝐷) = 𝑤(𝑝) = 23
140

and the following 2 × 8 matrix

𝑀 (𝑋; 𝑝) =
©­­­«

1 1 2 2 2 2 2 2

1
105

67
240

2
15

1
15

2
15

4
21

1
28

3
28

ª®®®¬ ,
but WSD[𝑌 ; 1] has another matrix for 𝑤(𝑝) = 23

140 .

𝑀 (𝑌 ; 𝑝) =
©­­­«

1 1 2 2 2 2 2 2

2
15

1
28

1
105

4
21

2
15

3
28

1
15

67
420

ª®®®¬ .
The above matrices with freely permutable columns are different, so 𝑋,𝑌 are distin-
guished by the Weighted Simplexwise Distributon WSD of order ℎ = 1.

Also, MSD[𝑋; 2] ≠ MSD[𝑌 ; 2] because, for any base sequence 𝐴 = (𝑝, 𝑞) ∈ 𝑋2,
we have VSM[𝑋; 2] (𝐴; 𝑑1, 𝑑2) = (𝑤(𝑝), 𝑤(𝑞)) for 𝑑1, 𝑑2 < 1 since all other points
have minimum distance 1 from 𝑝, 𝑞, similarly for 𝑌 . The unique points 𝑝, 𝑞 of weights

𝑤(𝑝) = 23
140

and 𝑤(𝑞) = 67
420

have different distances 𝑑𝑋 (𝑝, 𝑞) = 1 and 𝑑𝑌 (𝑝, 𝑞) = 2.
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Then MSD[𝑋; 2] ≠ MSD[𝑌 ; 2] differ by the uniquely identifiable fields mapping [0, 1)2

to the constant vector (𝑤(𝑝), 𝑤(𝑞)) with VID𝑋 (𝐴) = 1 ≠ 2 = VID𝑌 (𝐴). _

We conjecture that any metric-measure spaces 𝑋,𝑌 are distinguished under iso-
morphism by Measured Simplexwise Distributions for a high enough ℎ depending on
𝑋,𝑌 .
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Chapter 6
Complete and Lipschitz continuous invariants of
unordered points in R𝒏

Abstract This chapter leverages the Euclidean structure of R𝑛 to improve the Simplex-
wise Distance Distribution to a smaller Simplexwise Centred Distribution (SCD) for
any unordered points. The new invariant is complete under rigid motion and computable
in polynomial time for a fixed dimension. The key ingredient of Lipschitz continuity is
the new strength of a simplex, which is a linear-growth analogue of the simplex volume.

6.1 Geo-mapping problem under rigid motion in R𝒏

This chapter follows paper [4] and its extension [2] to Euclidean spaces. Problem 6.1.1
adjusts Geo-Mapping Problem 1.4.5 to finite clouds of unordered points in R𝑛.

The major difference with Problem 4.4.4, which was stated under isometry in a
metric space, is the full completeness under the stronger equivalence of rigid motion in
R𝑛.

Problem 6.1.1 (partial case of Problem 1.4.5 for clouds under rigid motion in R𝑛).
Design a map 𝐼 on finite clouds of unordered points in R𝑛 with values in a metric space
satisfying the following conditions.

(a) Completeness: any clouds 𝐴, 𝐵 ⊂ R𝑛 are related by rigid motion (𝐴 � 𝐵) in R𝑛 if
and only if 𝐼 (𝐴) = 𝐼 (𝐵).

(b) Metric: there is a distance 𝑑 on the invariant space {𝐼 (𝐴) | 𝐴 ⊂ R𝑛} satisfying all
metric axioms in Definition 1.3.1(a).

(c) Continuity: there is a constant 𝜆 such that, for any 𝜀 > 0, if 𝐵 is obtained from a cloud
𝐴 ⊂ R𝑛 by perturbing every point up to Euclidean distance 𝜀, then 𝑑 (𝐼 (𝐴), 𝐼 (𝐵)) ≤ 𝜆𝜀.

(d) Computability: for a fixed dimension 𝑛, the invariant 𝐼 (𝐴) and the metric
𝑑 (𝐼 (𝐴), 𝐼 (𝐵)) can be computed in times that depend polynomially on the maximum
size max{|𝐴|, |𝐵|} of clouds 𝐴, 𝐵 ⊂ R𝑛. ⋆

89
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Problem 6.1.1 will be fully solved by the Oriented Simplexwise Distribution (OSD),
which we introduce in Definition 6.1.3 after a few auxiliary concepts below.

Definition 6.1.2 (matrices 𝐷 (𝐴) and 𝑀 (𝐶; 𝐴) for 𝐴 ⊂ 𝐶). Let 𝐶 be a cloud of
𝑚 unordered points in R𝑛 with a fixed orientation. Let 𝐴 = (𝑝1, . . . , 𝑝𝑛) be a base
sequence of 𝑛 distinct ordered points of𝐶. Let 𝐷 (𝐴) be the 𝑛×𝑛 distance matrix whose
entry 𝐷 (𝐴)𝑖, 𝑗 is Euclidean distance |𝑝𝑖 − 𝑝 𝑗 | for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, all other entries are
zeros. For any other point 𝑞 ∈ 𝐶 − 𝐴, write distances from 𝑞 to 𝑝1, . . . , 𝑝𝑛 as a column.
Form the 𝑛 × (𝑚 − 𝑛)-matrix by these 𝑚 − 𝑛 lexicographically ordered columns.

At the bottom of the column of a 𝑞 ∈ 𝐶−𝐴, add the sign of the determinant consisting
of the vectors 𝑞 − 𝑝1, . . . , 𝑞 − 𝑝𝑛. The resulting (𝑛 + 1) × (𝑚 − 𝑛)-matrix with signs in
the bottom (𝑛 + 1)-st row is the oriented relative distance matrix 𝑀 (𝐶; 𝐴). ▲

Let 𝑆𝑛 denote the permutation group on indices 1, . . . , 𝑛. Any permutation 𝜉 ∈ 𝑆𝑛
is a composition of some 𝑡 transpositions 𝑖 ↔ 𝑗 and has sign(𝜉) = (−1)𝑡 .

Definition 6.1.3 (oriented distributions ORD(𝐶; 𝐴) and OSD(𝐶) for a cloud 𝐶 ⊂ R𝑛).
Any permutation 𝜉 ∈ 𝑆𝑛 acts on 𝐷 (𝐴) by mapping 𝐷 (𝐴)𝑖 𝑗 to 𝐷 (𝐴)𝑘𝑙 , where 𝑘 ≤ 𝑙

is the pair 𝜉 (𝑖), 𝜉 ( 𝑗) − 1 written in increasing order. Then the permutation 𝜉 acts on
𝑀 (𝐶; 𝐴) by mapping any 𝑖-th row to the 𝜉 (𝑖)-th row and by multiplying the (𝑛 + 1)-st
row by sign(𝜉), after which all columns are written in the lexicographic order.

The Oriented Relative Distribution ORD(𝐶; 𝐴) is the equivalence class of the pair
[𝐷 (𝐴);𝑀 (𝐶; 𝐴)] under all permutations 𝜉 ∈ 𝑆𝑛 acting on both 𝐷 (𝐴) and 𝑀 (𝐶; 𝐴).

The Oriented Simplexwise Distribution OSD(𝐶) is the unordered collection of
ORD(𝐶; 𝐴) for all

(𝑚
𝑛

)
unordered subsets 𝐴 ⊂ 𝐶 of 𝑛 points. ▲

Any mirror reflection in R𝑛 reverses the sign of the 𝑛 × 𝑛 determinant consisting
of vectors 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛, hence reverses all signs in the (𝑛 + 1)-st rows of the
matrices 𝑀 (𝐶; 𝐴) in Oriented Relative Distributions. ORD(𝐶; 𝐴) and OSD(𝐶) denote
the ‘mirror images’ of ORD(𝐶; 𝐴) and OSD(𝐶), respectively, with all signs reversed.

Fig. 6.1 1st: the right-angled cloud 𝑅 ⊂ R2 consisting of points 𝑝1 = (0, 0) , 𝑝2 = (4, 0) , 𝑝3 (0, 3) ,
and its mirror image 𝑅̄ of 𝑝1, 𝑝2, and 𝑝̄3 = (0, −3) with respect to the 𝑥-axis. 2nd: the trapezium
cloud 𝑇 ⊂ R2 consisting of points 𝑝1 = (1, 1) , 𝑝2 = (−1, 1) , 𝑝3 = (−2, 0) , 𝑝4 = (2, 0) . 3rd: the
kite cloud 𝐾 ⊂ R2 consisting of points 𝑝1 = (0, 1) , 𝑝2 = (−1, 0) , 𝑝3 = (0, −1) , 𝑝4 = (3, 0) . 4th:
the square cloud 𝑆 ⊂ R2 consisting of points 𝑝1 = (1, 0) , 𝑝2 = (0, −1) , 𝑝3 = (−1, 0) , 𝑝4 = (0, 1) .

Example 6.1.4 (OSD for mirror images on right-angled clouds). InR2 with the counter-
clockwise orientation, the right-angled cloud 𝑅 on the vertices 𝑝1 = (0, 0), 𝑝2 = (4, 0),
𝑝3 = (0, 3) of the triangle in Fig. 6.1 (1st) has the distribution OSD(𝑅) consisting of
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ORD(𝑅; (𝑝1, 𝑝2)) = [4,

©­­­­­­­«
3

5

+

ª®®®®®®®¬
],

ORD(𝑅; (𝑝2, 𝑝3)) = [5,

©­­­­­­­«
4

3

+

ª®®®®®®®¬
],

ORD(𝑅; (𝑝3, 𝑝1)) = [3,

©­­­­­­­«
5

4

+

ª®®®®®®®¬
] .

If we swap the points 𝑝1 ↔ 𝑝3, the last ORD above changes to the equivalent form

ORD(𝑅; (𝑝1, 𝑝3)) = [3,

©­­­­­­­«
4

5

−

ª®®®®®®®¬
], without affecting others. If we reflect 𝑅 with respect to

the 𝑥-axis, the mirror image 𝑅̄ of 𝑝1, 𝑝2, 𝑝3 = (0,−3) has OSD(𝑅̄) = OSD(𝑅) with

ORD(𝑅̄; (𝑝1, 𝑝2)) = [4,

©­­­­­­­«
3

5

−

ª®®®®®®®¬
],

ORD(𝑅̄; (𝑝2, 𝑝3)) = [5,

©­­­­­­­«
4

3

−

ª®®®®®®®¬
],
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ORD(𝑅̄; (𝑝′3, 𝑝1)) = [3,

©­­­­­­­«
5

4

−

ª®®®®®®®¬
],

which differs from OSD(𝑅) even if we swap points in each pair. _

Example 6.1.5 (OSD for 𝑇, 𝐾). Fix the counter-clockwise orientation on R2 so that
if a vector v is obtained from u by a counter-clockwise rotation, then det(𝑢, 𝑣) > 0.
Table 6.1 shows the Oriented Simplexwise Distributions for the clouds 𝑇, 𝐾 in Fig. 6.1.
Each row contains the most similar ORDs whose differences are highlighted. _

Though Problem 6.1.1 did not include the reconstruction condition as in 1.4.5(b),
Lemma 6.1.6 below proves this reconstruction in more detail than [2, Lemma 3.6].

Recall that Definition 2.1.2 introduces the affine dimension of a base sequence 𝐴 of
𝑛 ordered points 𝑝1, . . . , 𝑝𝑛 as the maximum dimension of the vector space generated
by all inter-point vectors p𝑖 − p 𝑗 for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}.

Lemma 6.1.6 (reconstruction from ORD). A cloud 𝐶 ⊂ R𝑛 of 𝑚 > 𝑛 unordered points
can be reconstructed, uniquely under rigid motion, from ORD(𝐶; 𝐴) in Definition 6.1.3
for any base sequence 𝐴 ⊆ 𝐶 with aff (𝐴) = 𝑛 − 1. ■

Proof. By Lemma 2.1.4(b), any base sequence 𝐴 ⊆ 𝐶 can be reconstructed, uniquely
under rigid motion in R𝑛, from the triangular distance matrix 𝐷 (𝐴) in Definition 6.1.3.
We may assume that the first 𝑛 points 𝑝1, . . . , 𝑝𝑛 of 𝐴 ⊆ 𝐶 span the subspace of the first
𝑛 − 1 coordinate axes of R𝑛. We prove that any point 𝑞 ∈ 𝐶 − 𝐴 has a unique location
in R𝑛, determined by the 𝑛 distances |𝑞 − 𝑝1 |, . . . , |𝑞 − 𝑝𝑛 | written in a column of the
matrix ORD(𝐶; 𝐴). Since the points of 𝐴 do not belong to any (𝑛 − 1)-dimensional
affine subspace of R𝑛, the 𝑛 spheres 𝑆(𝑝𝑖; |𝑞 − 𝑝𝑖 |) of radii |𝑞𝑖 − 𝑝𝑖 | and centres 𝑝𝑖 ,
𝑖 = 1, . . . , 𝑛, contain 𝑞 and their full intersections consists of one or two points. We can
uniquely choose 𝑞 among these two options due to the sign of the determinant on the
column vectors q − p1, . . . , q − p𝑛 in the bottom row of ORD(𝐶; 𝐴). ⊓⊔

Lemma 6.1.6 implies that ORD(𝐶; 𝐴) can have identical columns only for degenerate
subsets 𝐴 ⊂ 𝐶 with aff (𝐴) < 𝑛−1. For example, let 𝑛 = 3 and 𝐴 consist of three points
𝑝1, 𝑝2, 𝑝3 in the same straight line 𝐿 ⊂ R3. The three distances |𝑞 − 𝑝𝑖 |, 𝑖 = 1, 2, 3,
to any other point 𝑞 ∈ 𝐶 outside 𝐿 define three spheres 𝑆(𝑝𝑖; |𝑞 − 𝑝𝑖 |) that share a
common circle in R3, so the position of 𝑞 is not uniquely determined in this case.

Though one ORD(𝐶; 𝐴) with aff (𝐴) = 𝑛 − 1 suffices to reconstruct 𝐶 ⊂ R𝑛 up
to rigid motion, the dependence on a subset 𝐴 ⊂ 𝐶 required us to consider the larger
Oriented Simplexwise Distribution OSD(𝐶) for all 𝑛-point subsets 𝐴 ⊂ 𝐶 to get a
complete invariant in Theorem 6.1.7. Equality OSD(𝐶) = OSD(𝐶′) is interpreted as a
bijection OSD(𝐶) → OSD(𝐶′) matching all ORDs.

Theorem 6.1.7 (completeness of OSD, [2, Theorem 3.7]). The Oriented Simplexwise
Distribution OSD(𝐶) in Definition 6.1.3 is a complete isometry invariant and can be
computed in time 𝑂 (𝑚𝑛+1/(𝑛 − 3)!). So any clouds 𝐶,𝐶′ ⊂ R𝑛 of 𝑚 unlabelled points
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ORDs in OSD(𝑇 ) ORDs in OSD(𝐾 )

[
√

2,

©­­­­­­«
2

√
10

√
10 4

− −

ª®®®®®®¬
] [

√
2,

©­­­­­­«
2

√
10

√
2 4

− −

ª®®®®®®¬
]

[
√

2,

©­­­­­­«
2

√
10

√
10 4

+ +

ª®®®®®®¬
] [

√
2,

©­­­­­­«
2

√
10

√
2 4

+ +

ª®®®®®®¬
]

[2,

©­­­­­­«

√
2

√
10

√
10

√
2

− −

ª®®®®®®¬
] [2,

©­­­­­­«

√
2

√
10

√
2

√
10

− +

ª®®®®®®¬
]

[
√

10,

©­­­­­­«

√
2 4

2
√

2

+ −

ª®®®®®®¬
] [

√
10,

©­­­­­­«

√
2 2

4
√

10

− −

ª®®®®®®¬
]

[
√

10,

©­­­­­­«

√
2 4

2
√

2

− +

ª®®®®®®¬
] [

√
10,

©­­­­­­«

√
2 2

4
√

10

+ +

ª®®®®®®¬
]

[4,

©­­­­­­«

√
2

√
10

√
10

√
2

+ +

ª®®®®®®¬
] [4,

©­­­­­­«

√
2

√
2

√
10

√
10

+ −

ª®®®®®®¬
]

Table 6.1 The Oriented Simplexwise Distributions OSDs from Definition 6.1.3 for the 4-point clouds
𝑇, 𝐾 ⊂ in Fig. 6.1. Forgetting all signs in the bottom rows of ORDs gives SDDs in Table 5.1.

are related by rigid motion (isometry, respectively) if and only if OSD(𝐶) = OSD(𝐶′)
(OSD(𝐶) = OSD(𝐶′) or its mirror image OSD(𝐶′), respectively). ■
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6.2 Simplexwise Centered Distributions of a cloud in R𝒏

This section simplifies the OSD invariant to the Simplexwise Centred Distribution
(SCD) in Definition 6.2.1. The Euclidean structure of R𝑛 allows us to translate the
centre of mass

1
𝑚

∑
𝑝∈𝐶

𝑝 of a given 𝑚-point cloud 𝐶 ⊂ R𝑛 to the origin 0 ∈ R𝑛. Then

Problem 6.1.1 reduces to only rotations around 0 from the orthogonal group O(R𝑛).

Definition 6.1.3 introduced the Oriented Simplexwise Distribution (OSD) as an
ordered collection of ORD(𝐶; 𝐴) for all

(𝑚
𝑛

)
unordered subsets 𝐴 ⊂ 𝐶 of 𝑛 points.

Including the centre of mass allows us to consider the smaller number of
( 𝑚
𝑛−1

)
subsets

𝐴 ⊂ 𝐶 of 𝑛 − 1 points instead of 𝑛.

Though the centre of mass is uniquely determined for any cloud𝐶 ⊂ R𝑛 of unordered
points, real applications may offer one or several labelled points of 𝐶 that substantially
speed up metrics on invariants. For example, an atomic neighbourhood in a solid
material is a cloud𝐶 ⊂ R3 of atoms around a central atom, which may not be the centre
of mass of 𝐶, but can be an extra base point in all constructions below.

For any base sequence 𝐴 of 𝑛−1 ordered points 𝑝1, . . . , 𝑝𝑛−1 ∈ 𝐶, add the origin 0 as
the 𝑛-th point and consider the 𝑛×𝑛 distance matrix 𝐷 (𝐴∪{0}) and the (𝑛+1)× (𝑚−𝑛)
matrix 𝑀 (𝐶; 𝐴∪{0}) in Definition 6.1.2. Any 𝑛 vectors v1, . . . , v𝑛 ∈ R𝑛 can be written
as columns in the 𝑛 × 𝑛 matrix whose determinant has a sign ±1 or 0 (if the vectors
v1, . . . , v𝑛 are linearly dependent). Any permutation 𝜉 ∈ 𝑆𝑛−1 of 𝑛 − 1 points of 𝐴 acts
on 𝐷 (𝐴) by permuting the first 𝑛 − 1 rows of 𝑀 (𝐶; 𝐴 ∪ {0}) and by multiplying every
sign in the (𝑛 + 1)-st row by sign(𝜉).

Definition 6.2.1 (Simplexwise Centred Distribution SCD). Let𝐶 ⊂ R𝑛 be any cloud of
𝑚 unlabelled points. For any base sequence 𝐴 of ordered 𝑝1, . . . , 𝑝𝑛−1 in a cloud𝐶 ⊂ R𝑛

with the center of mass at 0 ∈ R𝑛, the Oriented Centred Distribution OCD(𝐶; 𝐴) is the
equivalence class of pairs [𝐷 (𝐴∪ {0}), 𝑀 (𝐶; 𝐴∪ {0})] considered up to permutations
𝜉 ∈ 𝑆𝑛−1 of points of 𝐴. The Simplexwise Centred Distribution SCD(𝐶) is the unordered
set of distributions OCD(𝐶; 𝐴) for all

( 𝑚
𝑛−1

)
unordered (𝑛 − 1)-point subsets 𝐴 ⊂ 𝐶.

The mirror image SCD(𝐶) is obtained from SCD(𝐶) by reversing all signs. ▲

Definition 6.2.1 needs no permutations for any 𝐶 ⊂ R2 as 𝑛 − 1 = 1. Columns of
𝑀 (𝐶; 𝐴 ∪ {0}) can be lexicographically ordered without affecting future metrics.

Some of the
( 𝑚
𝑛−1

)
OCDs in SCD(𝐶) can be identical as in Example 6.2.2(b). If we

collapse any 𝑙 > 1 identical OCDs into a single OCD with the weight 𝑙/
(𝑚
ℎ

)
, SCD can

be considered as a weighted probability distribution of OCDs.

Example 6.2.2 (Simplexwise Centered Distribution SCDs for clouds in Fig. 6.1). (a) Let
𝑅 ⊂ R2 be the right-angled cloud of the points 𝑝1 = (0, 0), 𝑝2 = (4, 0), 𝑝3 = (0, 3) in
Fig. 6.1 (1st). Though 𝑝1 = (0, 0) is included in 𝑅 and is not its centre of mass, SCD(𝑅)
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still makes sense. In OCD(𝑅; 𝑝1) =


0,

©­­­­­­­«
4 3

4 3

0 0

ª®®®®®®®¬


, the matrix 𝐷 ({𝑝1, 0}) is |𝑝1 − 0| = 0,

the top row has |𝑝2 − 𝑝1 | = 4, |𝑝3 − 𝑝1 | = 3. In OCD(𝑅; 𝑝2) =


4,

©­­­­­­­«
4 5

0 3

0 −

ª®®®®®®®¬


, the first

row has |𝑝1 − 𝑝2 | = 4, |𝑝3 − 𝑝2 | = 5, the second row has |𝑝1 − 0| = 0, |𝑝3 − 0| = 3,

det
©­­­«
−4 0

3 3

ª®®®¬ < 0. In OCD(𝑅; 𝑝3) =


3,

©­­­­­­­«
3 5

0 4

0 +

ª®®®®®®®¬


, the first row has |𝑝1 − 𝑝3 | = 3,

|𝑝2 − 𝑝3 | = 5, the second row has |𝑝1 − 0| = 0, |𝑝2 − 0| = 4, det
©­­­«

4 4

−3 0

ª®®®¬ > 0. So

SCD(𝑅) consists of the three OCDs above.

If we reflect 𝑅 with respect to the 𝑥-axis, the new cloud 𝑅̄ of the points 𝑝1, 𝑝2, 𝑝3 =

(0,−3) has SCD(𝑅̄) = SCD(𝑅) with

OCD(𝑅̄; 𝑝1) = OCD(𝑅),OCD(𝑅̄; 𝑝2) =


4,

©­­­­­­­«
4 5

0 3

0 +

ª®®®®®®®¬


,OCD(𝑅; 𝑝3) =


3,

©­­­­­­­«
3 5

0 4

0 −

ª®®®®®®®¬


whose signs changed under reflection, so SCD(𝑅) ≠ SCD(𝑅̄).

(b) Let 𝑆 ⊂ R2 consist of 𝑚 = 4 points (±1, 0), (0,±1) that are vertices of the square
in Fig. 6.1 (4th). The centre of mass is 0 ∈ R2 and has a distance 1 to each point of 𝑆.

For each 1-point subset 𝐴 = {𝑝} ⊂ 𝑆, the distance matrix 𝐷 (𝐴 ∪ {0}) on two
points is the single number 1. The matrix 𝑀 (𝑆; 𝐴 ∪ {0}) has 𝑚 − 𝑛 + 1 = 3 columns.

For 𝑝1 = (1, 0), we have 𝑀
©­­­«𝑆;

©­­­«
𝑝1

0

ª®®®¬
ª®®®¬ =

©­­­­­­­«

√
2
√

2 2

1 1 1

− + 0

ª®®®®®®®¬
, where the columns are ordered
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according to 𝑝2 = (0,−1), 𝑝3 = (0, 1), 𝑝4 = (−1, 0) in Fig. 6.1 (4th). The sign in the
bottom right corner is 0 because the points 𝑝1, 0, 𝑝4 are in a straight line. Due to the
rotational symmetry, 𝑀 (𝑆; {𝑝𝑖 , 0}) is independent of 𝑖 = 1, 2, 3, 4. So SCD(𝑆) can be

considered as one OCD =

1, 𝑀
©­­­«𝑆;

©­­­«
𝑝1

0

ª®®®¬
ª®®®¬
 of weight 1. ■

Theorem 6.2.3 (completeness of SCD, [2, Theorem 3.10]). The Simplexwise Centred
Distribution SCD(𝐶) in Definition 6.2.1 is a complete isometry invariant of clouds
𝐶 ⊂ R𝑛 of 𝑚 unlabelled points with a centre of mass at the origin 0 ∈ R𝑛, and can be
computed in time𝑂 (𝑚𝑛/(𝑛−4)!). So any clouds𝐶,𝐶′ ⊂ R𝑛 are related by rigid motion
(isometry, respectively) if and only if SCD(𝐶) = SCD(𝐶′) (SCD(𝐶) equals SCD(𝐶′)
or its mirror image SCD(𝐶′), respectively). For any 𝑚-point clouds 𝐶,𝐶′ ⊂ R𝑛, let
SCD(𝐶) and SCD(𝐶′) consist of 𝑘 =

( 𝑚
𝑛−1

)
OCDs. ■

Corollary 6.2.4 follows from Lemma 6.1.6 by adding the centre of mass of 𝐶 as an
extra point to a base sequence 𝐴 ⊂ 𝐶.

Corollary 6.2.4 (reconstruction from OCD). A cloud 𝐶 ⊂ R𝑛 of 𝑚 > 𝑛 unordered
points with the centre of mass𝑂 (𝐴) can be reconstructed, uniquely under rigid motion,
from OCD(𝐶; 𝐴) in Definition 6.1.3 for any base sequence 𝐴 ⊆ 𝐶 with aff ({𝑂 (𝐴)} ∪
𝐴) = 𝑛 − 1. ■

Example 6.2.2(b) illustrates the key discontinuity challenge: if 𝑝4 = (−1, 0) is
perturbed, the corresponding sign can discontinuously change to +1 or −1.

To get a continuous metric on OCDs, we will multiply each sign by a continuous
strength function, which vanishes for any zero sign, as defined in the next section.

6.3 The Lipschitz continuous strength of a simplex in R𝒏

This section resolves the discontinuity of signs of determinants by introducing the
multiplicative factor below.

Definition 6.3.1 (strength 𝜎(𝐴) of a simplex). For a set 𝐴 of 𝑛 + 1 points 𝑞 =

𝑝0, 𝑝1, . . . , 𝑝𝑛 in R𝑛, let 𝑝(𝐴) = 1
2

𝑛+1∑
𝑖≠ 𝑗

|𝑝𝑖 − 𝑝 𝑗 | be half of the sum of all pairwise

distances. Let 𝑉 (𝐴) denote the volume the 𝑛-dimensional simplex on the set 𝐴. Define
the strength 𝜎(𝐴) = 𝑉2 (𝐴)/𝑝2𝑛−1 (𝐴). ▲

Example 6.3.2 (strengths in dimensions 1, 2). (a) For 𝑛 = 1 and a set 𝐴 = 𝑝0, 𝑝1 ⊂ R,
the volume is 𝑉 (𝐴) = |𝑝0 − 𝑝1 | = 2𝑝(𝐴), so 𝜎(𝐴) = 2|𝑝0 − 𝑝1 | is the double length.

(b) For 𝑛 = 2 and a triangle 𝐴 ⊂ R2 with sides 𝑎, 𝑏, 𝑐, Heron’s formula gives 𝜎(𝐴) =
(𝑝 − 𝑎) (𝑝 − 𝑏) (𝑝 − 𝑐)

𝑝2 , 𝑝 =
𝑎 + 𝑏 + 𝑐

2
= 𝑝(𝐴) is the half-perimeter of 𝐴. _



6.4 Algorithms for continuous metrics on complete invariants 97

The strength 𝜎(𝐴) depends only on the distance matrix 𝐷 (𝐴) from Definition 6.1.2,
so the notation 𝜎(𝐴) is used only for brevity. In any R𝑛, the squared volume 𝑉2 (𝐴) is
expressed by the Cayley-Menger determinant [3] in pairwise distances between points
of 𝐴. The strength 𝜎(𝐴) vanishes when the simplex on a set 𝐴 degenerates.

Theorem 6.4.5 will need the continuity of 𝑠𝜎(𝐴), when a sign 𝑠 ∈ {±1} from a
bottom row of ORD changes while passing through a degenerate set 𝐴. In appendices,
the proof of the continuity of 𝜎(𝐴) in Theorem 6.3.3 gives an explicit upper bound for
a Lipschitz constant 𝜆𝑛 below.

Theorem 6.3.3 (Lipschitz continuity of the strength 𝜎, [2, Theorem 4.2]). Let a cloud
𝐴′ be obtained from another (𝑛+1)-point cloud 𝐴 ⊂ R𝑛 by perturbing every point within
its 𝜀-neighbourhood. The strength 𝜎(𝐴) from Definition 6.3.1 is Lipschitz continuous
so that |𝜎(𝐴′) − 𝜎(𝐴) | ≤ 2𝜀𝜆𝑛 for a Lipschitz constant 𝜆𝑛. ■

Example 6.3.4 (approximates constants 𝜆𝑛 of strength). For 𝑛 ≥ 2, the proof of
[2, Theorem 4.2] implies the following approximate values for upper bounds of the
Lipschitz constant of strength: 𝜆2 = 2

√
3, 𝜆3 ≈ 0.43, 𝜆4 ≈ 0.01, which quickly tend to

0 due to the ‘curse of dimensionality’. The plots in [4, Fig. 4] illustrate that the strength
𝜎(𝐴) behaves smoothly under perturbations and the derivative | 𝜕𝜎

𝜕𝑥
| is much smaller

than the proved bounds of 𝜆𝑛 above. _

6.4 Algorithms for continuous metrics on complete invariants

This section introduces Lipschitz continuous metrics on the invariants OSD and SCD
by using the strength of a simplex. By Definition 6.1.3 an Oriented Relative Distribution
ORD is a pair [𝐷 (𝐴);𝑀 (𝐶; 𝐴)] of matrices considered up to permutations 𝜉 ∈ 𝑆𝑛 of
𝑛 ordered points of 𝐴. Any column of 𝑀 (𝐶; 𝐴) is a pair (𝑣, 𝑠), where 𝑠 ∈ {±1, 0} and
𝑣 ∈ R𝑛 is a vector of distances from 𝑞 ∈ 𝐶 − 𝐴 to 𝑝1, . . . , 𝑝𝑛 ∈ 𝐴.

For simplicity and similar to the case of a general metric space, we assume that a
cloud 𝐶 ⊂ R𝑛 is given by a matrix of pairwise Euclidean distances. If 𝐶 is given by
Euclidean coordinates of points, then any distance requires𝑂 (𝑛) computations, and we
should add the factor 𝑛 in all complexities below, keeping all times polynomial in𝑚. The
𝑚 − 𝑛 permutable columns of the matrix 𝑀 (𝐶; 𝐴) in ORD from Definition 6.1.3 can be
interpreted as𝑚−𝑛 unordered points in R𝑛. Since any isometry is bijective, the simplest
metric respecting bijections is the bottleneck distance BD from Example 1.3.1(b).

Definition 6.4.1 (max metric on ORDs). Consider the bottleneck distance BD on
the set of 𝑚 − 𝑛 permutable columns of 𝑀 (𝐶; 𝐴) as on a cloud of 𝑚 − 𝑛 unordered
points (𝑣, 𝑠

𝜆𝑛
𝜎(𝐴 ∪ {𝑞})) ∈ R𝑛+1. For another ORD′ = [𝐷 (𝐴′);𝑀 (𝐶′; 𝐴′)] and any

permutation 𝜉 ∈ 𝑆𝑛 of indices 1, . . . , 𝑛 acting on 𝐷 (𝐴) and rows of 𝑀 (𝐶; 𝐴), set

𝑑𝑜 (𝜉) = max{𝐿∞ (𝜉 (𝐷 (𝐴)), 𝐷 (𝐴′)),BD(𝜉 (𝑀 (𝐶; 𝐴)), 𝑀 (𝐶′; 𝐴′))}.

Then the max metric is defined as 𝑀∞ (ORD,ORD′) = min
𝜉 ∈𝑆𝑛

𝑑𝑜 (𝜉). ▲
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The coefficient
1
𝜆𝑛

in front of the strength 𝜎(𝐴∪ {𝑞}) in Definitions 6.4.1 and 6.4.2
normalises the Lipschitz constant 𝜆𝑛 of 𝜎 to 1 in line with changes of distances by at
most 2𝜀 when points are perturbed within their 𝜀-neighbourhoods.

Definition 6.4.2 (max metric on OCDs). Consider the bottleneck distance BD on the set
of permutable𝑚−𝑛+1 columns of 𝑀 (𝐶; 𝐴∪{0}) as on a cloud of𝑚−𝑛+1 unordered

points
(
𝑣,
𝑠

𝜆𝑛
𝜎(𝐴 ∪ {0, 𝑞})

)
∈ R𝑛+1. For another OCD′ = [𝐷 (𝐴′ ∪ {0});𝑀 (𝐶′; 𝐴′ ∪

{0})] and any permutation 𝜉 ∈ 𝑆𝑛−1 of indices 1, . . . , 𝑛 − 1 acting on 𝐷 (𝐴 ∪ {0}) and
the first 𝑛 − 1 rows of 𝑀 (𝐶; 𝐴 ∪ {0}), set 𝑑𝑜 (𝜉) = max{𝐿,𝑊},

where 𝐿 = 𝐿∞
(
𝜉 (𝐷 (𝐴 ∪ {0})), 𝐷 (𝐴′ ∪ {0})

)
,

𝑊 = BD
(
𝜉 (𝑀 (𝐶; 𝐴 ∪ {0})), 𝑀 (𝐶′; 𝐴′ ∪ {0})

)
.

Then the max metric is defined as 𝑀∞ (OCD,OCD′) = min
𝜉 ∈𝑆𝑛−1

𝑑𝑜 (𝜉). ▲

The max metric 𝑀∞ is used for intermediate costs to get metrics on unordered
collections OSDs and SCDs by using the metrics LAC and EMD from Defini-
tions 5.3.2and 3.5.4, respectively. Equality OSD(𝐶) = OSD(𝐶′) between unordered
collections of ORDs is best verified by checking if LAC or EMD between these OSDs
is 0.

Theorem 6.4.3 (times for metrics on OSDs, [2, Theorem 5.6]). (a) For the 𝑘 × 𝑘

matrix of costs computed by the max metric 𝑀∞ between ORDs from OSD(𝐶) and
OSD(𝐶′), LAC from Definition 5.3.2 satisfies all metric axioms on OSDs and needs
time 𝑂 (𝑛!(𝑛2 + 𝑚1.5 log𝑛+1 𝑚)𝑘2 + 𝑘3 log 𝑘).

(b) Let OSDs have a maximum size 𝑙 ≤ 𝑘 after collapsing identical ORDs. The EMD
from Definition 3.5.4 satisfies all metric axioms on OSDs and can be computed in time
𝑂 (𝑛!(𝑛2 + 𝑚1.5 log𝑛+1 𝑚)𝑙2 + 𝑙3 log 𝑙). ■

Equality SCD(𝐶) = SCD(𝐶′) is interpreted as a bijection between unordered sets
SCD(𝐶) → SCD(𝐶′) matching all OCDs, which is best verified by checking if the
metrics between these SCDs vanish in Theorem 6.4.4.

Theorem 6.4.4 (times for metrics on SCDs, [2, Theorem 5.7]). (a) For the 𝑘 × 𝑘 matrix
of costs computed by the max metric 𝑀∞ between OCDs in SCD(𝐶) and SCD(𝐶′), the
metric LAC from Definition 5.3.2 satisfies all metric axioms on SCDs and needs time
𝑂 ((𝑛 − 1)!(𝑛2 + 𝑚1.5 log𝑛 𝑚)𝑘2 + 𝑘3 log 𝑘).

(b) Let SCDs have a maximum size 𝑙 ≤ 𝑘 after collapsing identical OCDs. Then EMD
from Definition 3.5.4 satisfies all metric axioms on SCDs and can be computed in time
𝑂 ((𝑛 − 1)!(𝑛2 + 𝑚1.5 log𝑛 𝑚)𝑙2 + 𝑙3 log 𝑙). ■

If we estimate 𝑙 ≤ 𝑘 =
( 𝑚
𝑛−1

)
= 𝑚(𝑚 − 1) . . . (𝑚 − 𝑛 + 2)/𝑛! as 𝑂 (𝑚𝑛−1/𝑛!), Theo-

rem 6.4.4 gives time𝑂 (𝑛(𝑚𝑛−1/𝑛!)3 log𝑚) for metrics on SCDs, which is𝑂 (𝑚3 log𝑚)
for 𝑛 = 2, and 𝑂 (𝑚6 log𝑚) for 𝑛 = 3. Though the above estimates are very rough, the
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time 𝑂 (𝑚3 log𝑚) in R2 is faster than the only past time 𝑂 (𝑚5 log𝑚) for comparing
𝑚-point clouds by the Hausdorff distance minimized over isometries [1].

Theorem 6.4.5 (continuity of OSD and SCD, [2, Corollary 6.1]). For any cloud 𝐶 ⊂
R𝑛 of 𝑚 unordered points, perturbing any point within its 𝜀-neighbourhood changes
OSD(𝐶) and SCD(𝐶) by at most 2𝜀 in the metrics LAC and EMD. ■

Theorems 6.2.3, 6.4.4, and 6.4.5 imply that the Simplexwise Centred Distribution
fully solves Problem 6.1.1. In addition, Corollary 6.2.4 proves that OCD(𝐶; 𝐴) from
SCD(𝐶) suffices to reconstruct 𝐶 ⊂ R𝑛, uniquely under rigid motion, if 𝐶 has a base
sequence 𝐴 of 𝑛 − 2 points with aff ({𝑂 (𝐴)} ∪ 𝐴) = 𝑛 − 1.

Forthcoming work will improve SCDs to better invariants that allow a reconstruction
in all degenerate cases and satisfy the much harder realisability condition as in 1.4.5(f).
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Part II
Geometric Data Science of periodic point sets





Chapter 7
One-periodic sequences in high-dimensional
Euclidean spaces

Abstract This chapter studies high-dimensional data that is periodic in one direction.
These periodic sequences live in a high-dimensional space R×R𝑛−1 for any dimension
𝑛 ≥ 1 and were indistinguishable by past invariants even in dimension 𝑛 = 2. Exper-
imental noise and atomic vibrations motivate a new continuous approach, because a
minimal periodic pattern breaks down under almost any perturbation.

7.1 One-periodic sequences under various isometries in R × R𝒏−1

All sections in this chapter follow paper [2] with minor updates.

Definition 7.1.1 (1-periodic sequences in R × R𝑛−1). Let e1 be the unit vector along
the first axis in R × R𝑛−1 for 𝑛 ≥ 1. For a period 𝑙 > 0, a motif 𝑀 is a set of
points 𝑝1, . . . , 𝑝𝑚 in the slice [0, 𝑙) × R𝑛−1 of the width 𝑙 > 0. We assume that the
time projections 𝑡 (𝑝1), . . . , 𝑡 (𝑝𝑚) under 𝑡 : [0, 𝑙) × R𝑛−1 → [0, 𝑙) are distinct, while
𝑣(𝑝1), . . . , 𝑣(𝑝𝑚) under the value projection 𝑣 : [0, 𝑙) × R𝑛−1 → R𝑛−1 are arbitrary.

A 1-periodic sequence 𝑆 = 𝑀 + 𝑙e1Z is the infinite sequence of points 𝑝(𝑖 + 𝑚 𝑗) =
𝑝𝑖 + 𝑗 𝑙e1 ∈ R𝑛, which are indexed by 𝑖 + 𝑚 𝑗 , where 𝑗 ∈ Z and 𝑖 = 1, . . . , 𝑚. ▲

Fig. 7.1 The periodic sequences 𝐶, 𝑆 ⊂ R × R are sampled from the sine and cosine graphs. The
motifs in the shaded slice [0, 2𝜋 ) × R are non-isometric, but 𝑆, 𝐶 are related by translation.
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The slice [0, 𝑙) × R𝑛−1 excludes all points with 𝑡 = 𝑙, which are equivalent to points
with 𝑡 = 0 by translation in the time factor R. Then all points 𝑝1, . . . , 𝑝𝑚 ∈ [0, 𝑙) ×R𝑛−1

are counted once and ordered under the time projection 𝑡 : [0, 𝑙) × R𝑛−1 → [0, 𝑙).
Example 7.1.2 (1-periodic sequences in R × R). Fig. 7.1 (left) shows the 1-periodic
sequence 𝑆 in R × R (from the sine graph) with the period 𝑙 = 2𝜋 and motif 𝑀𝑆 of
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Fig. 7.1 (right) shows another sequence 𝐶 with the same period 𝑙 = 2𝜋 and a different
motif 𝑀𝐶 ≠ 𝑀𝑆 . However, 𝑆, 𝐶 are identical under translation: sin

(
𝑥 + 𝜋

2
)
= cos(𝑥). _

Example 7.1.2 illustrates the ambiguity of digital representations when many real
objects look different in various coordinate systems despite being equivalent as rigid
objects. We adapt basic equivalences to sets in the product R × R𝑛−1.

Definition 7.1.3 (cyclic vs dihedral isometries and rigid motions). A cyclic isometry
of R×R𝑛−1 is a composition of a translation in the time factor R and an isometry in the
value factor R𝑛−1. If we allow compositions of a translation and symmetry 𝑥 ↦→ −𝑥 in
the time factor R, the resulting isometry of R × R𝑛−1 is dihedral.

If we allow only isometries that preserve orientation in the value factor R𝑛−1, the
resulting equivalences are called cyclic and dihedral rigid motions, respectively. ▲

The adjectives cyclic and dihedral are motivated by the names of the cyclic group
𝐶𝑚 and the dihedral group 𝐷𝑚 consisting of orientation-preserving isometries and all
isometries in R2, respectively, that map the regular polygon on 𝑚 vertices to itself.

The equivalences in Definition 7.1.3 make sense for any finite sequence of points
𝑇 ⊂ R × R𝑛−1. However, the periodicity substantially worsens the ambiguity of repre-
sentations based a period 𝑙 and a motif 𝑀 as follows. A translation in the time factor R
allows us to fix any point 𝑝 of a motif 𝑀 at 𝑡 = 0, but this choice of 𝑝 is arbitrary, so a
motif 𝑀 is defined only modulo cyclic permutations of its points.

The set of integers can be defined as Z with period 1 or as {0, 1} + 2Z with period
2, or with any integer period 𝑙 > 0. For any sequence 𝑆 = {𝑝1, . . . , 𝑝𝑚} + 𝑙e1Z, we can
choose a minimal period 𝑙 such that 𝑆 can not be represented with a smaller period.

This classical approach in crystallography leads to an invariant 𝐼 based on a minimum
period (primitive cell) and defined as a set of numerical properties preserved under any
rigid motion. Fixing a minimum period creates the following discontinuity.

Example 7.1.4 (discontinuity of a period). For any small 𝜀 > 0 and integer 𝑚 ≥ 1, any
point of Z is 𝜀-close to a unique point of the sequence {0, 1+ 𝜀, . . . , 𝑚 + 𝜀} + (𝑚 + 1)Z,
though their minimum periods 1 and 𝑚 + 1 are arbitrarily different. Hence comparing
periodic sequences by their minimal motifs can miss infinitely many near-duplicates. _

We assume that the input for a 1-periodic sequence 𝑆 consists of a period 𝑙 > 0 and
a motif of 𝑚 = |𝑆 | points in the high-dimensional slice [0, 𝑙) × R𝑛−1.
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Problem 7.1.5 (invariants of 1-periodic sequences in R×R𝑛−1). Design an invariant 𝐼
of all 1-periodic sequences of points in R × R𝑛−1 satisfying the following conditions.
(a) Completeness: any 1-periodic sequences 𝑆, 𝑄 ⊂ R × R𝑛−1 are related by cyclic
isometry (denoted as 𝑆 � 𝑄) in Definition 7.1.3 if and only if 𝐼 (𝑆) = 𝐼 (𝑄).
(b) Reconstruction: any 1-periodic sequence 𝑆 ⊂ R × R𝑛−1 is reconstructable from its
invariant value 𝐼 (𝑆), uniquely under cyclic isometry.
(c) Metric: there is a distance 𝑑 on the space {𝐼 (𝑆) | all 1-periodic sequences 𝑆 ⊂
R × R𝑛−1} satisfying all metric axioms in Definition 1.3.1(a).
(d) Continuity: there is a constant 𝜆 > 0, such that, for all sufficiently small 𝜀, if a
1-periodic sequence 𝑄 is obtained by perturbing every point of a 1-periodic sequence
𝑆 ⊂ R × R𝑛 up to Euclidean distance 𝜀, then 𝑑 (𝐼 (𝑆), 𝐼 (𝑄)) ≤ 𝜆𝜀.
(e) Computability: the invariant 𝐼, a reconstruction of 𝑆 ⊂ R × R𝑛−1 from 𝐼 (𝑆), and
the metric 𝑑 (𝐼 (𝑆), 𝐼 (𝑄)) can be computed in times that depend polynomially on the
dimension 𝑛 and the maximum motif size of 1-periodic sequences 𝑆, 𝑄. ⋆

Further sections will develop invariants that solve Problem 7.1.5 for all 1-periodic
sequences under cyclic and dihedral isometries and rigid motions in R × R𝑛−1.

Our constructions were inspired by the infinite family of 1-periodic sequences in [3,
Fig. 4] that were not distinguished by past invariants, see a review in [2, section 2].

7.2 Invariants and continuous metrics for finite sequences in R𝒏

This section studies complete invariants and metrics for isometry classes of finite
sequences of ordered points in R𝑛. These invariants are easily extendable to the 1-
periodic sequences in R×R𝑛−1 and substantially differ from direction-based invariants
in chapter 3 and the backbone invariants in chapter 2, which were defined only for
non-degenerate sequences of triplets of points in R3.
Definition 7.2.1 (distance matrices DM and CDM). Let 𝑇 be an ordered sequence of
𝑚 points 𝑝1, . . . , 𝑝𝑚 ∈ R𝑛.
(a) In the distance matrix DM(𝑇) of the size 𝑚 × 𝑚, each element DM𝑖 𝑗 (𝑇) is the
Euclidean distance |𝑝 𝑗 − 𝑝 𝑗 | for 𝑖, 𝑗 ∈ {1, . . . , 𝑚}, so 𝑑𝑖𝑖 = 0 for 𝑖 = 1, . . . , 𝑚.
(b) To define the cyclic distance matrix CDM(𝑇) of the size (𝑚 − 1) × 𝑚, set element
CDM𝑖 𝑗 (𝑇) to the Euclidean distance |𝑝 𝑗 − 𝑝𝑖+ 𝑗 | for 𝑖 ∈ {1, . . . , 𝑚 − 1} and 𝑗 ∈
{1, . . . , 𝑚}, where all indices are considered modulo 𝑚, for example, 𝑝𝑚+1 = 𝑝1. ▲

Any 𝑚 = 3 points in R𝑛 with pairwise distances 𝑑𝑖 𝑗 have the distance matrix

DM =

©­­­­­­­«
0 𝑑12 𝑑13

𝑑12 0 𝑑23

𝑑13 𝑑23 0

ª®®®®®®®¬
and the cyclic distance matrix CDM =

©­­­«
𝑑12 𝑑23 𝑑13

𝑑13 𝑑12 𝑑23

ª®®®¬. CDM(𝑇)
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is obtained from DM(𝑇) by removing the zero diagonal and cyclically shifting each
column so that the first row of CDM(𝑇) has distances from 𝑝𝑖 to the next point 𝑝𝑖+1.

Fig. 7.2 These sequences are distinguished by their cyclic distance matrices in Example 7.2.2.

Example 7.2.2 (cyclic distance matrices). Fig. 7.2 shows the sequences𝑇1, . . . , 𝑇6 ⊂ R2

whose points are in the integer latticeZ2 so that the minimum inter-point distance is 1. In
each sequence, the points are connected by straight lines in the order 1 → 2 → · · · → 𝑚.

CDM(𝑇1) =

©­­­­­­­«
1

√
2 1

√
2

1 1 1 1
√

2 1
√

2 1

ª®®®®®®®¬
, CDM(𝑇2) =

©­­­­­­­«

√
2 1

√
2 1

1 1 1 1

1
√

2 1
√

2

ª®®®®®®®¬
are different but related

by a cyclic shift of columns. This shift of indices in 𝑇1 gives a sequence isometric to

𝑇2. Then CDM(𝑇3) =

©­­­­­­­«
1 1 1 1
√

2
√

2
√

2
√

2

1 1 1 1

ª®®®®®®®¬
, CDM(𝑇4) =

©­­­­­­­«
1 1 1

√
5

√
2
√

2
√

2
√

2
√

5 1 1 1

ª®®®®®®®¬
. The CDMs of

the sets 𝑇5, 𝑇6 differ only by distances |𝑝1 − 𝑝4 | = 1 in 𝑇5 and |𝑝1 − 𝑝4 | =
√

5 in the
highlighted cells below. If reduce the number 𝑚 − 1 of rows in CDM to the dimension
𝑛 = 2, the smaller matrices fail to distinguish the non-isometric sequences 𝑇5 � 𝑇6.

𝑇5 :

©­­­­­­­­­­­­­­­«

1 1 1
√

2 1
√

10
√

2
√

2 1
√

5
√

5 3

1 2 2 1 2 2
√

5 3
√

2
√

2 1
√

5
√

10 1 1 1
√

2 1

ª®®®®®®®®®®®®®®®¬

and 𝑇6 :

©­­­­­­­­­­­­­­­«

1 1 1
√

2 1
√

10
√

2
√

2 1
√

5
√

5 3
√

5 2 2
√

5 2 2
√

5 3
√

2
√

2 1
√

5
√

10 1 1 1
√

2 1

ª®®®®®®®®®®®®®®®¬

. _

Recall that Definition 6.3.1 introduced the strength 𝜎(𝐴) = 𝑉2 (𝐴)
𝑝2𝑛−1 (𝐴)

of a simplex

𝐴 on any set of 𝑛 + 1 points 𝑞0, 𝑞1, . . . , 𝑞𝑛 ∈ R𝑛, where 𝑉 (𝐴) is the volume of 𝐴 and

𝑝(𝐴) = 1
2

∑
0≤𝑖< 𝑗≤𝑛

|𝑞𝑖 − 𝑞 𝑗 | is the half-perimeter.
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Definition 7.2.3 (cyclic distances with signs CDS). For any sequence𝑇 of 𝑝1, . . . , 𝑝𝑚 ∈
R𝑛 and 𝑖 = 1, . . . , 𝑚, let 𝜎𝑖 (𝑇) be the strength of the simplex on the points 𝑝𝑖 , . . . , 𝑝𝑖+𝑛,
where all indices are modulo 𝑚. Let sign𝑖 (𝑇) be the sign (±1 or 0) of the 𝑛 × 𝑛

determinant with the columns p𝑖+1 − p𝑖 , p𝑖+2 − p𝑖+1, . . . , p𝑖+𝑛 − p𝑖+𝑛−1. The matrix
CDS(𝑇) of cyclic distances with signs is obtained from CDM(𝑇) in Definition 7.2.1 by
attaching the extra 𝑚-th row sign(𝑇) = (sign1 (𝑇), . . . , sign𝑚 (𝑇)). ▲

Example 7.2.4 (strengths and signs). For the first sequence 𝑇1 in Fig. 7.2 with the
points 𝑝1 = (0, 0), 𝑝2 = (0, 1), 𝑝3 = (1, 0), 𝑝4 = (1, 1), the first 2 × 2 determinant

with the columns 𝑝2 − 𝑝1 =

©­­­«
0

1

ª®®®¬ and 𝑝3 − 𝑝2 = (1,−1) is det
©­­­«

0 1

1 −1

ª®®®¬ has sign

−1. The further determinants for 𝑖 = 2, 3, 4 are det
©­­­«

1 1

−1 0

ª®®®¬ = +1, det
©­­­«

1 −1

0 −1

ª®®®¬ = −1,

det
©­­­«
−1 1

−1 0

ª®®®¬ = +1, so the row of signs is sign(𝑇1) = (−1,+1,−1,+1). All triangles on 4

triples 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2 for 𝑖 = 1, 2, 3, 4 (with indices considered modulo 4) have the sides

1, 1,
√

2, half-perimeter 𝑝 = 1 + 1
√

2
, area 𝑉 =

1
2

, and strength 𝜎 =
1

√
2(1 +

√
2)3

. _

Since the sign of a determinant discontinuously changes when a point set passes
through a degenerate configuration, this sign will be multiplied by the Lipschitz con-
tinuous strength to get a metric satisfying condition 7.1.5(d), see Theorem 7.2.8(d).

Section 7.4 will adapt the matrices from Definitions 7.2.1 and 7.2.3 to 1-periodic
sequences whose motifs of points should be considered under cyclic permutations.
The cyclic group 𝐶𝑚 consists of 𝑚 permutations on 1, . . . , 𝑚 generated by the shift
permutation 𝛾𝑚 : (1, 2, . . . , 𝑚) ↦→ (2, . . . , 𝑚, 1). The dihedral group 𝐷𝑚 consists of
2𝑚 permutations generated by 𝛾𝑚 and the reverse permutation 𝜄𝑚 : (1, 2, . . . , 𝑚) ↦→
(𝑚, . . . , 2, 1).

Lemma 7.2.5 (actions on vectors and matrices). The shift permutation 𝛾𝑚 ∈ 𝐶𝑚
acts on the cyclic distance matrix CDM(𝑇) by cyclically shifting its 𝑚 columns
and keeping all rows. The reverse permutation 𝜄𝑚 ∈ 𝐷𝑚 reverses the order of
columns and rows in CDM(𝑇). These permutations act on the row of signs in
Definition 7.2.3 as 𝛾𝑚 (𝑠1, 𝑠2 . . . , 𝑠𝑚) = (𝑠2, . . . , 𝑠𝑚, 𝑠1) and 𝜄𝑚 (𝑠1, 𝑠2 . . . , 𝑠𝑚) =

(−1) [3𝑛/2] (𝑠𝑚, . . . , 𝑠2, 𝑠1). For any mirror image 𝑇 of 𝑇 , the matrix CDS(𝑇) is ob-
tained from CDS(𝑇) by reversing all signs in the last row. Any element of the groups
𝐶𝑚, 𝐷𝑚 acts on any sequence of 𝑚 numbers as a composition of 𝛾𝑚, 𝜄𝑚. ■
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Any matrix 𝑘 × 𝑚 can be rewritten row-by-row as a vector 𝑣 ∈ R𝑘𝑚. For any

𝑞 ∈ [1,+∞], the Minkowski norm is | |𝑣 | |𝑞 =

(
𝑘𝑚∑
𝑖=1

|𝑣𝑖 |𝑞
)1/𝑞

, where the limit case is

| |𝑣 | |∞ = max
𝑖=1,...,𝑘𝑚

|𝑣𝑖 |. Any power 𝑎1/𝑞 for 𝑎 > 0 is interpreted as 1 in the case 𝑞 = +∞.

Definition 7.2.6 (metrics MCD𝑞 and MCS𝑞 for finite sequences). For any Minkowski
norm with a parameter 𝑞 ∈ [1,+∞] and ordered sequences 𝑇, 𝑆 ⊂ R𝑛−1 of 𝑚 points,
use the matrices from Definition 7.2.1 to define the metric based on cyclic distances

MCD𝑞 (𝑆, 𝑇) =
| |CDM(𝑆) − CDM(𝑇) | |𝑞(

𝑚(𝑚 − 1)
)1/𝑞 and the metric based on cyclic distances with

signs MCS𝑞 (𝑆, 𝑇) = max
{
MCD𝑞 (𝑆, 𝑇),

2
𝜆𝑛

max
𝑖=1,...,𝑚

��sign𝑖 (𝑆)𝜎𝑖 (𝑆) − sign𝑖 (𝑇)𝜎𝑖 (𝑇)
��}.

▲

Example 7.2.7 (metric MCD𝑞). For any 𝑞 ∈ [1,+∞), we use cyclic distance matrices
from Example 7.2.2 to compute

MCD𝑞 (𝑇1, 𝑇3) = ( 2
3 )

1/𝑞 (
√

2 − 1),

MCD𝑞 (𝑇3, 𝑇4) = ( 1
6 )

1/𝑞 (
√

5 − 1),

MCD𝑞 (𝑇1, 𝑇4) = ( 1
2 (
√

2 − 1)𝑞 + 1
6 (
√

5 −
√

2)𝑞)1/𝑞 .

The triangle inequality holds for 𝑞 ≥ 1 as follows:

(
MCD𝑞 (𝑇1, 𝑇3) + MCD𝑞 (𝑇3, 𝑇4)

)𝑞
=(

( 2
3 )

1/𝑞 (
√

2 − 1) + ( 1
6 )

1/𝑞 (
√

5 − 1)
)𝑞 ≥(

( 1
2 )

1/𝑞 (
√

2 − 1) + ( 1
6 )

1/𝑞 (
√

5 −
√

2)
)𝑞 ≥

1
2 (
√

2 − 1)𝑞 + 1
6 (
√

5 −
√

2)𝑞 =
(
MCD𝑞 (𝑇1, 𝑇4)

)𝑞
due to (𝑎 + 𝑏)𝑞 ≥ 𝑎𝑞 + 𝑏𝑞 for 𝑎, 𝑏 > 0 and 𝑞 ≥ 1. For 𝑞 = +∞, the inequality becomes
(
√

2 − 1) + (
√

5 − 1) ≥
√

5 −
√

2. Then 𝑇5 � 𝑇6 have MCD𝑞 (𝑇5, 𝑇6) = 21/𝑞 (
√

5 − 1). _

We use the extra factors
(
𝑚(𝑚 − 1)

)1/𝑞 and
2
𝜆𝑛

in the definition above, where 𝜆𝑛 is a
Lipschitz constant 𝜎 from Theorem 6.3.3, to guarantee the Lipschitz constant 2 for the
new metrics. Indeed, perturbing any points up to 𝜀 changes the distance between them
up to 2𝜀. Instead of maxima in the formula for MCS𝑞 (𝑆, 𝑇), one can consider other
metric transforms from [1, section 4.1], for example, sums of metrics.

Theorem 7.2.8 solves Problem 2.1.1 and will help solve Problem 7.1.5.

Theorem 7.2.8 (solution of Problem 2.1.1 for ordered points in R𝑛, [2, Theorem 3.9]).
(a) For any sequence 𝑇 ⊂ R𝑛 of 𝑚 ordered points, the matrices CDM(𝑇) and CDS(𝑇)
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are complete invariants of 𝑇 ⊂ R𝑛 under isometry and rigid motion in R𝑛, which are
computable in times 𝑂 (𝑚2𝑛) and 𝑂 (𝑚2𝑛 + 𝑚𝑛3), respectively.

(b) Any sequence𝑇 ⊂ R𝑛 of𝑚 points can be reconstructed from the invariants CDM(𝑇)
and CDS(𝑇), uniquely under isometry and rigid motion, respectively, in time 𝑂 (𝑚3).

(c) For any sequences 𝑆, 𝑇 ⊂ R𝑛 of 𝑚 points, MCD𝑞 (𝑆, 𝑇),MCS𝑞 (𝑆, 𝑇) satisfy all
metric axioms and are computable in time 𝑂 (𝑚2) and 𝑂 (𝑚2𝑛 + 𝑚𝑛3), respectively.

(d) If 𝑆 is obtained from any sequence𝑇 ⊂ R𝑛 by perturbing every point up to Euclidean
distance 𝜀, then MCD𝑞 (𝑆, 𝑇) ≤ 2𝜀 and MCS𝑞 (𝑆, 𝑇) ≤ 2𝜀 for 𝑞 ∈ [1,+∞]. ■

7.3 Discontinuity of a minimal period for 1-periodic sequences

The invariants and metrics from section 7.2 will be used for a motif of a 1-periodic
sequence 𝑆 projected to the value factor R𝑛−1. To solve Problem 7.1.5, we first resolve
the discontinuity of a period under perturbations by projecting 𝑆 to the time factor R.

Definition 7.3.1 (time shift TS). Let 𝑆 ⊂ R × R𝑛−1 be a 1-periodic sequence with
a period 𝑙 and a motif 𝑀 of points 𝑝1, . . . , 𝑝𝑚, which have ordered time projection
𝑡 (𝑝1) < · · · < 𝑡 (𝑝𝑚) in [0, 𝑙) under 𝑡 : R × R𝑛−1 → R, see Definition 7.1.1. Set
𝑑𝑖 = 𝑡 (𝑝𝑖+1) − 𝑡 (𝑝𝑖) for 𝑖 = 1, . . . , 𝑚, 𝑡 (𝑝𝑚+1) = 𝑡 (𝑝1) + 𝑙. The time shift of the pair
(motif, period) of the 1-periodic sequence 𝑆 is TS(𝑀; 𝑙) = (𝑑1, . . . , 𝑑𝑚). ▲

The sequences 𝑆2 = {0, 1} + 3Z and 3 − 𝑆2 = {0, 2} + 3Z are related by translation
but have different time shifts TS({0, 1}; 3) = (1, 2) and TS({0, 2}; 3) = (2, 1). To get
isometry invariants, these shifts are considered modulo cyclic or dihedral permutations.

Definition 7.3.2 (cyclic and dihedral invariants under isometries). (a) For any 1-
periodic sequence 𝑆 = 𝑀 + 𝑙e1Z ⊂ R×R𝑛−1 with a minimum motif 𝑀 of 𝑚 points, let
𝑣(𝑀) ⊂ R𝑛−1 be the image of 𝑀 under the value projection 𝑣 : R × R𝑛−1 → R𝑛−1.

(b) The cyclic and dihedral isometry invariants CI(𝑆),DI(𝑆) are the classes of the pair
(TS(𝑀; 𝑙),CDM(𝑣(𝑀))) under permutations 𝛾 from the groups 𝐶𝑚, 𝐷𝑚, respectively,
acting simultaneously on the time shift TS(𝑀; 𝑙) and the matrix CDM(𝑣(𝑀)).

(c) The cyclic and dihedral rigid invariants CR(𝑆),DR(𝑆) are the classes of the pair
(TS(𝑀; 𝑙),CDS(𝑣(𝑀))) under permutations 𝛾 from the groups 𝐶𝑚, 𝐷𝑚, respectively,
acting simultaneously on the time shift TS(𝑀; 𝑙) and the matrix CDS(𝑣(𝑀)). ▲

The matrices CDM,CDS are used for the projected motif 𝑣(𝑀) ⊂ R𝑛−1 and do
not depend on a period 𝑙, because a shift along the time direction e1 keeps the value
projection. For 𝑛 = 1, when a periodic sequence 𝑆 = {𝑝1, . . . , 𝑝𝑚} + 𝑙Z is in the line
R, Definition 7.3.2 simplifies to a single time shift obtained by lexicographic ordering.

Recall the lexicographic order on vectors: (𝑑1, . . . , 𝑑𝑚) < (𝑑′1, . . . , 𝑑
′
𝑚) if 𝑑1 =

𝑑′1, . . . , 𝑑𝑖 = 𝑑
′
𝑖

for some 0 ≤ 𝑖 < 𝑚, where 𝑖 = 0 means no identities, and 𝑑𝑖+1 < 𝑑
′
𝑖+1.
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Definition 7.3.3 (time invariants CT,DT). Let 𝑆 = {𝑝1, . . . , 𝑝𝑚} + 𝑙Z be a 1-periodic
sequence in R×R𝑛−1 with a minimum period 𝑙 > 0. Set 𝑑𝑖 = 𝑝𝑖+1 − 𝑝𝑖 for 𝑖 = 1, . . . , 𝑚,
where 𝑝𝑚+1 = 𝑝1 + 𝑙. Apply all permutations of cyclic group𝐶𝑚 to (𝑑1, . . . , 𝑑𝑚), order
all resulting lists lexicographically, and call the first (smallest) list the cyclic time invari-
ant CT(𝑆). Similarly, define the dihedral time invariant DT(𝑆) as the lexicographically
smallest list obtained from (𝑑1, . . . , 𝑑𝑚) by the action of 𝐷𝑚. ▲

Example 7.3.4 (time invariants CT,DT). InR, the periodic sequences 𝑆 = {0, 1, 3}+6Z
and𝑄 = 6−𝑆 = {0, 3, 5}+6Z are related by reflection 𝑥 ↦→ 6−𝑥 and not by translation.
Their time shifts are TS({0, 1, 3}; 6) = (1, 2, 3) and TS({0, 3, 5}; 6) = (3, 2, 1). So the
dihedral time invariants of both 𝑆, 𝑄 are equal to DT = (1, 2, 3), but their cyclic time
invariants differ: CT(𝑆) = (1, 2, 3) ≠ (1, 3, 2) = CT(𝑄). _

Though the time invariants from Definition 7.3.3 can be proved to be complete for
sequences in R, Example 7.3.5 and Fig. 7.3 show their discontinuity under noise.

Fig. 7.3 Left: the near-duplicate periodic sequences 𝑆±𝜀 = {0, 1 ± 𝜀, 3 ± 𝜀, 4} + 7Z have distant
time invariants from Definition 7.3.1, see Example 7.3.5. Right: the periodic sequence Z and its 𝜀-
perturbationZ𝜀 have incomparable time shifts TS({0}; 1) = (1) and TS({0, 1−𝜀}; 2) = (1−𝜀, 1+𝜀)
of different lengths sizes. This discontinuity motivates period-independent metrics in Definition 7.4.1.

Example 7.3.5 (discontinuity of time shifts). In R, the periodic sequence 𝑆0 =

{0, 1, 3, 4} + 7Z has two perturbations 𝑆±𝜀 = {0, 1 ± 𝜀, 3 ± 𝜀, 4} + 7Z for any small
𝜀 > 0. Rewriting the time shifts TS({0, 1 − 𝜀, 3 − 𝜀, 4}; 7) = (1 − 𝜀, 2, 1 + 𝜀, 3) and
TS({0, 1 + 𝜀, 3 + 𝜀, 4}; 7) = (1 + 𝜀, 2, 1 − 𝜀, 3) in increasing order does not make them
close, as the minimal distance 1 − 𝜀 is followed by the different distances 2 < 3 in the
nearly identical 𝑆±𝜀 for any 𝜀 > 0, see Fig. 7.3 (left). This discontinuity will be resolved
by minimising over cyclic permutations, but there is one more obstacle below. _

It seems natural to always use a minimum period 𝑙 > 0 of 𝑆 = {𝑝1, . . . , 𝑝𝑚}+ 𝑙e1Z ⊂
R×R𝑛−1. However, the time shift TS = (𝑑1, . . . , 𝑑𝑚) of a fixed size𝑚 cannot be directly
used for comparing sequences that have different sizes of motifs, see Fig. 7.3 (right).

7.4 Period-independent metrics for 1-periodic sequences

Definition 7.4.1 introduces continuous metrics after extending motifs to a common size.

Definition 7.4.1 (cyclic and dihedral metrics under isometry and rigid motion). (a)
For any 1-periodic sequences 𝑆 = 𝑀𝑆 + 𝑙𝑆e1Z and 𝑄 = 𝑀𝑄 + 𝑙𝑄e1Z in R × R𝑛−1, let
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𝑚 = lcm( |𝑀𝑆 |, |𝑀𝑄 |) be the lowest common multiple of their motif sizes (cardinalities).
For the integers 𝑘𝑆 =

𝑚

|𝑀𝑆 |
and 𝑘𝑄 =

𝑚

|𝑀𝑄 |
, the extended motifs defined as

𝑘𝑆𝑀𝑆 =
⋃

𝑖=1,...,𝑘𝑆

(
𝑀𝑆 + 𝑖𝑙𝑆e1

)
and 𝑘𝑄𝑀𝑄 =

⋃
𝑖=1,...,𝑘𝑄

(
𝑀𝑄 + 𝑖𝑙𝑄e1

)
have the same number 𝑘𝑆 |𝑀𝑆 | = 𝑚 = 𝑘𝑄 |𝑀𝑄 | of points.

Any permutation 𝛾 from𝐶𝑚, 𝐷𝑚 acts on the projected motif 𝑣(𝑘𝑄𝑀𝑄) ⊂ R𝑛−1 as in
Lemma 7.2.5. For any parameter 𝑞 ∈ [1,+∞], the cyclic and dihedral isometry metrics
are CIM𝑞 (𝑆, 𝑄) = min

𝛾∈𝐶𝑚

max{𝑑𝑡 , 𝑑𝑣} and DIM𝑞 (𝑆, 𝑄) = min
𝛾∈𝐷𝑚

max{𝑑𝑡 , 𝑑𝑣}, where

𝑑𝑡 = 𝑚
−1/𝑞 ����TS(𝑘𝑆𝑀𝑆; 𝑘𝑆 𝑙𝑆) − TS(𝛾(𝑘𝑄𝑀𝑄); 𝑘𝑄𝑙𝑄)

����
𝑞
,

𝑑𝑣 = MCD𝑞
(
𝑣(𝑘𝑆𝑀𝑆), 𝛾(𝑣(𝑘𝑄𝑀𝑄))

)
.

(b) The cyclic and dihedral rigid metrics CRM𝑞 ,DRM𝑞 are defined by the same
formulae as CIM𝑞 ,DIM𝑞 after replacing MCD𝑞 with MCS𝑞 from Definition 7.2.6. ▲

In the limit case 𝑞 = +∞, any factor 𝑎±1/𝑞 for 𝑎 > 0 is interpreted as lim
𝑞→+∞

𝑎±1/𝑞 = 1.
In Definition 7.4.1, the extended periods 𝑘𝑆 𝑙𝑆 and 𝑘𝑄𝑙𝑄 can be different. For simplicity,
the metrics MCD𝑞 ,MCS𝑞 were written via projected motifs as in Definition 7.2.6 but
will be computable via the complete invariants from Definition 7.3.2.

For 𝑛 = 1, the projected motifs are empty, so the cases of rigid motion and isometry
in R0 trivially coincide. In both cases, the metrics are obtained by minimizing only the
differences 𝑑𝑡 between time shifts under cyclic and dihedral permutations.

Example 7.4.2 (invariant metrics). The periodic sequences 𝑆 = {0, 1} + 3Z and 𝑄 =

{0, 1, 3}+6Z have motifs 𝑀𝑆 = {0, 1} and 𝑀𝑄 = {0, 1, 3} of different sizes𝑚𝑆 = 2 and
𝑚𝑄 = 3 whose lowest common multiple is 𝑚 = 6. In the notations of Definition 7.4.1,
we get 𝑘𝑆 =

𝑚

|𝑀𝑆 |
= 3, 𝑘𝑄 =

𝑚

|𝑀𝑄 |
= 2. The extended motifs and periods are 3𝑀𝑆 =

{0, 1, 3, 4, 6, 7}, 3𝑙𝑆 = 9, 2𝑀𝑄 = {0, 1, 3, 6, 7, 9}, 2𝑙𝑄 = 12. Then TS(3𝑀𝑆; 9) =

(1, 2, 1, 2, 1, 2) and TS(2𝑀𝑄; 12) = (1, 2, 3, 1, 2, 3). Any cyclic or dihedral permutation
of the time shift TS(3𝑀𝑆; 9) relative to TS(2𝑀𝑄; 12) gives the maximum component-
wise distance |1 − 3| = 2, so CIM+∞ (𝑆, 𝑄) = 2 = DIM+∞ (𝑆, 𝑄).

Theorem 7.4.3 (solution to Problem 7.1.5 for 1-periodic sequences, [2, Theorem 4.8]).
(a) For any 1-periodic sequence 𝑆 ⊂ R × R𝑛−1 with a motif of 𝑚 points, CI(𝑆),DI(𝑆)
from Definition 7.3.2 are complete invariants under cyclic and dihedral isometry in
R × R𝑛−1, respectively, and are computable in time 𝑂 (𝑚3𝑛). Then the invariants
CR(𝑆),DR(𝑆) are complete under cyclic and dihedral rigid motion in R × R𝑛−1, re-
spectively, and are computable in time 𝑂 (𝑚3𝑛 + 𝑚2𝑛3).
(b) Any 1-periodic sequence 𝑆 ⊂ R×R𝑛−1 with a motif of𝑚 points can be reconstructed
from its complete invariant under a relevant equivalence from part (a) in time𝑂 (𝑚3𝑛).
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Table 7.1 Acronyms and references for the new invariants and metrics in sections 7.2, 7.3, 7.4.

CDM(𝑇 ) Cyclic Distance Matrix of a finite sequence 𝑇 ⊂ R𝑛 Definition 7.2.1

CDS(𝑇 ) matrix of Cyclic Distances and Signs of a sequence 𝑇 ⊂ R𝑛 Definition 7.2.3

MCD𝑞 Metric on Cyclic Distance matrices (CDM) Definition 7.2.6

MCS𝑞 Metric on matrices of Cyclic distances and Signs (CDS) Definition 7.2.6

TS(𝑀; 𝑙) Time Shift for a motif 𝑀 and period 𝑙 of a sequence Definition 7.3.1

CI(𝑆) Cyclic Isometry invariant of a sequence 𝑆 ⊂ R × R𝑛−1 Definition 7.3.2

DI(𝑆) Dihedral Isometry invariant of a sequence 𝑆 ⊂ R × R𝑛−1 Definition 7.3.2

CR(𝑆) Cyclic Rigid invariant of a sequence 𝑆 ⊂ R × R𝑛−1 Definition 7.3.2

DR(𝑆) Dihedral Rigid invariant of a sequence 𝑆 ⊂ R × R𝑛−1 Definition 7.3.2

CI(𝑆) Cyclic Isometry invariant of a sequence 𝑆 ⊂ R × R𝑛−1 Definition 7.3.2

DI(𝑆) Dihedral Isometry invariant of a sequence 𝑆 ⊂ R × R𝑛−1 Definition 7.3.2

CIM𝑞 Cyclic Isometry Metric on 1-periodic sequences in R × R𝑛−1 Definition 7.4.1

DIM𝑞 Dihedral Isometry Metric on 1-periodic sequences in R × R𝑛−1 Definition 7.4.1

CRM𝑞 Cyclic Rigid Metric on 1-periodic sequences in R × R𝑛−1 Definition 7.4.1

DRM𝑞 Dihedral Rigid Metric on 1-periodic sequences in R × R𝑛−1 Definition 7.4.1

(c) The metrics in Definition 7.4.1 remain invariant if any 1-periodic sequence 𝑆 =

𝑀 + 𝑙e1Z is alternatively represented by an extended motif 𝑘𝑀 and a period 𝑘𝑙 for any
integer 𝑘 > 0. For any 1-periodic sequences 𝑆, 𝑄 ⊂ R × R𝑛−1 with a lowest common
multiple𝑚 of motif sizes, the distances CIM𝑞 ,DIM𝑞 ,CRM𝑞 ,DRM𝑞 in Definition 7.4.1
satisfy all metric axioms and are computable in times 𝑂 (𝑚3𝑛) and 𝑂 (𝑚3𝑛 +𝑚2𝑛3) for
the cases of isometry and rigid motion, respectively.

(d) Let 𝑄 be a 1-periodic sequence 𝑆 ⊂ R × R𝑛−1 after perturbing every point of 𝑆 up
to some Euclidean distance 𝜀 that is smaller than a half-distance between any points of
𝑡 (𝑆) and of 𝑡 (𝑄). Then CIM𝑞 (𝑆, 𝑇),DIM𝑞 (𝑆, 𝑄),CRM𝑞 (𝑆, 𝑄),DRM𝑞 (𝑆, 𝑄) ≤ 2𝜀. ■

Example 7.4.4 (challenging 1-periodic sequences). The infinite family of counter-
examples in [3, Fig. 4] to the completeness of past distance-based invariants includes
the pairs of the 1-periodic sequences 𝐴± ⊂ R×R2 with a period 𝑙 > 0 and 6-point motifs
𝑀+ = {𝑊 ′, 𝐶+, 𝑉,𝑊,𝐶′

+, 𝑉
′} and 𝑀− = {𝑊 ′, 𝐶− , 𝑉,𝑊,𝐶′

− , 𝑉
′} with the points 𝑉 =

(𝑣𝑥 , 𝑣𝑦 , 0), 𝑊 = ( 𝑙2 , 𝑤𝑦 , 𝑤𝑧), 𝐶± = ( 𝑙4 , 𝑐𝑦 ,±𝑐𝑧), and free parameters 𝑙, 𝑤𝑦 , 𝑤𝑧 , 𝑐𝑦 , 𝑐𝑧 >
0, and 𝑣𝑥 , 𝑣𝑦 ∈ [0, 𝑙2 ]. Any point denoted with a prime is obtained by 𝑔(𝑥, 𝑦, 𝑧) =

(𝑥 + 𝑙
2 , 𝑦,−𝑧). The time projections are identical: 𝑡 (𝑀±) = (0, 𝑙4 , 𝑣𝑥 ,

𝑙
2 ,

3𝑙
4 ,

𝑙
2 + 𝑣𝑥).
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Fig. 7.4 These 1-periodic sequences 𝐴± ⊂ R × R2 from [3, Fig. 2] have identical past invariants.

Assuming that 𝑣𝑥 ∈ ( 𝑙4 ,
𝑙
2 ) as in Fig. 7.4, the time shifts are

TS(𝑀±; 𝑙) =
(
𝑙

4
, 𝑣𝑥 −

𝑙

4
,
𝑙

2
− 𝑣𝑥 ,

𝑙

4
, 𝑣𝑥 −

𝑙

4
,
𝑙

2
− 𝑣𝑥

)
.

Order value projections along the 𝑥-axis from 𝑙
2 to the right:

𝑣(𝑀±) = {(𝑤𝑦 ,−𝑤𝑧), (𝑐𝑦 ,±𝑐𝑧), (𝑣𝑦 , 0), (𝑤𝑦 , 𝑤𝑧), (𝑐𝑦 ,∓𝑐𝑧), (𝑣𝑦 , 0)}.

The cyclic distance matrices of 𝑀+ and 𝑀− are on the left and right, respectively:

©­­­­­­­«
𝑑11 𝑑12 𝑑21 𝑑11 𝑑12 𝑑21

𝑑21 𝑑22 𝑑12 𝑑21 𝑑22 𝑑12

2|𝑤𝑧 | 2|𝑐𝑧 | 0 2|𝑤𝑧 | 2|𝑐𝑧 | 0

ª®®®®®®®¬
≠

©­­­­­­­«
𝑑22 𝑑12 𝑑21 𝑑22 𝑑12 𝑑21

𝑑21 𝑑11 𝑑12 𝑑21 𝑑11 𝑑12

2|𝑤𝑧 | 2|𝑐𝑧 | 0 2|𝑤𝑧 | 2|𝑐𝑧 | 0

ª®®®®®®®¬
.

The differences in distances are highlighted in yellow:

𝑑11 =
√︃
(𝑤𝑦 − 𝑐𝑦)2 + (𝑤𝑧 +𝑐𝑧 )2, 𝑑12 =

√︃
(𝑐𝑦 − 𝑣𝑦)2 + 𝑐2

𝑧 ,

𝑑22 =
√︃
(𝑤𝑦 − 𝑐𝑦)2 + (𝑤𝑧 −𝑐𝑧 )2, 𝑑21 =

√︃
(𝑤𝑦 − 𝑣𝑦)2 + 𝑤2

𝑧 .

The matrix difference has the norm | |CDM(𝑀+) − CDM(𝑀−) | |∞ = |𝑑11 − 𝑑22 | > 0
unless 𝑐𝑧 = 0 or 𝑤𝑧 = 0. If 𝑐𝑧 = 0, 𝐴± are identical. If 𝑤𝑧 = 0, then 𝐴± are isometric
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by 𝑔(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑙
2 , 𝑦,−𝑧). If both 𝑐𝑧 , 𝑤𝑧 ≠ 0, then CIM+∞ (𝐴+, 𝐴−) is obtained by

minimizing over 6 cyclic permutations 𝛾 ∈ 𝐶6. The trivial permutation and the shift by
3 positions give |𝑑11 − 𝑑12 |. Any other permutation gives 𝑑𝑡 = max{𝑣𝑥 − 𝑙

4 ,
𝑙
2 − 𝑣𝑥}

from comparing TS(𝑀+; 𝑙) with 𝛾(TS(𝑀−; 𝑙)) and 𝑑𝑣 = max{|𝑎 − 𝑏 |} maximized for
all pairs of parameters 𝑎, 𝑏 ∈ {𝑑11, 𝑑12, 𝑑21, 𝑑22}.

In all cases, the metric is positive: CIM+∞ (𝐴+, 𝐴−) ≥ |𝑑11 − 𝑑22 | > 0. Then the
invariant CI from Definition 7.3.2 distinguishes these sequences 𝐴+ � 𝐴− . _

Geo-Mapping Problem 1.4.5 becomes much harder for point sets that are periodic
in two directions. The next chapter will solve the case of 2-dimensional lattices.
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Chapter 8
Moduli spaces of 2D lattices under isometry and
rigid motion

Abstract This chapter continuously parametrises moduli spaces of 2-dimensional
lattices under Euclidean isometry, rigid motion, dilation, and homothety. The new root
invariants have easily computable metrics and settle the past discontinuity of reduced
bases. The moduli space of 2-dimensional lattices under rigid motion can be mapped
to the sphere without one point. Hence, any geographic location on Earth can be
associated with a canonical lattice. We also define chiral distances that continuously
measure deviations from higher-symmetry lattices.

8.1 Representations of lattices by unit cells and reduced bases

All sections in this chapter follow papers [17, 6, 7] with minor updates of notations.

Recall that the most practical equivalence relations (rigid motion, isometry, dilation,
homothety) on arbitrary subsets of R𝑛 were introduced in Example 1.2.3.

Definition 8.1.1 (a basis and a primitive unit cell 𝑈 (v1, . . . , v𝑛) of a lattice Λ ⊂ R𝑛).
(a) Let vectors v1, . . . , v𝑛 form a linear basis in R𝑛. A lattice Λ ⊂ R𝑛 consists of
all linear combinations

𝑛∑
𝑖=1
𝑐𝑖v𝑖 with integer coefficients 𝑐𝑖 ∈ Z. The parallelepiped

𝑈 (v1, . . . , v𝑛) =
{
𝑛∑
𝑖=1
𝑡𝑖v𝑖 | 𝑡𝑖 ∈ [0, 1)

}
⊂ R𝑛 is called a primitive unit cell of Λ. ▲

The inequalities 0 ≤ 𝑡𝑖 < 1 in Definition 8.1.1(a) guarantee that the copies of
primitive unit cells𝑈 (v1, . . . , v𝑛) translated by all v ∈ Λ are disjoint and cover R𝑛.

Recall that the special linear group SL(Z𝑛) consists of all 𝑛 × 𝑛 matrices with
integer entries and determinant 1. Let vectors v1, . . . , v𝑛 ∈ R𝑛 form one basis of a
lattice Λ ⊂ R𝑛. Then, for any matrix 𝐴 ∈ SL(Z𝑛), the vectors 𝐴v1, . . . , 𝐴v𝑛 form
another basis of Λ with a very different primitive cell𝑈 (𝐴v1, . . . , 𝐴v𝑛), see Fig. 8.1.

The past approach to tackling the ambiguity of lattice representations was to consider
a reduced basis, briefly as rectangular as possible. In R3, [13] reviewed several reduced

115
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Fig. 8.1 Left: a 2-dimensional layer of graphene is formed by carbon atoms. Right: one can generate
a hexagonal lattice (as any other) by infinitely many bases and continuously deform into a rectangular
lattice (far right) whose bases {v1, v2} and {u1, u2} are related by an orientation-reversing map. The
yellow Voronoi domain 𝑉̄ (Λ) of any point p in a lattice Λ consists of all points 𝑞 ∈ R2 that are
non-strictly closer to p than to other points Λ \ {𝑝} in the lattice, see Definition 8.1.3(a).

bases. The most common is Niggli’s cell [20], whose 2-dimensional version is intro-
duced below. For any v1 = (𝑎1, 𝑎2) and v2 = (𝑏1, 𝑏2) inR2, let det(v1, v2) = 𝑎1𝑏2−𝑎2𝑏1

be the determinant of the matrix
©­­­«
𝑎1 𝑏1

𝑎2 𝑏2

ª®®®¬ with the columns v1, v2.

Definition 8.1.2 (reduced cell). (a) For a lattice Λ ⊂ R2 under isometry, a basis and its
unit cell𝑈 (v1, v2) are reduced (non-acute) if |v1 | ≤ |v2 | and − 1

2 v2
1 ≤ v1 · v2 ≤ 0.

(b) Under rigid motion, the conditions are weaker: |v1 | ≤ |v2 | and |v1 · v2 | ≤ 1
2 v2

1,
det(v1, v2) > 0, and the new special condition : if |v1 | = |v2 | then v1 · v2 ≥ 0. ▲

All bases in Fig. 8.1 are reduced under rigid motion. The condition |v1 · v2 | ≤ 1
2 v2

1
in Definition 8.1.2 geometrically means that v1, v2 are close to being orthogonal: the
projection of v2 to v1 is between± 1

2 |v1 |. The conditions |v1 | ≤ |v2 | and− 1
2 v2

1 ≤ v1 ·v2 ≤
0 in Definition 8.1.2 coincide with the conventional definition from [3, section 9.2.2]
for type II (non-acute) cells in R3 if we choose v3 to be very long and orthogonal to
v1, v2. Alternative type I cells with non-obtuse angles have 0 ≤ v1 · v2 ≤ 1

2 v2
1.

[17, Proposition 3.10(a)] proves the uniqueness of a reduced basis under isometry.

Another well-known cell of a lattice Λ ⊂ R𝑛 is the Voronoi domain [22], also called
the Wigner-Seitz cell, Brillouin zone or Dirichlet cell. We use the word domain not
to confuse it with a unit cell in Definition 8.1.1. Though the Voronoi domain can be
defined for any point of a lattice, it suffices to consider only the origin 0.

Definition 8.1.3 (Voronoi domain 𝑉̄ (Λ)). (a) The Voronoi domain of a lattice Λ ⊂ R𝑛

is the neighbourhood 𝑉̄ (Λ) = {p ∈ R𝑛 : |p| ≤ |p − v| for any v ∈ Λ} of 0 consisting of
all p ∈ R𝑛 that are non-strictly closer to 0 than to other points v ∈ Λ.

(b) A vector v ∈ Λ is called a Voronoi vector if the bisector hyperspace 𝐻 (0, v) =

{p ∈ R𝑛 | p · v = 1
2 v2} between 0 and v intersects 𝑉̄ (Λ). If 𝑉̄ (Λ) ∩ 𝐻 (0, v) is an

(𝑛 − 1)-dimensional face of 𝑉̄ (Λ), then v is called a strict Voronoi vector. ▲
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Fig. 8.2 Left: a generic lattice Λ ⊂ R2 has a hexagonal Voronoi domain with an obtuse superbase
v1, v2, v0 = −v1 − v2, which is unique under permutations and central symmetry. Other pictures: two
pairs of obtuse superbases (related by reflection) for a rectangular lattice.

Fig. 8.2 shows how the Voronoi domain 𝑉̄ (Λ) can be obtained as the intersection of
the closed half-spaces 𝑆(0, 𝑣) = {p ∈ R𝑛 | p · v ≤ 1

2 v2} whose boundaries 𝐻 (0, 𝑣) are
bisectors between 0 and all strict Voronoi vectors v ∈ Λ. A generic lattice Λ ⊂ R2 has
a hexagonal Voronoi domain 𝑉̄ (Λ) with six Voronoi vectors.

Any lattice is determined by its Voronoi domain by [17, Lemma A.2]. However,
the combinatorial structure of 𝑉̄ (Λ) is discontinuous under perturbations. Almost any
perturbation of a rectangular basis inR2 gives a non-rectangular basis generating a lattice
whose Voronoi domain 𝑉̄ (Λ) is hexagonal, not rectangular. Hence, any integer-valued
descriptors of 𝑉̄ (Λ), such as the numbers of vertices or edges, are always discontinuous
and unsuitable for continuous quantifications.

Lemma 8.1.4 shows how to find all Voronoi vectors of any lattice Λ ⊂ R𝑛. The
doubled lattice is 2Λ = {2v | v ∈ Λ}. Vectors u, v ∈ Λ are called 2Λ-equivalent if
u − v ∈ 2Λ. Then any vector v ∈ Λ generates its 2Λ-class v + 2Λ = {v + 2u | u ∈ Λ},
which is 2Λ translated by v and containing −v. All classes of 2Λ-equivalent vectors
form the quotient space Λ/2Λ. Any 1-dimensional lattice Λ generated by a vector v has
the quotient Λ/2Λ consisting of only two classes Λ and v + Λ.

Lemma 8.1.4 (criterion for Voronoi vectors [19], [8, Theorem 2]). For any lattice
Λ ⊂ R𝑛, a non-zero vector v ∈ Λ is a Voronoi vector of Λ if and only if v is a shortest
vector in its 2Λ-class v + 2Λ. Also, v is a strict Voronoi vector if and only if ±v are the
only shortest vectors in the 2Λ-class v + 2Λ. ■

Any lattice Λ ⊂ R2 generated by v1, v2 has Λ/2Λ = {v1, v2, v1 + v2} + Λ. Notice
that the vectors v1 ± v2 belong to the same 2Λ-class. Assume that v1, v2 are not longer
than v1 + v2, which holds if the angle ∠(v1, v2) ∈ [60◦, 120◦]. If the sum v1 + v2 is
shorter than v1 − v2 as in Fig. 8.2 (left), then Λ has three pairs of strict Voronoi vectors
±v1,±v2,±(v1 + v2). If v1 ± v2 have the same length, the unit cell spanned by v1, v2
degenerates to a rectangle, Λ has four non-strict Voronoi vectors ±v1 ± v2.

The triple of vector pairs ±v1,±v2,∓(v1 + v2) in Fig. 8.2 motivates the concept of
a superbase with the extra vector v0 = −v1 − v2, which extends to any dimension 𝑛 by
setting v0 = −

𝑛∑
𝑖=1

v𝑛. For dimensions 2 and 3, [17, Theorem 2.9] proved that any lattice

has an obtuse superbase of vectors whose pairwise scalar products are non-positive and
are called Selling parameters [21]. For any superbase in R𝑛, the negated parameters
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𝑝𝑖 𝑗 = −v𝑖 · v 𝑗 can be interpreted as conorms of lattice characters, which are functions
𝜒 : Λ → {±1} satisfying 𝜒(u + v) = 𝜒(u)𝜒(v)), see [8, Theorem 6]. So 𝑝𝑖 𝑗 will be
defined as conorms only for an obtuse superbase below.

Definition 8.1.5 (obtuse superbase and conorms 𝑝𝑖 𝑗 ). For any basis v1, . . . , v𝑛 ofR𝑛, the

superbase v0, v1, . . . , v𝑛 includes the vector v0 = −
𝑛∑
𝑖=1

v𝑖 . The conorms 𝑝𝑖 𝑗 = −v𝑖 · v 𝑗
are the negative scalar products of the vectors above. The superbase is obtuse if all
conorms 𝑝𝑖 𝑗 ≥ 0, so all angles between vectors v𝑖 , v 𝑗 are non-acute for distinct indices
𝑖, 𝑗 ∈ {0, 1, . . . , 𝑛}. The superbase is called strict if all 𝑝𝑖 𝑗 > 0. ▲

Formula (1) in [8] has a typo initially defining 𝑝𝑖 𝑗 as exact Selling parameters, but
later [8, Theorems 3, 7, 8] use the non-negative conorms 𝑝𝑖 𝑗 = −v𝑖 · v 𝑗 ≥ 0.

The indices of a conorm 𝑝𝑖 𝑗 are distinct and unordered. We set 𝑝𝑖 𝑗 = 𝑝 𝑗𝑖 for all
indices 𝑖, 𝑗 . For 𝑛 = 1, the 1-dimensional lattice generated by a vector v1 has the
obtuse superbase consisting of the two vectors v0 = −v1 and v1, so the only conorm

𝑝01 = −v0 · v1 = v2
1 is the squared length of v1. Any superbase of R𝑛 has

𝑛(𝑛 + 1)
2

conorms 𝑝𝑖 𝑗 , for example, three conorms 𝑝01, 𝑝02, 𝑝12 in dimension 2.

Definition 8.1.6 (partial sums v𝑆 and vonorms v2
𝑆

). Let a lattice Λ ⊂ R𝑛 have a
superbase 𝐵 = {v0, v1, . . . , v𝑛}. For any proper subset 𝑆 ⊂ {0, 1, . . . , 𝑛} of indices,
consider its complement 𝑆 = {0, 1, . . . , 𝑛} \ 𝑆 and the partial sum v𝑆 =

∑
𝑖∈𝑆

v𝑖 whose

squared lengths v2
𝑆

are called the vonorms of 𝐵 and can be expressed as

v2
𝑆 =

(∑︁
𝑖∈𝑆

v𝑖

) ©­«−
∑︁
𝑗∈𝑆̄

v 𝑗
ª®¬ = −

∑︁
𝑖∈𝑆, 𝑗∈𝑆̄

v 𝑗 · v 𝑗 =
∑︁

𝑖∈𝑆, 𝑗∈𝑆̄

𝑝𝑖 𝑗 .

For 𝑛 = 2, we get the following simple formulae

(8.1.6𝑎) v2
0 = 𝑝01 + 𝑝02, v2

1 = 𝑝01 + 𝑝12, v2
2 = 𝑝02 + 𝑝12.

The above formulae allow us to express the conorms via vonorms as follows

(8.1.6𝑏) 𝑝12 =
1
2
(v2

1 + v2
2 − v2

0), 𝑝01 =
1
2
(v2

0 + v2
1 − v2

2), 𝑝02 =
1
2
(v2

0 + v2
2 − v2

1).

So 𝑝𝑖 𝑗 =
1
2
(v2
𝑖
+ v2

𝑗
− v2

𝑘
) for distinct 𝑖, 𝑗 ∈ {0, 1, 2} and 𝑘 = {0, 1, 2} − {𝑖, 𝑗}. ▲

Lemma 8.1.7 will later help to prove that a lattice is uniquely determined under
isometry by an obtuse superbase, hence by its vonorms or, equivalently, conorms.

Lemma 8.1.7 (Voronoi vectors 𝑣𝑆 [8, Theorem 3]). For any obtuse superbase
𝑣0, 𝑣1, . . . , 𝑣𝑛 of a lattice, all partial sums 𝑣𝑆 from Definition 8.1.6 split into 2𝑛 − 1
symmetric pairs 𝑣𝑆 = −𝑣𝑆̄ , which are Voronoi vectors representing distinct 2Λ-classes
in Λ/2Λ. All Voronoi vectors 𝑣𝑆 are strict if and only if all 𝑝𝑖 𝑗 > 0. ■
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By Conway and Sloane [8, section 2], any latticeΛ ⊂ R𝑛 that has an obtuse superbase
is called a lattice of Voronoi’s first kind. Any lattice in dimensions 2 and 3 is of Voronoi’s
first kind due to [22, p. 277] for 𝑛 = 2 and [4, Section III.4.3] for 𝑛 = 3.

Theorem 8.1.8 (reduction to an obtuse superbase). Any lattice Λ in dimensions 2
and 3 has an obtuse superbase {𝑣0, 𝑣1, . . . , 𝑣𝑛} so that 𝑣0 = −

𝑛∑
𝑖=1
𝑣𝑖 and all conorms

𝑝𝑖 𝑗 = −𝑣𝑖 · 𝑣 𝑗 ≥ 0 for all distinct indices 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑛}. ■

Conway and Sloane in [8, section 7] attempted to prove Theorem 8.1.8 for 𝑛 = 3
by example, which is corrected in [16]. Theorem 8.1.8 for 𝑛 = 2 is proved in [17,
appendix A]. Proposition 8.3.8 will establish a 1-1 correspondence between obtuse
superbases and reduced bases. The latter bases are implemented by many fast algorithms
in crystallography [2]. So our lattice input will be any obtuse superbase.

8.2 Geo-mapping problem for lattices under equivalences in R2

This section shows how past approaches to lattice classifications remained discontinuous
and states a suitable version of Geo-Mapping 1.4.5 for 2-dimensional lattices. Fig. 8.3
illustrates how both reduced basis and obtuse superbase discontinuously change under
rigid motion. As for many other objects, we need invariants, because [23, Theorem 15]
proved that any reduced basis is discontinuous under coordinate-wise comparisons.

Fig. 8.3 Discontinuity of obtuse superbases under rigid motion. The obtuse superbase of the vectors
v1 = (1, 0) , v2 (𝑡 ) = (−𝑡 , 2) , v0 (𝑡 ) = (𝑡 − 1, −2) deforms for 𝑡 ∈ [0, 1]. The initial and final
superbases at 𝑡 = 0 and 𝑡 = 1 generate the same rectangular lattice but are not related by rigid motion.

Any lattice Λ ⊂ R2 with a basis v1, v2 defines the positive quadratic form

𝑄(𝑥, 𝑦) = (𝑥v1 + 𝑦v2)2 = 𝑞11𝑥
2 + 2𝑞12𝑥𝑦 + 𝑞22𝑦

2 ≥ 0 for all 𝑥, 𝑦 ∈ R,
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where 𝑞11 = v2
1, 𝑞22 = v2

2, 𝑞12 = v1 · v2. Changing the basis v1, v2 (possibly by
reflection) is equivalent to replacing 𝑥, 𝑦 by the linear combinations of the coordinates
of 𝑥v1 + 𝑦v2 in a new basis. Conversely, any positive quadratic form 𝑄(𝑥, 𝑦) can be
written as a sum (𝑎1𝑥 + 𝑏1𝑦)2 + (𝑎2𝑥 + 𝑏2𝑦)2, see [11, Theorem 2 on p. 116], and
defines the lattice with the basis v1 = (𝑎1, 𝑎2), v2 = (𝑏1, 𝑏2).

In 1773, Lagrange [9] proved that any positive quadratic form can be rewritten so
that 0 < 𝑞11 ≤ 𝑞22 and −𝑞11 ≤ 2𝑞12 ≤ 0. The resulting non-acute reduced basis v1, v2
satisfies 0 < v2

1 ≤ v2
2 and −v2

1 ≤ 2v1 · v2 ≤ 0 without the new special conditions
in Definition 8.1.2. Alternatively, 0 ≤ 2𝑞12 ≤ 𝑞11 and 0 ≤ 2v1 · v2 ≤ v2

1 define a
non-obtuse reduced basis. The mirror images Λ± of Λ( 1

4 ) in Fig. 8.3 (top) generated
by the obtuse reduced bases v1 = (1, 0), v±2 = (− 1

4 ,±2) have the same reduced form
𝑄(𝑥, 𝑦) = 𝑥2 − 1

2𝑥𝑦 + 4𝑦2 not distinguishing Λ± under rigid motion.

If v1, v2 form a unique reduced basis, Lemma 8.5.2 shows that ±{v1, v2, v1 + v2} are
the three (pairs of) shortest Voronoi vectors. Then the metric tensor (v2

1, v1 · v2, v2
2) is

a complete isometry invariant but doesn’t distinguish mirror images (enantiomorphs).
Instead of one scalar product and two squared lengths, Delone used the homogeneous
parameters [10, section 29] equal to the conorms 𝑝𝑖 𝑗 from Definition 8.1.5:

𝑝01 = 𝑞11 + 𝑞12 = v2
1 + v1 · v2 = v1 · (v1 + v2) = −v0 · v1,

𝑝02 = 𝑞22 + 𝑞12 = v2
2 + v1 · v2 = v2 · (v1 + v2) = −v0 · v2,

𝑝12 = −𝑞12 = −v1 · v2.

The quadratic form becomes a sum of squares: 𝑄Λ = 𝑝01𝑥
2 + 𝑝22𝑦

2 + 𝑝12 (𝑥 − 𝑦)2. The
inequalities for 𝑞𝑖 𝑗 are equivalent to the simple ordering 0 ≤ 𝑝12 ≤ 𝑝01 ≤ 𝑝02, which
Definition 8.3.1 will use to introduce a more convenient root invariant.

Bi-continuity conditions in general Problem 1.4.5(d,e) become challenging for peri-
odic sets already in dimension 1. Any lattice under rigid motion in R is equivalent to a
periodic sequence 𝑙Z for a period 𝑙 > 0. However, for any small 𝜀 > 0, the 𝜀 perturbation
of 𝑙 up to (say) 𝑙 + 𝜀 makes the perturbed sequence (𝑙 + 𝜀)Z very different from 𝑙Z.
Indeed, extra 𝜀-shifts gradually move points (𝑙 + 𝜀)𝑛 further and further away from
𝑙𝑛 as 𝑛 ∈ 𝑍 increases. Nonetheless, we will prove bi-continuity of bijections between
invariant spaces of 2D lattices and the following metric spaces of obtuse superbases.

Definition 8.2.1 (spaces of obtuse superbases under equivalences). Let 𝐵 = {v𝑖}𝑛𝑖=0
and 𝐵′ = {u𝑖}𝑛𝑖=0 be any obtuse superbases in R𝑛.

(a) Let SBR(R𝑛) be the space of equivalence classes obtuse of superbases under
isometry under the action of special orthogonal maps 𝑓 ∈ SO(R𝑛) with the superbase
rigid metric SRM∞ (𝐵, 𝐵′) = min

𝑓 ∈SO(R𝑛 )
max
𝑖=0,...,𝑛

| 𝑓 (u𝑖) − v𝑖 |.

(b) Let SBI(R𝑛) be the space of equivalence classes obtuse of superbases under isometry
under the action of orthogonal maps 𝑓 ∈ O(R𝑛) with the superbase isometry metric
SIM∞ (𝐵, 𝐵′) = min

𝑓 ∈O(R𝑛 )
max
𝑖=0,...,𝑛

| 𝑓 (u𝑖) − v𝑖 |.
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(c) Let SBD(R𝑛) be the space of equivalence classes obtuse of superbases under dilation
under the action of dilation maps 𝑓 ∈ SO(R𝑛) ×R+ with the superbase dilation metric
SDM∞ (𝐵, 𝐵′) = min

𝑓 ∈SO(R𝑛 )×R+
max
𝑖=0,...,𝑛

| 𝑓 (u𝑖) − v𝑖 |.

(d) Let SBH(R𝑛) be the space of equivalence classes obtuse of superbases under
homothety under the action of homothety maps 𝑓 ∈ O(R𝑛) × R+ with the superbase
homothety metric SHM∞ (𝐵, 𝐵′) = min

𝑓 ∈O(R𝑛 )×R+
max
𝑖=0,...,𝑛

| 𝑓 (u𝑖) − v𝑖 |. ▲

Since any continuous function over a compact domain achieves its minimum value
and SO(R𝑛),O(R𝑛) are compact, the minima in Definition 8.2.1(a,b) are achievable.
For fixed superbases 𝐵, 𝐵′, one can restrict uniform scaling by reasonable bounds to
guarantee the existence of minima in Definition 8.2.1(c,d).

Problem 8.2.2 is a case of Problem 1.4.5 for 2D lattices. We use isometry as the main
equivalence, but moduli spaces of lattices will also be parametrised under rigid motion
and their compositions with uniform scaling (dilation and homothety).

Problem 8.2.2 (geo-mapping for 2D lattices). Design a geocode on the space of 2D
lattices under isometry that is an invariant satisfying the following conditions.
(a) Completeness: any lattices Λ ≃ Λ′ are isometric in R2 if and only if 𝐼 (Λ) = 𝐼 (Λ′).
(b) Reconstruction: any lattice Λ ⊂ R2 can be reconstructed from its invariant value
𝐼 (Λ), uniquely under isometry in R2.

(c) Metric: there is a metric 𝑑 on the invariant space {𝐼 (Λ) | lattices Λ ⊂ R2}, which
satisfies all axioms in Definition 1.3.1(a).

(d) Continuity: there is a constant 𝜆 > 0 such that, for any 𝜀 > 0, if any lattices Λ,Λ′ ⊂
R2 have obtuse have obtuse superbases 𝐵, 𝐵′, respectively with SIM∞ (𝐵, 𝐵′) ≤ 𝜀, then
𝑑 (𝐼 (Λ), 𝐼 (Λ′)) ≤ 𝜆

√
𝜀.

(e) Inverse continuity: for any 𝜀 > 0, there is 𝛿 > 0 such that if lattices Λ,Λ′ ⊂ R2

satisfy 𝑑 (𝐼 (Λ), 𝐼 (Λ′)) ≤ 𝛿, then they have obtuse superbases 𝐵, 𝐵′, respectively, with
SIM∞ (𝐵, 𝐵′) ≤ 𝜀.

(f) Realisability: the invariant space {𝐼 (Λ) | lattices Λ ⊂ R2} can be parametrised so
that we can generate any value 𝐼 (Λ) realisable by some lattice Λ ⊂ R2.

(g) Euclidean embedding: the invariant space {𝐼 (Λ) | lattices Λ ⊂ R2} with the metric
𝑑 allows a Lipschitz embedding into a suitable Euclidean space R𝑁 for some 𝑁 .

(h) Computability: the invariant 𝐼 and the metric 𝑑 (𝐼 (Λ), 𝐼 (Λ′)) can be computed in a
constant time 𝑂 (1) from reduced bases of Λ,Λ′. ⋆

A geocode that satisfies Problem 8.2.2 continuously parametrises the space of 2D
lattices under isometries, similarly defined for other equivalences below.

Definition 8.2.3 (moduli spaces of lattices under four equivalences in R𝑛). We consider
all lattices Λ ⊂ R𝑛 below.

(a) The Lattice Isometry Space LIS(R𝑛) is the space of lattices Λ under isometry.

(b) The Lattice Rigid Space LRS(R𝑛) is the space of lattices under rigid motion.
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(c) The Lattice Homothety Space LHS(R𝑛) is the space of lattices under homothety.

(d) The Lattice Dilation Space LDS(R𝑛) is the space of lattices under dilation. ▲

The traditional approach to deciding if lattices are isometric is to compare their
conventional or reduced cells. Though this comparison theoretically gives a complete
invariant, in practice, all real lattices in periodic crystals are non-isometric due to noise
in measurements. Since all atoms vibrate, any real lattice basis is always perturbed. The
discontinuity of reduced bases under perturbations was experimentally known since
1965 [18, p. 80] and was proved for all potential reductions in [23, Theorem 15].

A more practical goal is to design a complete invariant that is continuous under any
perturbations of (bases of) lattices. Such a geocode, which is more generally defined
in Problem 1.4.5, will unambiguously parametrise the Lattice Rigid Space LRS(R𝑛)
consisting of infinitely many equivalence classes of lattices under rigid motion in R𝑛.
For example, our Earth is continuously parametrised by the latitude and longitude, very
similar to the Lattice Dilation Space LDS(R2) as will become clear soon.

The Lattice Rigid Space LRS(R𝑛) is continuous and connected because any two
lattices can be joined by a continuous deformation of their bases as in Fig. 8.1. Such
deformation can always be visualised as a continuous path in the space LRS(R𝑛).

The Euclidean embeddability in 8.2.2(g) raises Problem 8.2.2 above metric geometry
to define a simpler Euclidean structure on LIS(R𝑛). It is easy to multiply any lattice
by a fixed scalar, but a sum of any two lattices is harder to define in a meaningful way
independent of lattice bases. We will overcome this obstacle by a natural embedding of
invariant spaces of lattices into R3 and R4 to fully solve Problem 8.2.2.

The isometry classification condition in 8.2.2(a) can be interpreted via group actions
as follows, see [12] and [24]. Let B𝑛 be the space of all linear bases in R𝑛.

Under a change of basis, all lattices in R𝑛 form the 𝑛2-dimensional orbit space
L𝑛 = B𝑛/GL(Z𝑛), see [12, formula (1.38), p. 34]. Under homothety, the orbit space
L𝑑
𝑛 = L𝑛/R×

+ becomes (𝑛2 − 1)-dimensional. Under orthogonal maps from the group
O(R𝑛), the orbit space of lattices can be identified with the coneC+ (Q𝑛) = B𝑛/O(R𝑛) of
positive quadratic forms, where Q𝑛 denotes the space of real symmetric 𝑛× 𝑛 matrices,
see [12, formula (1.67), p. 41]. The Lattice Isometry Space LIS(R𝑛) was called the
space of intrinsic lattices L𝑜𝑛 = C+ (Q𝑛)/GL(Z𝑛) in [12, formula (1.70), p. 42].

Another approach to identify an intrinsic lattice (isometry class), say for 𝑛 = 2, was
to choose a fundamental domain of the action of GL(Z2) on the cone C+ (Q2). This
choice is equivalent to a choice of a reduced basis, which can be discontinuous.

Mirror reflections of any lattice Λ correspond to quadratic forms 𝑞11𝑥
2 ± 2𝑞12𝑥𝑦 +

𝑞22𝑦
2 that differ by a sign of 𝑞12. To distinguish mirror images of lattices, Definition 8.3.4

will introduce sign(Λ). Then continuous deformations of lattices become continuous
paths in a space of invariants, see Remark 8.5.1.

Fig. 8.4 summarises the past obstacles and a full solution to Problem 8.2.2. The Root
Invariant Space RIS(R2) consists of ordered triples of square roots of conorms from
Definition 8.1.5. Related invariants will continuously parametrise spaces of lattices
under rigid motion, dilation, and homothety, as defined below.
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Fig. 8.4 LIS(R2 ) is bijectively and continuously mapped to the space of root invariants, which are
ordered triples of square roots of scalar products of vectors of an obtuse superbase of a lattice Λ ⊂ R2.

8.3 Invariants of an obtuse superbase of a 2-dimensional lattice

Definition 8.3.1 introduces voforms VF and coforms CF, which are triangular cycles
whose three nodes are marked by vonorms and conorms, respectively. We start from
any obtuse superbase 𝐵 of a lattice Λ ⊂ R2 to define VF, CF, and a root invariant RI.
Lemma 8.3.7(a) will justify that RI depends only on Λ, not on 𝐵.

Fig. 8.5 1st picture: a voform VF(𝐵) of a 2D lattice with an obtuse superbase 𝐵 = {v0, v1, v2}. 2nd
picture: nodes of a coform CF(𝐵) are marked by conorms 𝑝𝑖 𝑗 . 3rd and 4th pictures: VF and CF of
the hexagonal and square lattice with a minimum inter-point distance 𝑎.

Definition 8.3.1 (voform VF, coform CF, ordered root invariant RI). For any ordered
obtuse superbase 𝐵 in R2, the voform VF(𝐵) is the cycle on three nodes marked by
the vonorms v2

0, v
2
1, v

2
2, see Fig. 8.5. The coform CF(𝐵) is the cycle on three nodes

marked by the conorms 𝑝12, 𝑝02, 𝑝01. Since all conorms 𝑝𝑖 𝑗 ≥ 0, we can define the root
products 𝑟𝑖 𝑗 =

√
𝑝𝑖 𝑗 . The root invariant RI(𝐵) is obtained by writing the three root

products 𝑟12, 𝑟01, 𝑟02 in the increasing order. ▲
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By Theorem 8.1.8 any lattice Λ ⊂ R2 has an obtuse superbase with all 𝑝𝑖 𝑗 ≥ 0.
At least two root products 𝑟𝑖 𝑗 should be positive, otherwise one vonorm vanishes, but
there are no other restrictions on 𝑟𝑖 𝑗 ≥ 0. The vonorms v2

0, v
2
1, v

2
2 > 0 should satisfy

three triangle inequalities such as v2
0 ≤ v2

1 + v2
2, only one of them can be an equality.

The ordering 𝑟12 ≤ 𝑟01 ≤ 𝑟02 is equivalent to v2
1 ≤ v2

2 ≤ v2
0 by formulae (8.1.6a).

Root products have the same units as original coordinates of basis vectors, for example,
Angstroms: 1𝐴̊ = 10−10m. The ordered root invariant RI(𝐵) is more convenient than
VF(𝐵) and CF(𝐵), which depend on an order of vectors of 𝐵.

Example 8.3.2. (a) A lattice Λ with a rectangular cell of sides 𝑎 ≤ 𝑏 has an obtuse
superbase 𝐵 with v1 = (𝑎, 0), v2 = (0, 𝑏), v0 = (−𝑎,−𝑏), and RI(𝐵) = (0, 𝑎, 𝑏).

(b) For any latticeΛ ⊂ R2 whose Voronoi domain 𝑉̄ (Λ) is a mirror-symmetric hexagon,
assume that the 𝑥-axis is its line of symmetry. Since 𝑉̄ (Λ) is centrally symmetric with
respect to the origin 0, the 𝑦-axis is also its line of symmetry, see Fig. 8.6.

Then Λ has the centred rectangular (non-primitive) cell with sides 2𝑎 ≤ 2𝑏. The
obtuse superbase 𝐵 with v1 = (2𝑎, 0), v2 = (−𝑎, 𝑏), v0 = (−𝑎,−𝑏) has RI(𝐵) =

(𝑎
√

2, 𝑎
√

2,
√
𝑏2 − 𝑎2) for 𝑏 ≥ 𝑎

√
3. For 𝑎 ≤ 𝑏 < 𝑎

√
3, we should swap 𝑟02 =

√
𝑏2 − 𝑎2

with 𝑟12 = 𝑎
√

2 to get an ordered root invariant RI(𝐵). _

Fig. 8.6 Left: Λ has a rectangular cell and obtuse superbase 𝐵 with v1 = (𝑎, 0) , v2 = (0, 𝑏) ,
v0 = (−𝑎, −𝑏) , see Example 8.3.2 and Lemma 8.3.3. Other lattices Λ have a rectangular cell 2𝑎 × 2𝑏
and an obtuse superbase 𝐵 with v1 = (2𝑎, 0) , v2 = (−𝑎, 𝑏) , v0 = (−𝑎, −𝑏) . Middle: RI(𝐵) =

(
√
𝑏2 − 𝑎2, 𝑎

√
2, 𝑎

√
2) , 𝑎 ≤ 𝑏 ≤ 𝑎

√
3. Right: RI(𝐵) = (𝑎

√
2, 𝑎

√
2,

√
𝑏2 − 𝑎2 ) , 𝑎

√
3 ≤ 𝑏.

A lattice Λ ⊂ R𝑛 that can be mapped to itself by a mirror reflection with respect to
a (𝑛 − 1)-dimensional hyperspace can be called mirror-symmetric or achiral. Since a
mirror reflection of any lattice Λ ⊂ R2 with respect to a line 𝐿 ⊂ R2 can be realised by
a rotation in R3 around 𝐿 through 180◦, the term achiral sometimes applies to all 2D
lattices and becomes non-trivial only for 3D lattices. This paper for 2D lattices uses the
clearer adjective mirror-symmetric.

Lemma 8.3.3 (root invariants of mirror-symmetric lattices Λ ⊂ R2, [17, Lemma 3.3]).
An obtuse superbase 𝐵 generates a mirror-symmetric lattice Λ(𝐵) if and only if
(a) the root invariant RI(𝐵) contains a zero value and Λ(𝐵) is rectangular, or
(b) RI(𝐵) has equal root products and the Voronoi domain of Λ(𝐵) is a square or a
hexagon whose symmetry group has two orthogonal axes of symmetry. ■
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Definition 8.3.4 (sign(𝐵), the oriented root invariant RI𝑜 (𝐵)). If an obtuse superbase
𝐵 generates a mirror-symmetric lattice, set sign(𝐵) = 0. Else all vectors of 𝐵 have
different lengths and angles not equal to 90◦ by Lemma 8.3.3. Let v1, v2 be the shortest
vectors of 𝐵 so that |v1 | < |v2 |. Then sign(𝐵) = ±1 is the sign of the determinant
det(v1, v2) of the matrix with the columns v1, v2. The oriented root invariant RI𝑜 (𝐵)
is obtained by adding sign(𝐵) as a superscript to RI(𝐵), see Fig. 8.3. ▲

Fig. 8.7 The lattices Λ,Λ′ are mirror reflections of each other and have oriented root invariants
RI𝑜 = (

√
3,

√
6,

√
7)± with opposite signs introduced in Definition 8.3.4, see Example 8.3.5.

If sign(𝐵) = 0, this zero superscript in RI𝑜 (𝐵) can be skipped for simplicity, so
RI𝑜 (𝐵) = RI(𝐵) in this case. Theorem 8.3.6 will show that sign(𝐵) can be considered
as an invariant of a lattice Λ under dilation.

In Definition 8.3.4 the determinant det(v1, v2) is the signed area of the unit cell
𝑈 (v1, v2) equal to |v1 | · |v2 | sin ∠(v1, v2), where the angle is measured from v1 to v2 in
the anticlockwise direction around the origin 0 ∈ R2. For a strict obtuse superbase 𝐵,
all angles between its basis vectors are strictly obtuse. Then sign(𝐵) = +1 if ∠(v1, v2)
is in the positive range (90◦, 180◦), else sign(𝐵) = −1.

Example 8.3.5 (signs of lattices in Fig. 8.3). (a) The lattice Λ+ in the first picture of
Fig. 8.3 has the obtuse superbase 𝐵 with v1 = (3, 0), v2 = (−1, 3), v0 = (−2,−3) of
lengths 3,

√
10,

√
13, respectively, so Λ+ is not mirror-symmetric. Since v1, v2 are the

two shortest vectors of 𝐵+ and det(v1, v2) = det
©­­­«

3 −1

0 3

ª®®®¬ > 0, we get sign(𝐵+) = +1.

The anticlockwise angle is ∠(v1, v2) = 180◦ − arcsin 3√
10

≈ 108◦.

(b) The latticeΛ− in the last picture of Fig. 8.3 is obtained fromΛ+ by a mirror reflection
and has the obtuse superbase 𝐵− with u1 = v1, u2 = (−2, 3), u0 = (−1,−3) of lengths
3,
√

13,
√

10, respectively, so Λ− is not mirror-symmetric. Since u1, u0 are the shortest

vectors, det(u1, u0) = det
©­­­«

3 −1

0 −3

ª®®®¬ < 0, we get sign(𝐵−) = −1. The anticlockwise angle

is ∠(u1, u0) = arcsin 3√
10

− 180◦ ≈ −108◦. _

Theorem 8.3.6 below is crucial for a complete classification of 2D lattices in Theo-
rem 8.4.2 and Corollary 8.4.5. Theorem 8.3.6 highlights that mirror-symmetric lattices
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have more options for obtuse superbases under rigid motion. The same rectangular
lattice can have two obtuse bases with v1 = (1, 0), v2 = (0,±2), which are related by
reflection in the 𝑥-axis, not by rigid motion. This symmetry-related ambiguity is much
harder to resolve for 3D lattices even under isometry, see [16].

Theorem 8.3.6 (isometric obtuse superbases, [17, Theorem 3.7]). Any lattices Λ,Λ′ ⊂
R2 are isometric if and only if any obtuse superbases of Λ,Λ′ are isometric. If Λ,Λ′ are
not rectangular, the same conclusion holds for rigid motion instead of isometry. Any
rectangular (non-square) lattice has two obtuse superbases related by reflection. ■

Lemma 8.3.7 (lattice invariants, [17, Lemma 3.8]). (a) For any obtuse superbase 𝐵
of a lattice Λ ⊂ R2, the root invariant RI(𝐵) is an isometry invariant of Λ and can be
denoted by RI(Λ). Similarly, RI𝑜 (Λ) and sign(Λ) are invariants of a lattice Λ under
rigid motion and dilation, respectively.

(b) A lattice Λ ⊂ R2 is mirror-symmetric if and only if sign(Λ) = 0. ■

Fig. 8.8 Left: any reduced basis in Definition 8.1.2 can be mapped under dilation to the basis of
v1 = (1, 0) and v2 = (𝑥, 𝑦) ∈ Red from Proposition 8.3.8. Right: for each of the lattices Λ,Λ′,Λ′′

represented by small blue, green, red circles/disks on the right, the conditions of Definition 8.1.2 choose
one reduced basis among two bases that differ under rigid motion.

Proposition 8.3.8 (reduced bases, [17, Proposition 3.10]). (a) Under isometry in R2, all
reduced bases v1, v2 from Definition 8.1.2 are in a 1-1 correspondence with all obtuse
superbases 𝐵 = {v0, v1, v2} such that |v1 | ≤ |v2 | ≤ |v0 |. Under isometry, any lattice
Λ ⊂ R2 has a unique reduced basis in the conditions of Definition 8.1.2, see Fig. 8.8.

(b) Under rigid motion, any lattice has a unique reduced basis in Definition 8.1.2. ■

8.4 Complete invariants of 2D lattices under four equivalences

Lemma 8.3.7 showed that RI(Λ),RI𝑜 (Λ) are invariants of lattices under isometry and
rigid motion, respectively. To prove completeness of the invariants in Theorem 8.4.2,
Lemma 8.4.1 reconstructs an obtuse superbase ofΛ. Corollary 8.4.5 will classify lattices
under homothety by projected invariants introduced in Definition 8.4.4.
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Lemma 8.4.1 (superbase reconstruction, [17, Lemma 4.1]). An obtuse superbase 𝐵 =

{v0, v1, v2} of a lattice Λ ⊂ R2 can be uniquely reconstructed under isometry and
under rigid motion from its root invariant RI(Λ) and its oriented root invariant RI𝑜 (Λ),
respectively. If RI(Λ) = (𝑟12, 𝑟01, 𝑟02), the basis vectors v1, v2 are determined by

|v1 | =
√︃
𝑟2

12 + 𝑟
2
01, |v2 | =

√︃
𝑟2

12 + 𝑟
2
02, cos ∠(v1, v2) =

−𝑟2
12√︃

𝑟2
12 + 𝑟

2
01

√︃
𝑟2

12 + 𝑟
2
02

,

and span a primitive unit cell of the area 𝐴(Λ) =
√︃
𝑟2

12𝑟
2
01 + 𝑟

2
12𝑟

2
02 + 𝑟

2
01𝑟

2
02. ■

Theorem 8.4.2 (completeness of root invariants, [17, Theorem 4.2]). (a) Any lattices
Λ,Λ′ ⊂ R2 are isometric if and only if their root invariants coincide: RI(Λ) = RI(Λ′).

(b) Any lattices Λ,Λ′ are related by rigid motion if and only if RI𝑜 (Λ) = RI𝑜 (Λ′). ■

The above classification helps prove that some other isometry invariants of lattices
are also complete and continuous. By (8.1.6ab) the voform VF = (v2

0, v
2
1, v

2
2) and coform

CF = (𝑝12, 𝑝01, 𝑝02) are both complete if considered under 3! permutations. The root
invariant RI is a uniquely ordered version of CF and deserves its own name. The square
roots 𝑟𝑖 𝑗 =

√
𝑝𝑖 𝑗 have original units of the vector coordinates.

Theorem 8.4.2 and Lemma 8.5.2 imply that, after taking square roots of vonorms,
the ordered lengths, say |v1 | ≤ |v2 | ≤ |v0 |, form a complete invariant that should satisfy
the triangle inequality |v1 | + |v2 | ≥ |v0 |. This inequality is the only disadvantage of
the complete invariant |v1 | ≤ |v2 | ≤ |v0 | in comparison with ordered root products
𝑟12 ≤ 𝑟01 ≤ 𝑟02, which are easier to visualise in Fig. 8.9, 8.10.

Classification Theorem 8.4.2 says that all isometry classes of lattices Λ ⊂ R2 are in
a 1-1 correspondence with all ordered triples 0 ≤ 𝑟12 ≤ 𝑟01 ≤ 𝑟02 of root products in
RI(Λ). Only the smallest root product 𝑟12 can be zero, two others 𝑟01 ≤ 𝑟02 should be
positive, otherwise v2

1 = 𝑟2
12 + 𝑟

2
01 = 0 by formulae (8.1.6a).

We explicitly describe the set of all possible root invariants, which will be later
converted into metric spaces with continuous metrics in Definitions 8.6.1 and 8.6.3.

Definition 8.4.3 (triangular cone TC). All root invariants RI(Λ) = (𝑟12, 𝑟01, 𝑟02) of
lattices Λ ⊂ R2 live in the triangular cone TC = {0 ≤ 𝑟12 ≤ 𝑟01 ≤ 𝑟02} within the octant
Oct = [0,+∞)3 excluding the axes in the coordinates 𝑟12, 𝑟01, 𝑟02, see Fig. 8.9 (left).

The boundary 𝜕 (TC) of the cone TC consists of root invariants of all mirror-
symmetric lattices from Lemma 8.3.3: the bisector planes {𝑟01 = 𝑟02} and {𝑟12 = 𝑟01}
within TC. The orange line {0 < 𝑟12 = 𝑟01 = 𝑟02} ⊂ 𝜕 (TC) in Fig. 8.9 (left) consists
of root invariants of hexagonal lattices with a minimum inter-point distance 𝑟12

√
2. The

blue line {𝑟12 = 0 < 𝑟01 = 𝑟02} ⊂ 𝜕 (TC) consists of root invariants of square lattices
with a minimum inter-point distance 𝑟01. ▲

To classify lattices under homothety, it is convenient to scale them by the size
|Λ| = 𝑟12 + 𝑟01 + 𝑟02. This sum is a simpler uniform measure of size than (say) the unit
cell area 𝐴(Λ) from Lemma 8.4.1, which can be small even for long cells.
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Fig. 8.9 Left: the triangular cone TC = { (𝑟12, 𝑟01, 𝑟02 ) ∈ R3 | 0 ≤ 𝑟12 ≤ 𝑟01 ≤ 𝑟02 ≠ 0} represents
the space RIS of all root invariants of 2D lattices, see Definition 8.4.3. Middle: TC projects to the
quotient triangle QT = TC ∩ {𝑟12 + 𝑟01 + 𝑟02 = 1} representing the space LHS of 2D lattices under
homothety, see Corollary 8.4.5. Right: the quotient triangle QT can be parametrised by 𝑥 = 𝑟02 − 𝑟01 ∈
[0, 1) and 𝑦 = 3𝑟12 ∈ [0, 1], see QT also in Fig. 8.10.

Definition 8.4.4 (projected invariants PI(Λ) and PI𝑜 (Λ)). The triangular projection
TP : TC → {𝑟12+𝑟01+𝑟02 = 1} divides each coordinate by the size |Λ| = 𝑟12+𝑟01+𝑟02

and gives RI(Λ) = (𝑟12, 𝑟01, 𝑟02) =
(𝑟12, 𝑟01, 𝑟02)
𝑟12 + 𝑟01 + 𝑟02

in TC∩{𝑟12+𝑟01+𝑟02 = 1}. Then we
map (𝑟12, 𝑟01, 𝑟02) to the projected invariant PI(Λ) = (𝑥, 𝑦) with 𝑥 = 𝑟02 − 𝑟01 ∈ [0, 1)
and 𝑦 = 3𝑟12 ∈ [0, 1] in the quotient triangle

QT = {(𝑥, 𝑦) ∈ R2 | 0 ≤ 𝑥 < 1, 0 ≤ 𝑦 ≤ 1, 𝑥 + 𝑦 ≤ 1},

see Fig. 8.10. All oriented root invariants RI𝑜 (Λ) live in the doubled cone DC that is
the union of two triangular cones TC±, where we identify any two boundary points
representing the same root invariant RI(Λ) with sign(Λ) = 0. The oriented projected
invariant PI𝑜 (Λ) = (𝑥, 𝑦)± is PI(Λ) with the superscript from sign(Λ). ▲

The inequality 1 ≥ 𝑥 + 𝑦 = (𝑟02 − 𝑟01) + 3𝑟12 follows after multiplying both sides by
the size |Λ|, because 𝑟12 + 𝑟01 + 𝑟02 ≥ (𝑟02 − 𝑟01) + 3𝑟12 becomes 𝑟01 ≥ 𝑟12.

The set of oriented projected invariants PI𝑜 is visualised in Fig. 8.10 (right) as the
quotient square QS obtained by gluing the quotient triangle QT+ with its mirror image
QT− . The boundaries of both triangles excluding the vertex (𝑥, 𝑦) = (1, 0) are glued
by the diagonal reflection (𝑥, 𝑦) ↔ (1 − 𝑦, 1 − 𝑥). Any pair of points (𝑥, 𝑦) ∈ QT+

and (1 − 𝑦, 1 − 𝑥) ∈ QT− in Fig. 8.10 (right) represent mirror images of a lattice under
homothety, see Corollary 8.4.5. So QS is a topological sphere without a single point
and will be parameterised by geographic-style coordinates in [6].

Following Fig. 8.5, any square lattice has a root invariant RI = (0, 𝑎, 𝑎), so its
projected invariant PI = (0, 0) is at the bottom left vertex of QT in Fig. 8.10 (left),
identified with top right vertex of QS in Fig. 8.10 (right). Any hexagonal lattice has
a root invariant RI = (𝑎, 𝑎, 𝑎), so its projected invariant PI = (0, 1) is at the top left
vertex of QT in Fig. 8.10 (left), identified with bottom right vertex of QS.

By Example 8.3.2(a) any rectangular lattice has RI = (0, 𝑎, 𝑏) for 𝑎 < 𝑏, hence its
projected invariant PI = ( 𝑏−𝑎

𝑎+𝑏 , 0) belongs to the bottom edge of QT identified with
the top edge of QS. By Example 8.3.2(b) any lattice with a mirror-symmetric Voronoi
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Fig. 8.10 Left: all projected invariants PI(Λ) of lattices Λ ⊂ R2 live in the quotient triangle QT
from Fig. 8.9, which is parameterised by 𝑥 = 𝑟02 − 𝑟01 ∈ [0, 1) and 𝑦 = 3𝑟12 ∈ [0, 1]. Right: mirror
reflections Λ± of any non-mirror-symmetric lattice can be represented by a pair of points in the quotient
square QS = QT+ ∪ QT− symmetric in the diagonal 𝑥 + 𝑦 = 1.

domain has RI with 0 or two equal root products. Such lattices have a rhombic unit
cell and form the centred rectangular Bravais class. Their projected invariants belong
to the vertical edges and diagonal of QS in Fig. 8.10 (right). The companion paper [6]
discusses Bravais classes of 2-dimensional lattices in detail.

Corollary 8.4.5 (completeness of PI, [17, Corollary 4.6]). Any lattices Λ,Λ′ ⊂ R2 are
related by homothety if and only if their projected invariants are equal: PI(Λ) = PI(Λ′).
Any lattices Λ,Λ′ are related by dilation if and only if PI𝑜 (Λ) = PI𝑜 (Λ′). ■

Lemma 8.4.6 (criteria of mirror-symmetric lattices in R2, [17, Lemma 4.7]). A lattice
Λ in R2 is mirror-symmetric if and only if one of the following equivalent conditions
holds: sign(Λ) = 0 or RI(Λ) ∈ 𝜕TC or PI(Λ) ∈ 𝜕QT. So the boundaries of the
triangular cone TC and the quotient triangle QT consist of root invariants and projected
invariants, respectively, of all mirror-symmetric lattices Λ ⊂ R2. ■

8.5 Inverse design and a spherical map of 2D lattices

This section discusses lattices in terms of group actions, inversely designs lattices from
invariants, and embeds the Lattice Rigid Space LRS(R2) in a 2-dimensional sphere.

In the theory of complex functions, any lattice Λ ⊂ R2 can be considered as a
subgroup of the complex plane C whose quotient C/Λ is a torus. By the Riemann
mapping theorem any compact Riemann surface of genus 1 is conformally equivalent
(holomorphically homeomorphic) to the quotient C/Λ for some lattice Λ, see [15,
Section 5.3]. These tori C/Λ and C/Λ′ are conformally equivalent if and only if Λ,Λ′

are related by homothety, see [14, Theorem 6.1.4]. The spaces LHS(R2) and LDS(R2)
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of all lattices Λ ⊂ C = R2 under homothety and dilation are the quotient triangle QT
and the quotient square QS, respectively, see Fig. 8.10.

Remark 8.5.1 (lattices via group actions). Another parametrisation of the Lattice
Homothety Space LHS(R2) can be obtained from a fundamental domain of the action
of GL(Z2) ×R×

+ on the cone C+ (Q2) of positive quadratic forms. Recall that any lattice
Λ ⊂ R2 with a basis v1, v2 defines the positive quadratic form

𝑄Λ (𝑥, 𝑦) = (𝑥v1 + 𝑦v2)2 = v2
1𝑥

2 + 2v1v2𝑥𝑦 + v2
2𝑦

2 = 𝑞11𝑥
2 + 2𝑞12𝑥𝑦 + 𝑞22𝑦

2 ≥ 0

whose positivity for all (𝑥, 𝑦) ∈ R2 − 0 means that 𝑞2
12 < 𝑞11𝑞22. The cone C+ (Q2)

of all positive quadratic forms projects to the unit disk 𝜉2 + 𝜂2 < 1 parameterised by

𝜉 =
𝑞22 − 𝑞11
𝑞11 + 𝑞22

and 𝜂 =
−2𝑞12
𝑞11 + 𝑞22

. Indeed, the positivity condition 𝑞2
12 < 𝑞11𝑞22 for the

form 𝑄Λ (𝑥, 𝑦) is equivalent to 𝜉2 + 𝜂2 < 1 in the coordinates above.

The quadratic form 𝑄Λ is in a reduced (non-acute) form if 0 ≤ −2𝑞12 ≤ 𝑞11 ≤ 𝑞22
and 𝑞11 > 0, see [12, formula (1.130) on p. 75]. The above conditions define the
fundamental domain 𝑇 = {0 ≤ 𝜉 < 1, 0 ≤ 𝜂 ≤ 1

2 , 𝜉 + 2𝜂 ≤ 1}, see [24, Fig. 8.1]. This
non-isosceles triangle is one of the infinitely many triangular domains within the disk
𝜉2 + 𝜂2 < 1 in [12, Fig. 1.2 on p. 82] or [24, Fig. 6.2]. Choosing one triangular domain
is equivalent to choosing a reduced basis under isometry, not under rigid motion.

For instance, the mirror-symmetric bases v1 = (1, 0), v±2 = (− 1
2 ,±1) have the same

reduced non-acute form 𝑥2 − 𝑥𝑦 + 5
4 𝑦

2 represented only by (𝜉, 𝜂) = ( 1
9 ,

4
9 ). The above

ambiguity under rigid motion is resolved by sign(Λ) in the twice larger space LDS(R2)
visualised as the quotient square QS, see Example 8.8.2.

More importantly, the inverse map from RI𝑜 (Λ) to a reduced basis is discontinuous
at any rectangular lattice Λ with a unit cell 𝑎 × 𝑏. Indeed, slight perturbations of Λ have
unique reduced bases that are not close to each other, being close to the distant bases
(𝑎, 0), (0,±𝑏), which are not equivalent under rigid motion for 𝑎 < 𝑏. This discontinuity
of lattice bases will emerge in R3 even under isometry [16]. In R2, Corollary 8.8.4 will
completely settle the basis discontinuity under rigid motion.

Another complete invariant is the ordered voform v2
1 ≤ v2

2 ≤ v2
0 or the lengths |v1 | ≤

|v2 | ≤ |v0 | of the three shortest Voronoi vectors from Lemma 8.5.2 below. However,
this invariant doesn’t extend even to dimension 𝑛 = 3 due to a 6-parameter family of
pairs of non-isometric lattices Λ1 � Λ2 that have the same lengths of seven shortest
Voronoi vectors in R3, see [16]. The above reasons justify the choice of homogeneous
coordinates 𝑟𝑖 𝑗 , which easily extend to higher dimensions. _

Lemma 8.5.2 ([8, Theorem 7]). For any obtuse superbase (𝑣0, 𝑣1, 𝑣2) of a latticeΛ ⊂ R2,
the vonorms 𝑣2

0, 𝑣
2
1, 𝑣

2
2 are squared lengths of shortest Voronoi vectors. ■

The projected invariant PI = (𝑥, 𝑦) obtained from RI is preferable to the coordinates
(𝜉, 𝜂), which define a non-isosceles triangle, while the isosceles quotient triangle QT
will lead to easier formulae for metrics in the next section. Since the metric tensor
(v2

1, v1 · v2, v2
2) = (𝑞11, 𝑞12, 𝑞22) and its 3-dimensional analogue are more familiar to
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crystallographers, we will rephrase key results from sections 8.6-8.7 by using these
non-homogeneous coordinates in the companion paper [6].

Proposition 8.5.3 (inverse design of 2D lattices, [17, Proposition 4.9]). For 𝑠 > 0 and
any point (𝑥, 𝑦) in the quotient triangle QT, there is a unique (under isometry) lattice Λ
with the projected invariant PI(Λ) = (𝑥, 𝑦) and size |Λ| = 𝑠 = 𝑟12 + 𝑟01 + 𝑟02. Then

(8.5.3𝑎) RI(Λ) = (𝑟12, 𝑟01, 𝑟02) =
( 𝑠
3
𝑦,

𝑠

6
(3 − 3𝑥 − 𝑦), 𝑠

6
(3 + 3𝑥 − 𝑦)

)
.

If (𝑥, 𝑦) is in the interior of QT, the invariant RI defines a pair of lattices Λ±

that have opposite signs and unique (under isometry) reduced basis vectors v1, v2

with the lengths |v1 | =
√︃
𝑟2

12 + 𝑟
2
01, |v2 | =

√︃
𝑟2

12 + 𝑟
2
02 and the anticlockwise angle

(8.5.3𝑏) ∠(v1, v2) = arccos
−4𝑦2√︁

(9𝑥2 + 5𝑦2 − 6𝑦 + 9)2 − 36𝑥2 (3 − 𝑦)2
. ■

Example 8.5.4 shows the power of Proposition 8.5.3 based on Theorem 8.4.2 and
Corollary 8.4.5 for inverse design by sampling the square QS at interesting places.

Fig. 8.11 (right) visualises the doubled cone DC of oriented root invariants RI𝑜 from
Definition 8.3.4 by uniting the triangular cone TC = {0 ≤ 𝑟12 ≤ 𝑟01 ≤ 𝑟02} with its
mirror reflection in the vertical plane {𝑟01 = 𝑟02} including the 𝑟12-axis.

The lattice Λ0 with RI = (1, 1, 4) is represented by two boundary points of DC
identified by (𝑟01, 𝑟02) ↔ (𝑟02, 𝑟01). The lattices Λ±

∞ with the root invariant RI =

(𝑟12, 𝑟01, 𝑟02) = (1, 4, 7) are represented by (1, 4, 7) and its mirror image (1, 7, 4) in
DC related by the reflection in the vertical bisector plane 𝑟01 = 𝑟02 containing the root
invariants of Λ4,Λ6. The superscript shows sign(Λ±

∞) = ±1.

Example 8.5.4 (inverse design of 2D lattices). We will inversely design the lattices
Λ4,Λ6,Λ0,Λ

±
2 ,Λ

±
∞, see their visualised invariants in Fig. 8.11 (right).

(Λ4Λ4Λ4) We design the square lattice Λ4 starting from its projected invariant at the origin
PI(Λ4) = (0, 0) ∈ QT, which is identified with the top right vertex (1, 1) ∈ QS in
Fig. 8.11 (left). Formula (8.5.3a) for the size |Λ4 | = 2 (only to get simplest integers)
gives RI(Λ4) = (0, 1, 1). An obtuse superbase {v0, v1, v2} can be reconstructed by
Lemma 8.4.1. The vonorms are v2

1 = v2
2 = 02 +12 = 1, v2

0 = 12 +12 = 2. We can choose
the standard obtuse superbase v1 = (1, 0), v2 = (0, 1), v0 = (−1,−1).
(Λ6Λ6Λ6) We design the hexagonal lattice Λ6 starting from the projected invariant at the
top left vertex PI(Λ6) = (0, 1) ∈ QT, which is identified with the bottom right vertex
(1, 0) ∈ QS in Fig. 8.11 (left). Formula (8.5.3a) for the size |Λ6 | = 3 (only to get simplest
integers) gives RI(Λ6) = (1, 1, 1). To reconstruct an obtuse superbase {v0, v1, v2} by
Lemma 8.4.1, find the vonorms v2

1 = v2
2 = v2

0 = 12 + 12 = 2. Formula (8.5.3b) gives
the angle ∠(v1, v2) = arccos −4√

(5−6+9)2
= arccos

(
− 1

2

)
= 120◦. We can choose the

superbase v1 = (
√

2, 0), v2 = (− 1√
2
,
√

3√
2
), v0 = (− 1√

2
,−

√
3√
2
).

(Λ0Λ0Λ0) We inversely design the lattice Λ0 in Fig. 8.11 starting from PI(Λ0) = (𝑥, 𝑦) at
the centre ( 1

2 ,
1
2 ) ∈ QS. Formula (8.5.3a) for the size |Λ0 | = 6 (only to get simplest
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Fig. 8.11 Left: QS = QT+ ∪ QT− includes mirror-symmetric lattices Λ4,Λ6,Λ0 and non-mirror-
symmetric lattices Λ±

∞, see Example 8.6.2 and Table 8.1 later. Right: the doubled cone DC is visualised
as {0 ≤ 𝑟12 ≤ min{𝑟01, 𝑟02} > 0} bounded by the planes {𝑟12 = 0}, {𝑟12 = 𝑟01}, {𝑟12 = 𝑟02} with
the identifications (𝑟12, 𝑟01, 𝑟02 ) ↔ (𝑟12, 𝑟02, 𝑟01 ) on the boundary 𝜕DC.

integers) gives RI(Λ0) = (1, 1, 4). To reconstruct an obtuse superbase {v0, v1, v2}
by Lemma 8.4.1, find the vonorms v2

1 = 12 + 12 = 2, v2
0 = v2

2 = 12 + 42 = 17.

Formula (8.5.3b) gives the angle ∠(v1, v2) = arccos
−4√︃

( 9
4 + 5

4 − 3 + 9)2 − 9( 5
4 )2

=

arccos
(
− 1√

34

)
≈ 99.9◦. We can choose the following superbase, see Fig. 8.12: v1 =

(
√

2, 0), v2 = |v2 | (cos ∠(v1, v2), sin ∠(v1, v2)) = (− 1√
2
,
√

33√
2
), v0 = (− 1√

2
,−

√
33√
2
).

(Λ2Λ2Λ2) We inversely design the lattice Λ2 in Fig. 8.11 starting from their projected
invariants PI(Λ2) = ( 1

2+
√

2
, 1

2+
√

2
), which will maximise the chiral distance PC[𝐷2]

in Theorem 8.7.5(a). Formula (8.5.3a) for the size |Λ2 | = 6 (only to simplify the root
invariant) gives RI(Λ2) = (2−

√
2, 2

√
2−1, 5−

√
2). Since all root products are non-zero

and distinct, by Lemma 8.3.3 there is a pair of lattices Λ±
2 with sign(Λ±

2 ) = ±1. The
lattices Λ±

2 are related by reflection, not by rigid motion.

To reconstruct an obtuse superbase {v0, v1, v2} of Λ±
2 by Lemma 8.4.1, find

v2
0 = (2

√
2 − 1)2 + (5 −

√
2)2 = (9 − 4

√
2) + (27 − 10

√
2) = 36 − 14

√
2 ≈ 16.2,

v2
1 = (2 −

√
2)2 + (2

√
2 − 1)2 = (6 − 4

√
2) + (9 − 4

√
2) = 15 − 8

√
2 ≈ 3.7,

v2
2 = (2 −

√
2)2 + (5 −

√
2)2 = (6 − 4

√
2) + (27 − 10

√
2) = 33 − 14

√
2 ≈ 13.2,

and the anticlockwise angle ∠(v1, v2) = arccos
−𝑟2

12
|v1 | · |v2 |

≈ 92.8◦. Then Λ±
2 have

the following obtuse superbases in Fig. 8.12: v1 = (
√︁

15 − 8
√

2, 0) ≈ (1.9, 0), v2 =

|v2 | (cos ∠(v1, v2), sin ∠(v1, v2)) ≈ (−0.18, 3.63), v0 ≈ (−1.72,−3.63).

(Λ∞Λ∞Λ∞) We inversely design the lattice Λ∞ in Fig. 8.12 starting from PI(Λ∞) = (𝑥, 𝑦) at
the mid-point ( 1

4 ,
1
4 ) of the segment between PI(Λ4), PI(Λ0) ∈ QT. Formula (8.5.3a)

for the size |Λ∞ | = 12 (only to simplify the root invariant) gives RI(Λ∞) = (1, 4, 7).
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Fig. 8.12 The doubled cone DC in Fig. 8.11 (right) projects to the doubled triangle DT parameterised
by 𝑥 ∈ (−1, 1) , 𝑦 ∈ [0, 1] and obtained by gluing two copies QT± of the quotient triangle along
vertical sides instead of hypotenuses as in QS, see Example 8.5.4 and Table 8.1.

Since all root products are non-zero and distinct, by Lemma 8.3.3 there is a pair of
lattices Λ±

∞ of opposite signs sign(Λ±
∞) = ±1.

To reconstruct an obtuse superbase {v0, v1, v2} of Λ±
∞ by Lemma 8.4.1, find the

vonorms v2
0 = 42 + 72 = 65, v2

1 = 12 + 42 = 17, v2
2 = 12 + 72 = 50, and the

anticlockwise angle ∠(v1, v2) = arccos
−𝑟2

12
|v1 | · |v2 |

= arccos
(
− 1√

850

)
≈ 92◦. Then Λ±

∞

have the following obtuse superbases in Fig. 8.12: v1 = (
√

17, 0) ≈ (4.12, 0),

v±2 = |v2 | (cos ∠(v1, v2), sin ∠(v1, v2)) =
(
− 1
√

17
,±

√
849
√

17

)
≈ (−0.24,±7.1),

v±0 = −v1 − v±2 = (− 16√
17
,∓

√
849√
17

) ≈ (−3.88,∓7.1), see all forms in Table 8.1. _

Since the quotient square QS = QT+ ∪ QT− with identified sides is a punctured
sphere, it is natural to visualise QS as the round surface of Earth with QT± as the
north/south hemispheres separated by the equator along their common boundary of QT
represented by projected invariants PI(Λ) of all mirror-symmetric lattices Λ.

We can choose any internal point of the quotient triangle QT as the north pole.
The most natural choice is the incentre 𝑃+ (pole), the centre of the circle inscribed
into QT+ because the rays from 𝑃+ to the vertices of QT+ equally bisect the angles
90◦, 45◦, 45◦. The incentre of QT+ has the coordinates (𝑥, 𝑥), where 𝑥 = 1− 1√

2
= 1

2+
√

2
.

The lattice Λ+
2 with the projected invariant PI(Λ+

2 ) = (𝑥, 𝑥) has the basis 𝑣1 ≈ (1.9, 0),
𝑣2 ≈ (−0.18, 3.63) inversely designed in Example 8.5.4 (Λ2).
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Table 8.1 Various invariants of the lattices computed in Example 8.5.4, see Fig. 8.11 and 8.12.

Λ Λ4 Λ6 Λ0 Λ±
2 Λ±

∞

|Λ) 2 3 6 6 12

PI(Λ) (0, 0) (0, 1)
(

1
2
,

1
2

) (
1

2 +
√

2
,

1
2 +

√
2

) (
1
4
,

1
4

)
RI𝑜 (Λ) (0,1,1) (1,1,1) (1,1,4) (2 −

√
2, 2

√
2 − 1, 5 −

√
2)± (1, 4, 7)±

VF(Λ) (2,1,1) (2,2,2) (17,2,17) (15 − 8
√

2, 33 − 14
√

2, 36 − 14
√

2) (65,17,50)

Fig. 8.13 Left: in QT+, the Greenwich line goes from the ‘empty’ point (1,0) through incentre 𝑃+ to
the point𝐺 = (0,

√
2− 1) . Middle: the hemisphere HS+ has the north pole at 𝑃+, the equator 𝜕QT+ of

mirror-symmetric lattices. Right: the longitude 𝜇 ∈ (−180◦, +180◦ ] anticlockwise measures angles
from the Greenwich line, the latitude 𝜑 ∈ [−90◦, +90◦ ] measures angles from the equator to the north.

Definition 8.5.5 (spherical lattice map SLM : QS → 𝑆2). (a) The spherical map SLM
sends the incentre 𝑃+ of QT to the north pole of the hemisphere HS+ and the boundary
𝜕QT to the equator of HS+, see Fig. 8.5 (middle). Linearly map the line segment
between 𝑃+ and any point (𝑥, 𝑦) in the boundary 𝜕QT to the shortest arc connecting the
north pole SLM(𝑃+) to SLM(𝑥, 𝑦) in the equator of HS+. Extend the spherical map to
SLM : QS → 𝑆2 by sending any pair of invariants PI𝑜 (Λ±) with sign(Λ±) = ±1 to the
northern/southern hemispheres of the 2-dimensional sphere 𝑆2, respectively.

(b) For any lattice Λ ⊂ R2, the latitude 𝜑(Λ) ∈ [−90◦,+90◦] is the angle from the
equatorial plane EP of 𝑆2 to the radius-vector to the point SLM(PI𝑜 (Λ)) ∈ 𝑆2 in the
upwards direction. Let 𝑣(Λ) be the orthogonal projection of this radius-vector to EP.
Define the Greenwich point as𝐺 = (0,

√
2−1) ∈ 𝜕QT in the line through 𝑃+ and (1, 0).

This 𝐺 represents all centred rectangular lattices with a conventional unit cell 2𝑎 × 2𝑏
whose ratio 𝑟 = 𝑏

𝑎
can be found from Example 8.3.2(b):

√
2− 1 = 3

√
𝑏2−𝑎2

2𝑎
√

2+
√
𝑏2−𝑎2 . Setting

𝑠 =
√
𝑟2 − 1, we get

√
2 − 1 = 3𝑠

2
√

2+𝑠
, 𝑠 = 4−2

√
2

4−
√

2
, 𝑟 =

√
𝑠2 + 1 ≈ 1.1. The Greenwich

meridian is the great circle on 𝑆2 passing through the point SLM(𝐺) in the equator 𝐸 .
The longitude 𝜇(Λ) ∈ (−180◦, 180◦] is the anticlockwise angle from the Greenwich
plane through the Greenwich meridian to the vector 𝑣(Λ) above. ▲
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For lattices with PI(Λ) in the straight-line segment between the excluded vertex
(1, 0) and the incentre 𝑃+, we choose the longitude 𝜇 = +180◦ rather than −180◦.
Proposition 8.5.6 computes the longitude and latitude coordinates 𝜇(Λ), 𝜑(Λ) via
PI(Λ) = (𝑥, 𝑦) in terms of the projected invariant PI(Λ) = (𝑥, 𝑦) .

Proposition 8.5.6 (formulae for spherical lattice map SLM, [6, Proposition 5.2]). For

any lattice Λ ⊂ R2 with PI(Λ) = (𝑥, 𝑦) ∈ QT, if 𝑥 ≠ 𝑡 = 1 − 1
√

2
, then set 𝜓 =

arctan
𝑦 − 𝑡
𝑥 − 𝑡 , otherwise 𝜓 = sign(𝑦 − 𝑡)90◦.

(a) The longitude of the lattice Λ is 𝜇(Λ) =



𝜓 + 22.5◦ if 𝑥 < 𝑡,

𝜓 − 157.5◦ if 𝑥 ≥ 𝑡, 𝜓 ≥ −22.5◦,

𝜓 + 202.5◦ if 𝑥 ≥ 𝑡, 𝜓 ≤ −22.5◦.

(b) The latitude is 𝜑(Λ) = sign(Λ) ·



𝑥
√

2√
2−1

90◦ if 𝜇(Λ) ∈ [−45◦,+67.5◦],

𝑦
√

2√
2−1

90◦ if 𝜇(Λ) ∈ [+67.5◦,+180◦],

1−𝑥−𝑦√
2−1

90◦ if 𝜇(Λ) ∈ [−180◦,−45◦] .
The incentres 𝑃± ∈ QT± have 𝜓 = 0 and 𝜑 = ±90◦, respectively, 𝜇 is undefined. ■

Example 8.5.7 (prominent lattices). Any mirror-symmetric lattice Λ ⊂ R2 has
sign(Λ) = 0, hence belongs to the equator 𝐸 of 𝑆2 and has 𝜑(Λ) = 0 by (8.5.6b). Any
square latticeΛ4 with PI(Λ4) = (0, 0) has 𝜇(Λ4) = arctan 1+22.5◦ = 67.5◦ by (8.5.6a).
Any hexagonal latticeΛ6 with PI(Λ4) = (0, 1) has 𝜇(Λ4) = arctan 1

1−
√

2
+22.5◦ = −45◦.

Any rectangular lattice Λwith PI(Λ) = (1− 1√
2
, 0) has 𝜇(Λ) = −90◦+202.5◦ = 112.5◦.

Any centered rectangular lattice Λ with PI(Λ) = ( 1
2 ,

1
2 ) at the mid-point of the diago-

nal of QT has 𝜇(Λ) = arctan 1 − 157.5◦ = −112.5◦. Any Greenwich lattice Λ𝐺 with
PI(Λ𝐺) = 𝐺 = (0,

√
2 − 1) has 𝜇(Λ𝐺) = arctan

(
1 −

√
2
)
+ 22.5◦ = 0. _

In addition to the original paper [17], we add new Corollary 8.5.8 to fulfill the
realisability and Euclidean embeddability conditions in Problem 8.2.2(f,g).

Corollary 8.5.8 (Euclidean embeddings of lattice spaces). (a) For all lattices Λ ⊂ R2

under isometry, the Root Invariant Space RIS(R2) = {RI(Λ) | lattices Λ ⊂ R2} consists
of all ordered triples 0 ≤ 𝑟12 ≤ 𝑟01 ≤ 𝑟02, where the smallest root product 𝑟12 can be
zero. Then RIS(R2) is embedded into R3 as the triangular cone TC in Definition 8.4.3.

(b) For all lattices Λ ⊂ R2 under homothety, the invariant space {PI(Λ) | lattices Λ ⊂
R2} consists of all points (𝑥, 𝑦) in the quotient triangle QT ⊂ R2 from Definition 8.4.4.

(c) For all latticesΛ ⊂ R2 under dilation, the invariant space {PI𝑜 (Λ) | lattices Λ ⊂ R2}
can be embedded onto 𝑆2 \ {one point} ⊂ R3 by the map SLM from Definition 8.5.5.

(d) For all lattices Λ ⊂ R2 under rigid motion, the space {PI𝑜 (Λ) | lattices Λ ⊂ R2}
can be embedded onto (§2 \ {one point}) × (0,+∞) ⊂ R4. ■
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Proof. Parts (a,b,c) follow Definitions 8.4.3, 8.4.4, and 8.5.5. Part (d) is obtained by
extending the embedding 𝑆2 ⊂ R3 from part (c) by a scaling factor 𝑠 ∈ (0,+∞) All
embeddings are bi-Lipschitz because all invariant spaces can be compactified and all
underlying maps are expressed via elementary functions as in 8.5.6. ⊓⊔

8.6 Metrics on spaces of 2D lattices under all four equivalences

All lattices Λ ⊂ R2 are uniquely represented under isometry and homothety by their
invariants RI ∈ TC and PI ∈ QT, respectively. Then any metric 𝑑 on the triangular cone
TC ⊂ R3 or the quotient triangle QT ⊂ R2 gives rise to a metric in Definition 8.6.1
on the spaces LIS and LHS, respectively. The oriented case in Definition 8.6.3 will be
harder because of identifications on the boundary 𝜕TC.

Definition 8.6.1 (root metrics RM, projected metrics PM). Any metric 𝑑 on R3 de-
fines the root metric RM(Λ1,Λ2) = 𝑑 (RI(Λ1),RI(Λ2)) on lattices Λ1,Λ2 ⊂ R2 un-
der isometry. The Root Invariant Space RIS = (TC, 𝑑) is the triangular cone with a
fixed metric 𝑑. If we use the Minkowski norm 𝑀𝑞 (𝑣) = | |𝑣 | |𝑞 = (

𝑛∑
𝑖=1

|𝑥𝑖 |𝑞)1/𝑞 of a

vector v = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 for any real 𝑞 ∈ [1,+∞], the root metric is denoted by
RM𝑞 (Λ1,Λ2) = | |RI(Λ1) −RI(Λ2) | |𝑞 . The limit case 𝑞 = +∞ uses | |𝑣 | |∞ = max

𝑖=1,...,𝑛
|𝑥𝑖 |.

The projected metric PM(Λ1,Λ2) = 𝑑 (PI(Λ1), PI(Λ2)) is on lattices under homothety
for any metric 𝑑 on R2. The space of projected invariants PIN = (QT, 𝑑) is the quotient
triangle with a metric 𝑑. The notation PM𝑞 (Λ1,Λ2) = | |PI(Λ1) − PI(Λ2) | |𝑞 includes a
parameter 𝑞 ∈ [1,+∞] of 𝑀𝑞 . ▲

The Minkowski distance 𝑀𝑞 for 𝑞 = 2 is Euclidean. The root metric RM𝑞 can
take any large values in original units of vector coordinates such as Angstroms. The
projected metric PM𝑞 is unitless and the space PIN = (QT, 𝑑) is bounded.

Example 8.6.2 (metrics RM𝑞 , PM𝑞). Table 8.2 summarises metric computations for
the lattices Λ4,Λ6,Λ0,Λ

±
∞, which were inversely designed in Example 8.5.4. _

Since the mirror images Λ±
∞ have the same root invariant RI(Λ±

∞) = (1, 4, 7), for any
latticeΛ, the distances RM(Λ,Λ±

∞) and PM(Λ,Λ±
∞) are independent of sign(Λ±

∞) = ±1.
Any mirror images Λ± have RM(Λ+,Λ−) = 0 = PM(Λ+,Λ−) because Λ± are isometric
to each other. The metric RM from Definition 8.6.1 is well-defined only for lattices under
any isometry including reflections.

Definition 8.6.3 introduces the metric RM𝑜 on lattices under rigid motion so that
RM𝑜 (Λ+,Λ−) > 0 on mirror images of a non-mirror-symmetric lattice, see Fig. 8.14.

Definition 8.6.3 (orientation-aware metrics RM𝑜, PM𝑜). For lattices Λ1,Λ2 ⊂ R2

with sign(Λ1)sign(Λ2) ≥ 0, the orientation-aware root metric is RM𝑜 (Λ1,Λ2) =

RM(Λ1,Λ2) as in Definition 8.6.1. If any lattices Λ1,Λ2 have opposite signs, set
RM𝑜 (Λ1,Λ2) = inf

sign(Λ3 )=0
(RM(Λ1,Λ3) + RM(Λ2,Λ3)). The orientation-based metric

PM𝑜 (Λ1,Λ2) is defined by the same formula, where we replace RM by PM. ▲
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Table 8.2 Metrics RM𝑞 and PM𝑞 for the lattices from Example 8.6.2 and shown Fig. 8.11 and 8.12.

RM∞ Λ4 Λ6 Λ0 Λ±
∞

RI(Λ4 ) = (0, 1, 1) 0 1 3 6

RI(Λ6 ) = (1, 1, 1) 1 0 3 6

RI(Λ0 ) = (1, 1, 4) 3 3 0 3

RI(Λ±
∞ ) = (1, 4, 7) 6 6 3 0

PM∞ Λ4 Λ6 Λ0 Λ±
∞

PI(Λ4 ) = (0, 0) 0 1 1
2

1
4

PI(Λ6 ) = (0, 1) 1 0 1
2

3
4

PI(Λ0 ) = ( 1
2 ,

1
2 )

1
2

1
2 0 1

4

PI(Λ±
∞ ) = ( 1

4 ,
1
4 )

1
4

3
4

1
4 0

RM𝑞 for 𝑞 ∈ [1, +∞) Λ4 Λ6 Λ0 Λ±
∞

RI(Λ4 ) = (0, 1, 1) 0 1 (1 + 3𝑞 )1/𝑞 (1 + 3𝑞 + 6𝑞 )1/𝑞

RI(Λ6 ) = (1, 1, 1) 1 0 3 (3𝑞 + 6𝑞 )1/𝑞

RI(Λ0 ) = (1, 1, 4) (1 + 3𝑞 )1/𝑞 3 0 3 · 21/𝑞

RI(Λ±
∞ ) = (1, 4, 7) (1 + 3𝑞 + 6𝑞 )1/𝑞 (3𝑞 + 6𝑞 )1/𝑞 3 · 21/𝑞 0

PM𝑞 for 𝑞 ∈ [1, +∞) Λ4 Λ6 Λ0 Λ±
∞

PI(Λ4 ) = (0, 0) 0 1 2(1/𝑞)−1 2(1/𝑞)−2

PI(Λ6 ) = (0, 1) 1 0 2(1/𝑞)−1 1
4 (1 + 3𝑞 )1/𝑞

PI(Λ0 ) = ( 1
2 ,

1
2 ) 2(1/𝑞)−1 2(1/𝑞)−1 0 2(1/𝑞)−2

PI(Λ±
∞ ) = ( 1

4 ,
1
4 ) 2(1/𝑞)−2 1

4 (1 + 3𝑞 )1/𝑞 2(1/𝑞)−2 0

The infimum in RM𝑜 (Λ1,Λ2) is the greatest lower bound defining a metric on a union
of metric spaces glued by isometries. Theoretically, this bound may not be achieved over
a non-compact domain. When using a Minkowski base metric 𝑀𝑞 , Propositions 8.6.5-
8.6.6 explicitly compute RM𝑜

𝑞 , PM𝑜
𝑞 for 𝑞 = 2,+∞, so the infimum in Definition 8.6.3

can be replaced by a minimum in practice.

The oriented root invariant space RIS𝑜 and the space of oriented projected invariants
PIN𝑜 can be defined similarly to RIS and PIN in Definition 8.6.1 as the doubled cone DC
and quotient square QS with any metrics from Definition 8.6.3. [17, Lemmas 5.3 and
5.5] prove the metric axioms for RM, PM and RM𝑜, PM𝑜, respectively. Lemma 8.6.4
speeds up computations in the oriented case, see Example 8.7.7.

Lemma 8.6.4 (reversed signs, [17, Lemma 5.6]). If lattices Λ±
1 ,Λ

±
2 ⊂ R2 have specified

signs, then RM𝑜 (Λ+
1 ,Λ

−
2 ) = RM𝑜 (Λ−

1 ,Λ
+
2 ) and PM𝑜 (Λ+

1 ,Λ
−
2 ) = PM𝑜 (Λ−

1 ,Λ
+
2 ). ■

If latticesΛ1,Λ2 have non-opposite signs, so sign(Λ1)sign(Λ2) ≥ 0, then the metrics
RM𝑜

𝑞 and PM𝑜
𝑞 from Definition 8.6.3 coincide with the easily computable unoriented
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Fig. 8.14 By Definition 8.6.3, the projected metric PM2 (Λ+
1 ,Λ

−
2 ) is the minimum sum PM2 (Λ+

1 ,Λ3 )+
PM2 (Λ3Λ

−
2 ) achieved in the left image, see computations in Proposition 8.6.5.

metrics RM𝑞 , PM𝑞 from Definition 8.6.1. Hence Propositions 8.6.5 and 8.6.6 compute
RM𝑜

𝑞 (Λ1,Λ2) and PM𝑜
𝑞 (Λ1,Λ2) only for lattices of opposite signs.

Proposition 8.6.5 (root metrics for 𝑞 = 2,+∞, [17, Proposition 5.8]). Let Λ1,Λ2 ⊂ R2

be lattices of opposite signs with RI(Λ1) = (𝑟12, 𝑟01, 𝑟02), RI(Λ2) = (𝑠12, 𝑠01, 𝑠02).
(a) RM𝑜

2 (Λ1,Λ2) is the minimum of the Euclidean distances from the point RI(Λ1) to
the three points (−𝑠12, 𝑠01, 𝑠02), (𝑠01, 𝑠12, 𝑠02), and (𝑠12, 𝑠02, 𝑠01) in R3.

(b) RM𝑜
∞ (Λ1,Λ2) = min{𝑑0, 𝑑1, 𝑑2}, where

𝑑0 = max{𝑟12 + 𝑠12, |𝑟01 − 𝑠01 |, |𝑟02 − 𝑠02 |},
𝑑1 = max{MS(𝑟12, 𝑟01, 𝑠12, 𝑠01), |𝑟02 − 𝑠02 |},
𝑑2 = max{|𝑟12 − 𝑠12 |,MS(𝑟01, 𝑟02, 𝑠01, 𝑠02)},
where MS(𝑎, 𝑏, 𝑐, 𝑑) = max{|𝑎 − 𝑏 |, |𝑐 − 𝑑 |, 1

2 |𝑎 + 𝑏 − 𝑐 − 𝑑 |}. ■

Proposition 8.6.6 (projected metrics for 𝑞 = 2,+∞, [17, Proposition 5.9]). Let Λ1,Λ2
be lattices with opposite signs and invariants PI(Λ1) = (𝑥1, 𝑦1), PI(Λ2) = (𝑥2, 𝑦2).
(a) PM𝑜

2 (Λ1,Λ2) is the minimum of the Euclidean distances from PI(Λ1) = (𝑥1, 𝑦1) to
the three points (−𝑥2, 𝑦2), (𝑥2,−𝑦2), (1 − 𝑦2, 1 − 𝑥2) in R2.

(b) For 𝑥1 ≤ 𝑥2, PM𝑜
∞ (Λ1,Λ2) = min{𝑑𝑥 , 𝑑𝑦 , 𝑑𝑥𝑦} for 𝑑𝑥 = max{𝑥2 − 𝑥1, 𝑦2 + 𝑦1},

𝑑𝑦 = max{𝑥2 + 𝑥1, |𝑦2 − 𝑦1 |}, 𝑑𝑥𝑦 = max{𝑥2 − 𝑥1, 1 − 𝑥2 − 𝑦2 + |1 − 𝑦1 − 𝑥2 |}. ▲

8.7 Real-valued chiral distances measure asymmetry of lattices

The classical concept of chirality is a binary property distinguishing mirror images of
the same object such as a molecule or a periodic crystal. Continuous classifications
in Theorem 8.4.2 and Corollary 8.4.5 imply that the binary chirality is discontinuous
under almost any perturbations similar to other discrete invariants such as symmetry
groups. To avoid arbitrary thresholds, it makes more sense to continuously quantify a
deviation of a lattice from a higher-symmetry neighbour.
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The term chirality often refers to 3-dimensional molecules or crystal lattices. One
reason is the fact that in R2 a reflection with respect to a line 𝐿 is realised by the rotation
in R3 around 𝐿 through 180◦. However, if our ambient space is only R2, the concepts of
isometry and rigid motion differ. For example, Lemma 8.3.3 described root invariants
of all lattices that are related to their mirror images by rigid motion. Such lattices can
be called achiral. We call them mirror-symmetric to avoid a potential confusion with
the literature in crystallography. Definition 8.7.1 introduces the real-valued 𝐺-chiral
distances of a lattice Λ ⊂ R2. Proposition 8.8.5 proves the continuity of these functions
RC[𝐺] : LIS(R2) → R and PC[𝐺] : LHS(R2) → R.

Recall that the crystallographic point group 𝐺 of a lattice Λ ⊂ R2 containing the
origin 0 consists of all symmetry operations that keep 0 and mapΛ to itself. For example,
any such group 𝐺 includes the central symmetry with respect to 0 ∈ Λ ⊂ R2. If 𝐺
has no other non-trivial symmetries, we get 𝐺 = 𝐶2 in Schonflies notations. All 2D
lattices split into four crystal families by their point groups: oblique (𝐶2), orthorhombic
(𝐷2), tetragonal or square (𝐷4) and hexagonal (𝐷6). Orthorhombic lattices split into
rectangular and centred rectangular, see Fig. 8.10.

Fig. 8.15 Left: by Definition 8.7.1, the projected 𝐷2 chiral distance PC2 [𝐷2 ] (Λ) is the minimum
Euclidean distance from PI(Λ) ∈ QT to the boundary 𝜕QT. Middle: PC2 [𝐷4 ] (Λ) is the distance
from PI(Λ) to (0, 0) . Right: PC2 [𝐷6 ] (Λ) is the distance from PI(Λ) to (0, 1) .

Definition 8.7.1 (𝐺-chiral distances RC[𝐺] and PC[𝐺]). For any crystallographic point
group 𝐺 in R2, let LIS[𝐺] ⊂ LIS(R2) be the closure of the subspace of all (isometry
classes of) lattices that have the crystallographic point group𝐺. For𝐺 = 𝐷2 or𝐺 = 𝐷4
or 𝐺 = 𝐷6, the root and projected 𝐺-chiral distances are

RC[𝐺] (Λ) = min
Λ′∈LIS[𝐺 ]

RM(Λ,Λ′) ≥ 0 and PC[𝐺] (Λ) = min
Λ′∈LIS[𝐺 ]

PM(Λ,Λ′) ≥ 0,

where RM, PM are any metrics from Definition 8.6.1 with a base metric 𝑑. If 𝑑 = 𝑀𝑞
for 𝑞 ∈ [1,+∞], denote the 𝐺-chiral distances by RC𝑞 [𝐺] and PC𝑞 [𝐺]. ▲

Since any latticeΛ is symmetric with respect to the origin 0 ∈ Λ, the closed subspace
LIS[𝐶2] coincides with the 3-dimensional Lattice Isometry Space LIS(R2). The 2-
dimensional subspace LIS[𝐷2] consists of all mirror-symmetric lattices (rectangular
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and centred-rectangular) represented by root invariants RI on the boundary 𝜕TC of
the triangular cone in Definition 8.4.3, see Fig. 8.9. The 1-dimensional subspaces
LIS[𝐷4],LIS[𝐷6] ⊂ LIS[𝐷2] can be viewed as the blue and orange rays {𝑟12 = 0 <
𝑟01 = 𝑟02} and {0 < 𝑟12 = 𝑟01 = 𝑟02}, respectively.

The 𝐺-chiral distance RC[𝐺] in Definition 8.7.1 measures a distance from RI(Λ)
to the root invariant of a closest neighbour in the subspace LIS[𝐺]. Any RC[𝐺] (Λ) is
invariant under isometry and measures a distance from Λ to its nearest neighbour Λ′ ∈
LIS[𝐺]. The signed chiral distances sign(Λ)RC(Λ) and sign(Λ)PC(Λ) are invariant
under rigid motion. Since LIS[𝐺] is a closed subspace within LIS(R2), the continuous
distances RM, PM achieve their minima if their base distances 𝑑 are continuous. If
LIS[𝐷2] was defined as an open subspace of only lattices that have the point group 𝐷2
(not 𝐷4 or 𝐷6), then RC[𝐺], PC[𝐺] should be defined via infima instead of simpler
minima. Indeed, any square or hexagonal lattice Λ can be approximated by infinitely
many closer and closer orthorhombic latticesΛ′, but the expected distance RM(Λ,Λ′) =
0 will not be achieved on an open set.

For 𝑞 = 2,+∞, the distances RC𝑞 , PC𝑞 are computed in Propositions 8.7.4, 8.7.5.

Lemma 8.7.2 (properties of chiral distances, [17, Lemma 6.2]). (a) A lattice Λ ⊂ R2

is mirror-symmetric if and only if RC[𝐷2] (Λ) = 0 or, equivalently, PC[𝐷2] (Λ) = 0.

(b) For any crystallographic point group 𝐺 in R2, mirror reflections Λ± ⊂ R2 have
equal 𝐺-chiral distances: RC[𝐺] (Λ+) = RC[𝐺] (Λ−), PC[𝐺] (Λ+) = PC[𝐺] (Λ−). ■

Lemma 8.7.3 (lower bounds, [17, Lemma 6.3]). (a) If lattices Λ1,Λ2 have opposite
signs, then RM𝑜 (Λ1,Λ2) ≥ RC[𝐷2] (Λ1) + RC[𝐷2] (Λ2) and
PM𝑜 (Λ1,Λ2) ≥ PC[𝐷2] (Λ1) + PC[𝐷2] (Λ2).
(b) For the mirror images Λ± of any lattice Λ, the lower bounds in part (a) become
equalities: RM𝑜 (Λ+,Λ−) = 2RC[𝐷2] (Λ) and PM𝑜 (Λ+,Λ−) = 2PC[𝐷2] (Λ). ■

Proposition 8.7.4 (chiral distances RC𝑞 [𝐺] for 𝑞 = 2,+∞, [17, Proposition 6.5]). Let
a lattice Λ ⊂ R2 have a root invariant RI(Λ) = (𝑟12, 𝑟01, 𝑟02) with 0 ≤ 𝑟12 ≤ 𝑟01 ≤ 𝑟02.

(a) RC2 [𝐷2] (Λ) = min
{
𝑟12,

𝑟01 − 𝑟12√
2

,
𝑟02 − 𝑟01√

2

}
;

RC2 [𝐷4] (Λ) =
√︃
𝑟2

12 +
1
4 (𝑟02 − 𝑟01)2;

RC2 [𝐷6] (Λ) =
√︃

2
3 (𝑟2

12 + 𝑟
2
01 + 𝑟

2
02 − 𝑟12𝑟01 − 𝑟12𝑟02 − 𝑟01𝑟02);

(b) RC∞ [𝐷2] (Λ) = min
{
𝑟12,

𝑟01 − 𝑟12
2

,
𝑟02 − 𝑟01

2

}
.

RC∞ [𝐷4] (Λ) = min{𝑟12,
𝑟02 − 𝑟01

2
};

RC∞ [𝐷6] (Λ) =
𝑟02 − 𝑟12

2
. ▲

■

When considering lattices under homothety, the subspace LHS[𝐷4] consists of a
single class of all square lattices, which are all equivalent under isometry and uniform
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scaling. The subspace LHS[𝐷6] is also a single point representing all hexagonal lattices.
Then PC[𝐷4] and PC[𝐷6] are distances to these single points.

Proposition 8.7.5 (chiral distances PC𝑞 for 𝑞 = 2,+∞, [17, Proposition 6.6]). Let a
lattice Λ have PI(Λ) = (𝑥, 𝑦) ∈ QT so that 𝑥 ∈ [0, 1), 𝑦 ∈ [0, 1], 𝑥 + 𝑦 ≤ 1.

(a) PC2 [𝐷2] (Λ) = min
{
𝑥, 𝑦,

1 − 𝑥 − 𝑦
√

2

}
,

PC𝑞 [𝐷4] (Λ) = (𝑥𝑞 + 𝑦𝑞)1/𝑞 for any 𝑞 ∈ [1,+∞),

PC𝑞 [𝐷6] (Λ) = (𝑥𝑞 + (1 − 𝑦)𝑞)1/𝑞 for any 𝑞 ∈ [1,+∞);

(b) PC∞ [𝐷2] (Λ) = min
{
𝑥, 𝑦,

1 − 𝑥 − 𝑦
2

}
,

PC∞ [𝐷4] (Λ) = 𝑥,

PC∞ [𝐷6] (Λ) = 1 − 𝑦.

(c) The upper bounds PC2 [𝐷2] (Λ) ≤ 1
2+

√
2
, PC∞ [𝐷2] (Λ) ≤ 1

4 hold for any Λ,
achieved for lattices with PI(Λ2) = ( 1

2+
√

2
, 1

2+
√

2
), PI(Λ∞) = ( 1

4 ,
1
4 ), respectively. For

𝑞 ∈ [1,+∞], the bound PC𝑞 [𝐷4] (Λ) ≤ 1 holds for any Λ and is achieved for any
hexagonal lattice. For 𝑞 ∈ [1,+∞), the upper bound PC𝑞 [𝐷6] (Λ) < 21/𝑞 holds for any
Λ and is approached but not achieved as 𝑥 → 1. The bound PC∞ [𝐷6] (Λ) ≤ 1 holds for
any Λ and is achieved for any square and rectangular lattice. ■

Example 8.7.6 (distances RC𝑞 , PC𝑞). Table 8.3 shows the chiral distances computed
by Propositions 8.7.4, 8.7.5 for the prominent lattices Λ±

2 , Λ±
∞ in Example 8.5.4. _

Example 8.7.7 (metrics RM𝑜
𝑞 , PM𝑜

𝑞). Table 8.4 has RM𝑜
𝑞 ,RM𝑜

𝑞 for 𝑞 = 2,+∞ and the
prominent lattices Λ±

2 , Λ±
∞, which were inversely designed in Example 8.5.4.

If lattices have the same sign, then RM𝑜, PM𝑜 coincide with their unoriented ver-
sions by Definition 8.6.3. For example, PM𝑜

𝑞 (Λ+
2 ,Λ

+
∞) is the distance 𝑀𝑞 between

the invariants PI(Λ∞) = ( 1
4 ,

1
4 ) and PI(Λ2) = ( 1

2+
√

2
, 1

2+
√

2
) = (1 − 1√

2
, 1 − 1√

2
), so

PM𝑜
∞ (Λ+

2 ,Λ
+
∞) = 3

4 − 1√
2
≈ 0.04 and PM𝑜

2 (Λ+
2 ,Λ

+
∞) = 3

4
√

2 − 1 ≈ 0.06.

Similarly, RM𝑜
𝑞 (Λ+

2 ,Λ
+
∞) is the 𝑀𝑞 distance between the root invariants PI(Λ∞) =

(1, 4, 7) and RI(Λ2) = (2−
√

2, 2
√

2−1, 5−
√

2), so RM𝑜
∞ (Λ+

2 ,Λ
+
∞) = max{

√
2−1, 5−

2
√

2, 2 +
√

2} = 2 +
√

2 ≈ 3.41 and RM𝑜
2 (Λ+

2 ,Λ
+
∞) =

√︃
6(7 − 3

√
2) ≈ 4.1.

By Lemma 8.7.3(b) the distance between mirror images of the same lattice equals
the doubled 𝐷2-chiral distance. For example, PM𝑜

𝑞 (Λ+
∞,Λ

−
∞) = 2PC𝑞 [𝐷2] (Λ∞) = 1

2
and PM𝑜

𝑞 (Λ+
2 ,Λ

−
2 ) = 2PC𝑞 [𝐷2] (Λ2) = 2

2+
√

2
= 2 −

√
2 ≈ 0.59 for 𝑞 = 2,+∞.
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Table 8.3 Chiral distances PC𝑞 , RC𝑞 for the lattices Λ±
2 ,Λ

±
∞ in Fig. 8.11 and 8.12, see Example 8.7.6.

Λ Λ∞ Λ2

PI(Λ)
(

1
4
,

1
4

) (
1

2 +
√

2
,

1
2 +

√
2

)
PC2 [𝐷2 ]

1
4

1
2 +

√
2

PC2 [𝐷4 ]
√

2
4

√
2 − 1

PC2 [𝐷6 ]
√

10
4

√︁
2 −

√
2

PC∞ [𝐷2 ]
1
4

1
2 +

√
2

PC∞ [𝐷4 ]
1
4

1
2 +

√
2

PC∞ [𝐷6 ]
3
4

1
√

2

Λ Λ∞ Λ2

RI(Λ) (1, 4, 7) (2 −
√

2, 2
√

2 − 1, 5 −
√

2)

RC2 [𝐷2 ] 1 2 −
√

2

RC2 [𝐷4 ]
√

13
2

(2 −
√

2)
√

13
2

RC2 [𝐷6 ] 3
√

2
√︃

2(13 − 3
√

2)

RC∞ [𝐷2 ] 1 2 −
√

2

RC∞ [𝐷4 ] 1 2 −
√

2

RC∞ [𝐷6 ] 3
3
2

Lemma 8.7.3(b) and Table 8.3 also give RM𝑜
𝑞 (Λ+

∞,Λ
−
∞) = 2RC𝑞 [𝐷2] (Λ∞) = 2 and

RM𝑜
𝑞 (Λ+

2 ,Λ
−
2 ) = 2RC𝑞 [𝐷2] (Λ2) = 2(2 −

√
2) ≈ 1.17 for 𝑞 = 2,+∞.

Lemma 8.6.4 says that RM𝑜 (Λ+
2 ,Λ

−
∞) = RM𝑜 (Λ−

2 ,Λ
+
∞) and PM𝑜 (Λ+

2 ,Λ
−
∞) =

PM𝑜 (Λ−
2 ,Λ

+
∞). Using the above properties, it remains to find four distances.

Proposition 8.6.6(a) finds PM𝑜
2 (Λ+

2 ,Λ
−
∞) as the minimum of the Euclidean distances

from PI(Λ2) = ( 1
2+

√
2
, 1

2+
√

2
) = (1 − 1√

2
, 1 − 1√

2
) to the three points (− 1

4 ,
1
4 ), (−

1
4 ,

1
4 ),

( 3
4 ,

3
4 ) obtained from PI(Λ∞) = ( 1

4 ,
1
4 ) by reflections in the edges of QT. The first two

distances equal to
√

25−16
√

2
2
√

2
≈ 0.54 are larger than the third.

Given PI(Λ2) = (𝑥1, 𝑦1) = (1 − 1√
2
, 1 − 1√

2
) and PI(Λ∞) = (𝑥2, 𝑦2) = ( 1

4 ,
1
4 ),

Proposition 8.6.6(b) computes PM𝑜
∞ (Λ+

2 ,Λ
−
∞) for as the minimum of 𝑑𝑥 = max{𝑥2 −

𝑥1, 𝑦2 + 𝑦1} = 5
4 − 1√

2
, 𝑑𝑦 = max{𝑥2 + 𝑥1, |𝑦2 − 𝑦1 |} = 5

4 − 1√
2
, 𝑑𝑥𝑦 = max{𝑥2 − 𝑥1, 1 −

𝑥2 − 𝑦2 + |1 − 𝑦1 − 𝑥2 |} = 1
4 + 1√

2
, so PM𝑜

∞ (Λ+
2 ,Λ

−
∞) = 5

4 − 1√
2
≈ 0.54

Proposition 8.6.5(a) computes RM𝑜
2 (Λ+

2 ,Λ
−
∞) as the minimum of the Euclidean

distances from RI(Λ2) = (2 −
√

2, 2
√

2 − 1, 5 −
√

2) to the three points (−1, 4, 7),
(4, 1, 7), (1, 7, 4) obtained from RI(Λ∞) = (1, 4, 7) by reflections in the boundaries of
TC. The first distance is the smallest, so RM𝑜

2 (Λ+
2 ,Λ

−
∞) =

√︁
50 − 22

√
2 ≈ 4.3.

Given RI(Λ2) = (𝑟12, 𝑟01, 𝑟02) = (2 −
√

2, 2
√

2 − 1, 5 −
√

2) and RI(Λ∞) =

(𝑠12, 𝑠01, 𝑠02) = (1, 4, 7), by Proposition 8.6.5(b) RM𝑜
∞ (Λ+

2 ,Λ
−
∞) = min{𝑑0, 𝑑1, 𝑑2}.

Using MS(𝑎, 𝑏, 𝑐, 𝑑) = max{|𝑎 − 𝑏 |, |𝑐 − 𝑑 |, 1
2 |𝑎 + 𝑏 − 𝑐 − 𝑑 |}, we compute

𝑑0 = max{𝑟12 + 𝑠12, |𝑟01 − 𝑠01 |, |𝑟02 − 𝑠02 |}
= max{3 −

√
2, 5 − 2

√
2, 2 +

√
2} = 2 +

√
2 ≈ 3.4,
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Table 8.4 Metrics PM𝑜
𝑞 and RM𝑜

𝑞 for the lattices given by their invariants in Table 8.3, see Fig. 8.11.

PM𝑜
2 Λ+

∞ Λ−
∞ Λ+

2 Λ−
2

Λ+
∞ 0 1

2
3
4
√

2 − 1 ≈ 0.06
√

25−16
√

2
2
√

2
≈ 0.54

Λ−
∞

1
2 0

√
25−16

√
2

2
√

2
≈ 0.54 3

4
√

2 − 1 ≈ 0.06

Λ+
2

3
4
√

2 − 1 ≈ 0.06
√

25−16
√

2
2
√

2
≈ 0.54 0 2 −

√
2 ≈ 0.59

Λ−
2

√
25−16

√
2

2
√

2
≈ 0.54 3

4
√

2 − 1 ≈ 0.06 2 −
√

2 ≈ 0.59 0

PM𝑜
∞ Λ+

∞ Λ−
∞ Λ+

2 Λ−
2

Λ+
∞ 0 1

2
3
4 − 1√

2
≈ 0.04 5

4 − 1√
2
≈ 0.54

Λ−
∞

1
2 0 5

4 − 1√
2
≈ 0.54 3

4 − 1√
2
≈ 0.04

Λ+
2

3
4 − 1√

2
≈ 0.04 5

4 − 1√
2
≈ 0.54 0 2 −

√
2 ≈ 0.59

Λ−
2

5
4 − 1√

2
≈ 0.54 3

4 − 1√
2
≈ 0.04 2 −

√
2 ≈ 0.59 0

RM𝑜
2 Λ+

∞ Λ−
∞ Λ+

2 Λ−
2

Λ+
∞ 0 2

√︃
6(7 − 3

√
2) ≈ 4.1

√︁
50 − 22

√
2

Λ−
∞ 2 0

√︁
50 − 22

√
2 ≈ 4.3

√︃
6(7 − 3

√
2)

Λ+
2

√︃
6(7 − 3

√
2)

√︁
50 − 22

√
2 ≈ 4.3 0 2(2 −

√
2)

Λ−
2

√︁
50 − 22

√
2

√︃
6(7 − 3

√
2) ≈ 4.1 2(2 −

√
2) ≈ 1.17 0

RM𝑜
∞ Λ+

∞ Λ−
∞ Λ+

2 Λ−
2

Λ+
∞ 0 2 2 +

√
2 ≈ 3.41 3

Λ−
∞ 2 0 3 2 +

√
2 ≈ 3.41

Λ+
2 2 +

√
2 ≈ 3.41 3 0 2(2 −

√
2) ≈ 1.17

Λ−
2 3 2 +

√
2 ≈ 3.41 2(2 −

√
2) ≈ 1.17 0

𝑑1 = max{MS(𝑟12, 𝑟01, 𝑠12, 𝑠01), |𝑟02 − 𝑠02 |} =
= max{MS(𝑟12, 𝑟01, 𝑠12, 𝑠01), 2 +

√
2} =

= max{MS(2 −
√

2, 2
√

2 − 1, 1, 4), 2 +
√

2} =
= max{max{3(

√
2 − 1), 3, 2 − 1√

2
}, 2 +

√
2} = max{3, 2 +

√
2} = 2 +

√
2,
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𝑑2 = max{|𝑟12 − 𝑠12 |,MS(𝑟01, 𝑟02, 𝑠01, 𝑠02)} =
= max{

√
2 − 1,MS(2

√
2 − 1, 5 −

√
2, 4, 7)} =

= max{
√

2 − 1,max{6 − 3
√

2, 3, 7−
√

2
2 )} = 3, hence RM𝑜

∞ (Λ+
2 ,Λ

−
∞) = 3. _

8.8 Bi-continuity of the map from obtuse superbases to invariants

This section studies continuity of the bijection 𝐵 ↦→ Λ(𝐵), where an obtuse super-
base 𝐵 and its lattice Λ(𝐵) are considered under isometry, rigid motion, dilation, and
homothety. Theorems 8.3.6 and 8.4.2 established the bijections LIS → SBI → RIS,
Λ ↦→ 𝐵 → RI(𝐵) = RI(Λ), mapping any lattice Λ ⊂ R2 to its obtuse superbase 𝐵
(unique under isometry) and then to the complete invariant RI(Λ). Hence, the Lattice
Isometry Space LIS(R2) with a root metric RM can be identified with the Root Invariant
Space RIS = (TC, 𝑑) with a metric 𝑑 on the triangular cone TC ⊂ R3.

Theorem 8.8.1 (continuity of SBI → LIS = RIS, [17, Theorem 7.5]). (a) Let 𝑞 ∈
[1,+∞] and lattices Λ,Λ′ ⊂ R2 have obtuse superbases 𝐵 and 𝐵′ whose vectors have a
maximum length 𝑙. If SIM∞ (𝐵, 𝐵′) = 𝛿 ≥ 0, then RM𝑞 (Λ,Λ′) ≤ 31/𝑞√2𝑙𝛿. Hence the
bijection SBI(R2) → LIS(R2) is continuous in the metrics SIM∞ and RM𝑞 .

(b) In the conditions above, the projected metric satisfies PM𝑞 (Λ,Λ′) ≤ 21/𝑞3
√︁

2𝛿/𝑙,
so the bijection SBH(R2) → LHS(R2) is continuous in the metrics SHM∞, PM𝑞 .

(c) In the oriented case, if 𝛿 → 0, then RM𝑜
𝑞 (Λ,Λ′) → 0 and PM𝑜

𝑞 (Λ,Λ′) → 0, so
both maps SBR(R2) → LRS(R2) and SBD(R2) → LDS(R2) are continuous. ■

Theorem 8.8.1 is proved for the metrics RM𝑞 , PM𝑞 only to give explicit upper
bounds. A similar argument proves continuity for any metrics RM, PM in Defini-
tion 8.6.1 based on a metric 𝑑 satisfying 𝑑 (𝑢, 𝑣) → 0 when u → 𝑣 coordinate-
wise. All Minkowski norms in R𝑛 are topologically equivalent [1] due to the bounds
| |𝑣 | |𝑞 ≤ ||𝑣 | |𝑟 ≤ 𝑛

1
𝑞
− 1

𝑟 | |𝑣 | |𝑞 for any 1 ≤ 𝑞 ≤ 𝑟, hence continuity for one value of 𝑞
is enough. Theorem 8.8.1 implies continuity of SBR → RIS𝑜, because closeness of
superbases under rigid motion is a stronger condition than under isometry.

Example 8.8.2 illustrates Theorem 8.8.1 and shows that the root invariant changes
continuously for a deformation when a reduced basis changes discontinuously.

Example 8.8.2 (continuity of root invariants under deformaiton). The obuse superbase
v1 = (1, 0), v2 (𝑡) = (−𝑡, 2), v0 (𝑡) = (𝑡 − 1,−2) continuously deforms for 𝑡 ∈ [0, 1]
in Fig. 8.3. The basis of v1, v2 (𝑡) is reduced (non-acute) for 𝑡 ∈ [0, 1

2 ] and at the
critical moment 𝑡 = 1

2 changes to its mirror image v1, v0 (𝑡), which remains reduced for
𝑡 ∈ [ 1

2 , 1]. The obtuse superbase of unordered vectors {v1, v2 (𝑡), v0 (𝑡)} keeps changing
continuously because v2 (𝑡), v0 (𝑡) only swap their places at 𝑡 = 1

2 .

The discontinuity of the obtuse superbases in the above deformation emerges at
𝑡 = 1 when the final superbase of (1, 0), (−1, 2), (0,−2) becomes a mirror image
of the initial superbase of (1, 0), (0, 2), (−1,−2), not related by rigid motion, though
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both (unordered) superbases at 𝑡 = 0, 1 generate the same lattice with the rectangular
cell 1 × 2. The root invariants are 𝑟12 =

√
𝑡, 𝑟01 =

√
1 − 𝑡, 𝑟02 =

√
4 − 𝑡 + 𝑡2. Since

4 − 𝑡 + 𝑡2 ≥ 15
4 ≥ max{𝑡, 1 − 𝑡} for 𝑡 ∈ [0, 1], the root invariant can be written as

RI(Λ(𝑡)) =


(
√
𝑡,
√

1 − 𝑡,
√

4 − 𝑡 + 𝑡2) for 𝑡 ∈ [0, 1
2 ],

(
√

1 − 𝑡,
√
𝑡,
√

4 − 𝑡 + 𝑡2) for 𝑡 ∈ [ 1
2 , 1] .

Fig. 8.16 Left: graphs of root products in RI(Λ(𝑡 ) ) , see Example 8.8.2. Middle: graphs of the
components in PI(Λ(𝑡 ) ) . Right: the continuous path of PI(Λ(𝑡 ) ) in the quotient square 𝑄𝑆.

By Definition 8.4.4 the size is |Λ(𝑡) | = 𝑟12 + 𝑟01 + 𝑟02 =
√
𝑡 +

√
1 − 𝑡 +

√
4 − 𝑡 + 𝑡2.

The projected invariant is PI(Λ(𝑡)) = (𝑥(𝑡), 𝑦(𝑡)), see Fig. 8.16, where

𝑥(𝑡) =
√

4 − 𝑡 + 𝑡2 − max{
√
𝑡,
√

1 − 𝑡}
√
𝑡 +

√
1 − 𝑡 +

√
4 − 𝑡 + 𝑡2

, 𝑦(𝑡) = 3 min{
√
𝑡,
√

1 − 𝑡}
√
𝑡 +

√
1 − 𝑡 +

√
4 − 𝑡 + 𝑡2

.

If 𝑡 = 0 or 𝑡 = 1, then RI(Λ(𝑡)) = (0, 1, 2), |Λ(𝑡)) = 3, PI(Λ(𝑡)) = ( 1
3 , 0). If 𝑡 = 1

2 , then
√
𝑡 =

√
1 − 𝑡 =

√
2

2 ,
√

4 − 𝑡 + 𝑡2 =
√

15
2 , |Λ( 1

2 )) =
√

2 +
√

15
2 . So

RI
(
Λ

(1
2

))
=

(√
2

2
,

√
2

2
,

√
15
2

)
, PI

(
Λ

(1
2

))
=

( √
15 −

√
2

√
15 + 2

√
2
,

3
√

2
√

15 + 2
√

2

)
.

The last point is approximately (0.37, 0.63) in the diagonal 𝑥 + 𝑦 = 1 of QS. Under the
symmetry 𝑡 ↔ 1− 𝑡, all the functions above remain invariant and Λ(𝑡) changes its sign.
Both paths RI(Λ(𝑡)) and PI𝑜 (Λ(𝑡)) ∈ QS are continuous everywhere, while the obtuse
superbasis is discontinuous (under rigid motion) at 𝑡 = 0, 1. _

Theorem 8.8.3 below proves the inverse continuity of RIS → SBI and a weaker claim
in the oriented case, saying that we can choose an obtuse superbase 𝐵′ of a perturbed
lattice arbitrarily close to a given superbase 𝐵 of an original lattice.
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Theorem 8.8.3 (continuity of LIS → SBI, [17, Theorem 7.7]). (a) For 𝑞 ∈ [1,+∞], let
lattices Λ,Λ′ in R2 satisfy RM𝑞 (Λ,Λ′) ≤ 𝛿. For any obtuse superbase 𝐵 of Λ, there is
an obtuse superbase 𝐵′ of Λ′ such that SIM∞ (𝐵, 𝐵′) ≤ SRM∞ (𝐵, 𝐵′) → 0 as 𝛿 → 0.

(b) The bijection LIS(R2) → SBI(R2) is continuous in the metrics RM𝑞 , SIM∞.
LRS(R2) → SBR(R2) is continuous in RM𝑜

𝑞 , SIM𝑜
∞ at non-rectangular lattices.

(c) The above conclusions hold for lattices under dilation and homothety. ■

Corollary 8.8.4 shows that Theorem 8.8.3(b) is the strongest possible continuity in
the oriented case. In R3, a similar discontinuity around high-symmetry lattices will be
much harder to resolve for continuous invariants even under isometry [16].

Corollary 8.8.4 (partial discontinuity of LRS → SBR, [17, Cor. 7.9]). The bijection
LRS → SBR is discontinuous in the metrics RM∞, SIM𝑜

∞ at all rectangular lattices. ■

Corollary 8.8.4 should be positively interpreted in the sense that we need to study
lattices under rigid motion by their complete oriented root invariants in the continuous
space LRS(R2) rather than in terms of reduced bases (or, equivalently, obtuse superbases
due to Proposition 8.3.8b), which are inevitably discontinuous.

Proposition 8.8.5 shows that all 𝐺-chiral distances RC[𝐺] : LIS(R2) → R and
PC[𝐺] : LHS(R2) → R are continuous in any metrics RM, PM from Definition 8.6.1.

Proposition 8.8.5 (continuous chiral distances, [17, Proposition 7.10]). For a crystal-
lographic point group 𝐺 and lattices Λ1,Λ2 in R2, we have

|RC[𝐺] (Λ1) − RC[𝐺] (Λ2) | ≤ RM(Λ1,Λ2),

|PC[𝐺] (Λ1) − PC[𝐺] (Λ2) | ≤ PM(Λ1,Λ2)

for any metrics RM and PM. ■

Now Remark 8.8.6 summarises a wide range of rich mathematical structures that
can be considered on the lattice spaces in addition to continuous metrics.

Remark 8.8.6 (linear structure, scalar product on lattices). Since the triangular cone TC
in Fig. 8.9 is convex, we can consider any convex linear combination of root invariants
𝑡RI(Λ1) + (1 − 𝑡)RI(Λ2) ∈ TC, 𝑡 ∈ [0, 1]. The resulting root invariant determines (an
isometry class of) the new lattice that can be denoted by 𝑡Λ1 + (1 − 𝑡)Λ2. The average
of the square and hexagonal lattices with RI(Λ4) = (0, 1, 1), RI(Λ6) = (1, 1, 1) has
RI = ( 1

2 , 1, 1). The new lattice 1
2 (Λ4 + Λ6) is centred rectangular and has the basis

v1 = (
√︃

3
2 , 0) and v2 = (− 1

9

√︃
3
2 ,

4
9

√︃
15
2 ). We can define similar sums in LHS(R2) due

to the convexity of the triangle QT. The usual scalar product of vectors in R3 defines
the positive product of root invariants: RI(Λ4) · RI(Λ6) = (0, 1, 1) · (1, 1, 1) = 2. _

In conclusion, Problem 8.2.2 was resolved by the new invariants RI,RI𝑜, PI, PI𝑜
classifying all 2D lattices under four equivalences, see a summary in Table 8.5.

8.2.2(a) Completeness of invariants: Theorem 8.4.2 and Corollary 8.4.5.

8.2.2(b) Reconstruction: Lemma 8.4.1 and Proposition 8.5.3 with Example 8.5.4.
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8.2.2(c-e) Continuous metrics: Definitions 8.6.1 and 8.6.3, Theorems 8.8.1 and 8.8.3.

8.2.2(f,g) Realisability and Euclidean embeddability: Corollary 8.5.8.

8.2.2(h) Computability of metrics: Propositions 8.6.5,8.6.6 and Examples 8.6.2, 8.7.6.

Table 8.5 A summary of classifications of all lattices Λ ⊂ R2 under four equivalence relations.

equivalence complete invariant configuration space continuous metric visual results

isometry root invariant LIS(R2 ) ↔ TC root metric Theorem 8.4.2

RI(Λ) triangular cone RM Fig. 8.9 (left)

rigid oriented LRS(R2 ) ↔ DC oriented Theorem 8.4.2

motion invariant RI𝑜 (Λ) doubled cone metric RM𝑜 Fig. 8.11 (right)

homothety projected LHS(R2 ) ↔ QT projected Corollary 8.4.5

invariant PI(Λ) quotient triangle metric PM Fig. 8.10 (left)

oriented LDS(R2 ) ↔ QS oriented Corollary 8.4.5

dilation projected quotient projected Fig. 8.10 (right)

invariant PI𝑜 (Λ) square metric PM𝑜 Fig. 8.12

The key contributions of this chapter are the easily computable metrics in Defini-
tions 8.6.1,8.6.3, which led to continuous real-valued deviations of lattices from their
higher symmetry neighbours. The chiral distances in Definition 8.7.1 continuously
extend the binary chirality by explicit formulae in Propositions 8.7.4 and 8.7.5.

The discontinuity of basis reductions in [23, Theorem 15] was proved with a simple
metric on lattice bases without isometry. When we consider obtuse superbases under
isometry, the continuity holds in Theorem 8.8.3 under isometry for all lattices and
under rigid motion for non-rectangular lattices. For rigid motion, when orientation is
preserved, Corollary 8.8.4 proves discontinuity at any rectangular lattice in R2.

It was important to clarify the above discontinuity of bases in Corollary 8.8.4 since
the 3-dimensional case is much harder to resolve even under isometry [16].

The structures in Remark 8.8.6 help treat lattices as vectors in a meaningful way
(independent of a basis), for example, as inputs or outputs in machine learning algo-
rithms. Paper [6] visualises for the first time millions of 2D lattices extracted from
real crystals in the Cambridge Structural Database (CSD), see the Python code at
https://github.com/MattB-242/Lattice Invariance.

Lattice invariants can be used as a first ultra-fast step to find (near-)duplicates of a
potentially new material in all existing experimental datasets. The forthcoming work
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[16, 5] extends the isometry classification of Theorem 8.4.2 to R3. The next chapter
will introduce more advanced distance-based invariants of general periodic point sets.
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Chapter 9
Density functions of periodic sets of points in R𝒏

and intervals in R

Abstract This chapter adapts the general geo-mapping problem to periodic sets of
points under isometry in high dimensions, motivated by periodic crystals in dimension
3. We introduce density functions, which extend the scalar point density to Lipschitz
continuous isometry invariants depending on a variable radius of balls centred at given
points. These functions can be efficiently computed at discrete radii in low dimensions
and are generically complete for periodic point sets under isometry in R3. In dimension
𝑛 = 1, the density functions are analytically computable for periodic sets of intervals.

9.1 Periodic sets in R𝒏 and ambiguity of cell-based representations

This section follows paper [14] and adapts Geo-Mapping Problem 1.4.5 to periodic
point sets in R𝑛. These sets extend lattices from Definition 8.1.1, as formalised below.

Definition 9.1.1 (motif, periodic point set in R𝑛). Let vectors v1, . . . , v𝑛 ∈ R𝑛 form
a basis of R𝑛, define the lattice Λ = {

𝑛∑
𝑖=1
𝑐𝑖v𝑖 | 𝑐1, . . . , 𝑐𝑛 ∈ Z} and the unit cell

𝑈 = {
𝑛∑
𝑖=1
𝑥𝑖v𝑖 | 𝑥1, . . . , 𝑥𝑛 ∈ [0, 1)} ⊂ R𝑛. For any finite set of points (called a motif )

𝑀 ⊂ 𝑈, the sum 𝑆 = 𝑀 + Λ = {p + v | p ∈ 𝑀, v ∈ Λ} is a periodic point set. ▲

Fig. 9.1 Left: a lattice can be defined by many primitive bases. Middle: a periodic set can be defined by
different pairs (basis, motif). Right: a hierarchy of discrete sets, which model all crystalline materials
(periodic crystals) and amorphous solids with points at atomic centers, see Definition 9.1.1.

149
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Any unit cell 𝑈 includes only a partial boundary: we exclude the points with any
coefficient 𝑡𝑖 = 1, 𝑖 = 1, . . . , 𝑙, for convenience. Then R𝑛 is tiled by the shifted cells
{𝑈 + v | v ∈ Λ} without overlaps. Any lattice is an example of a periodic set with one
point in a motif. Any periodic point set 𝑆 = 𝑀 + Λ can be considered a finite union⋃
𝑝∈𝑀 (p + Λ) of lattices whose origins are shifted to all 𝑝 ∈ 𝑀 = 𝑆 ∩𝑈.

If we double a unit cell in one direction, e.g. by taking the basis 2v1, v2, . . . , v𝑛, the
doubled motif 𝑀 ∪ (𝑀 + v1) with the sublattice on the new basis defines the original
periodic point set 𝑆 = 𝑀 + Λ. A basis and its cell 𝑈 of 𝑆 are called primitive if 𝑆 ∩𝑈
has the smallest size among all unit cells 𝑈 of 𝑆. Fig. 9.1 (left) shows a square lattice
in R2, which (as any lattice) can be generated by infinitely many primitive bases. Even
if we fix a basis, Fig. 9.1 (middle) shows that different motifs in the same primitive cell
𝑈 define equivalent periodic sets, which differ only by translation.

Finite and periodic point sets represent molecules and periodic crystals at the atomic
scale by considering zero-sized points at all atomic centers. Chemical bonds can be
modelled by straight-line edges between atomic centers. However, even the strongest
covalent bonds within a molecule depend on various thresholds for distances and angles.
So these bonds are not real sticks and only abstractly represent inter-atomic interactions,
while atomic nuclei are real. We model all materials at the fundamental level of atoms.

Fig. 9.2 Almost any noise arbitrarily scales up a primitive unit cell of any periodic point set.

Fig. 9.2 illustrates for a hexagonal lattice of red points that the discontinuity of cell-
based representations substantially worsens for periodic point sets in comparison with
lattices, which have only one point in a motif. If we arbitrarily extend a given primitive
unit cell 𝑈 of 𝑆 to a larger cell 𝑈′, almost any perturbation of one atom in 𝑈′ (and all
its periodic copies obtained by translations along the edges of𝑈′) makes𝑈′ primitive.

Definition 9.1.2 extends moduli spaces of lattices in Definition 8.2.3 to periodic
point sets with up to𝑚 points in their motifs. One physically justified metric on all these
spaces is the bottleneck distance BD from Example 1.3.3(b), which quantifies atomic
vibrations as a maximum deviation of all points from their original positions.

However, BD is defined by minimising over bijections between infinite periodic sets
and also over infinitely many equivalences, such as isometries. Hence, periodic sets
need a simpler distance metric that should be efficiently computable. Nonetheless, the
bottleneck distance allows us to define the concept of a generic set in crystal spaces
below. We use the word crystal instead of the periodic point set to keep all names short.

Definition 9.1.2 (moduli spaces of periodic point sets and generic subspaces). In all
cases below, we consider all periodic point sets 𝑆 ⊂ R𝑛 with motifs of up to 𝑚 points.



9.1 Periodic sets in R𝑛 and ambiguity of cell-based representations 151

(a) The Crystal Rigid Space CRIS(R𝑛;𝑚): periodic point sets under rigid motion.

(b) The Crystal Isometry Space CIMS(R𝑛;𝑚): periodic point sets under isometry.

(c) The Crystal Dilation Space CRDS(R𝑛;𝑚): periodic point sets under dilation.

(d) The Crystal Homothety Space CRHS(R𝑛;𝑚): periodic point sets under homothety.

(e) For any space 𝑋 above, a subspace 𝑌 ⊂ 𝑋 is dense (or generic) if, for any 𝜀 > 0,
any periodic point set 𝑄 representing a class in 𝑋 can be obtained from some 𝑆 ⊂ R𝑛

representing a class in 𝑌 by perturbing any point of 𝑆 up to Euclidean distance 𝜀. ▲

Fig. 9.3 Left: crystals were previously studied by equivalences based on discrete features, such as
compositions and symmetries, but are determined as rigid structures that live in much larger continuous
spaces, see Definition 9.1.2. Right: the recently developed hierarchy of continuous invariants [16, 15,
4]gives rise to a crystal code that is theoretically complete, computable in polynomial time, and
invertible back to a periodic structure, uniquely under rigid motion in R𝑛.

Problem 9.1.3 extends Problem 7.1.5 to generic periodic point sets under isometry
in R𝑛. The stronger equivalence of rigid motion will be considered in Chapter 11.

Problem 9.1.3 (isometry invariants of periodic point sets in R𝑛). Design an invariant
𝐼 on the Crystal Isometry Space CIMS(R𝑛;𝑚) satisfying the following conditions.
(a) Generic completeness: let 𝑆, 𝑄 be any generic sets whose isometry classes are in a
dense subspace 𝑌 ⊂ CIMS(R𝑛;𝑚), then 𝑆, 𝑄 are isometric if and only if 𝐼 (𝑆) = 𝐼 (𝑄).

(b) Metric: there is a distance 𝑑 on the Crystal Isometry Space CIMS(R𝑛;𝑚) satisfying
all metric axioms in Definition 1.3.1(a).
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(c) Continuity: there is a constant 𝜆 > 0, such that, for all sufficiently small 𝜀 > 0, if a
periodic point set𝑄 is obtained by perturbing every point of a periodic point set 𝑆 ⊂ R𝑛

up to Euclidean distance 𝜀, then 𝑑 (𝐼 (𝑆), 𝐼 (𝑄)) ≤ 𝜆𝜀.

(d) Computability: the invariant 𝐼, a reconstruction of 𝑆 ⊂ R𝑛 from 𝐼 (𝑆), and the metric
𝑑 (𝐼 (𝑆), 𝐼 (𝑄)) can be computed in times that depend polynomially on the dimension 𝑛
and the maximum motif size of periodic point sets 𝑆, 𝑄. ⋆

Condition 9.1.3(a) includes only generic completeness, which will be tackled in this
and the next chapter, while the full completeness will be resolved in Chapter 11.

9.2 Continuity and generic completeness of density functions in R3

This section defines density functions, which almost solve Problem 9.1.3 in R3, though
polynomial-time algorithms in 9.1.3(d) will be only approximate. Chapter 10 will
introduce newer isometry invariants and metrics with exact polynomial-time algorithms.
For any 𝑡 ≥ 0 and 𝑝 ∈ R𝑛, let 𝐵̄(𝑝; 𝑡) ⊂ R𝑛 be the closed ball of radius 𝑡 centred at 𝑝.

Definition 9.2.1 (density functions of a periodic point set in R𝑛). Let a periodic set
𝑆 = Λ + 𝑀 ⊂ R𝑛 have a unit cell𝑈 of volume vol[𝑈]. For any integer 𝑘 ≥ 0, let𝑈𝑘 (𝑡)
be the region within the cell 𝑈 covered by exactly 𝑘 closed balls 𝐵̄(𝑝; 𝑡) with a radius

𝑡 ≥ 0 and centres at all points of 𝑆. The 𝑘-th density function is 𝜓𝑘 [𝑆] (𝑡) =
vol[𝑈𝑘 (𝑡)]

vol[𝑈] .

The density fingerprint is the infinite sequence Ψ[𝑆] = {𝜓𝑘 [𝑆] (𝑡)}+∞𝑘=0. ▲

Notice that closed balls 𝐵̄(𝑝; 𝑡) are considered for all points 𝑝 ∈ 𝑆, not restricted to
the motif 𝑀 = 𝑆 ∩𝑈. The 0-th density 𝜓0 [𝑆] (𝑡) measures the subset of 𝑈 that is not
covered by any balls 𝐵̄(𝑝; 𝑡) for 𝑝 ∈ 𝑆, i.e. the fractional volume subset of all points
𝑞 ∈ 𝑈 that are more than 𝑡 away from all points of 𝑆. For 𝑘 ≥ 1, 𝜓𝑘 [𝑆] (𝑡) measures the
fractional volume of all 𝑘-fold intersections

⋂
𝑝1 ,..., 𝑝𝑘 ∈𝑆

𝐵̄(𝑝𝑖; 𝑡) within𝑈.

Since each density function 𝜓𝑘 [𝑆] (𝑡) depends on 𝑡 ∈ [0,+∞), our computations in
dimensions 𝑛 = 2, 3 use uniformly sampled radii 𝑡. For any fixed radius 𝑡, the density
function 𝜓𝑘 [𝑆] (𝑡) will be efficiently computed in section 9.3. In dimension 𝑛 = 1,
all density functions will be analytically computed, also for more general periodic
sequences of intervals. Fig. 9.4 and 9.5 illustrate the densigrams that combine several
density functions in one diagram for the square and hexagonal lattices in R2.

Any density function 𝜓𝑘 [𝑆] (𝑡) can also be interpreted as the probability that a
random point 𝑝 ∈ R𝑛 is at a maximum distance 𝑡 to exactly 𝑘 points of 𝑆. However,
𝜓𝑘 [𝑆] (𝑡) is not a probability density function, so a 𝜓𝑘 [𝑆] (𝑡) can be called the 𝑘-fold
intersection function, but it is now a bit late to change the name.

Since any isometry preserves distances and hence volumes of areas in R𝑛, any
density function is invariant under isometry and independent of a unit cell choice, see
[5, Lemma 1]. We describe the key results from [5]. Definition 9.2.2 introduces metrics
on density functions to prove their Lipschitz continuity in Theorem 9.2.4.
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Fig. 9.4 Illustration of Definition 9.2.1 for the square lattice Λ4. Left: subregions𝑈𝑘 (𝑡 ) are covered
by 𝑘 disks for the radii 𝑡 = 0.25, 0.55, 0.75, 1. Right: the nine density functions are above the

corresponding densigram of accumulated functions
𝑘∑
𝑖=1
𝜓𝑖 (Λ4; 𝑡 ) [5, Fig. 2].
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Fig. 9.5 illustration of Definition 9.2.1 for the hexagonal lattice Λ6. Left: subregions 𝑈𝑘 (𝑡 ) are
covered by 𝑘 disks for the radii 𝑡 = 0.25, 0.55, 0.75, 1. Right: the nine density functions are above the

corresponding densigram of accumulated functions
𝑘∑
𝑖=1
𝜓𝑖 (Λ6; 𝑡 ) [5, Fig. 2].

Definition 9.2.2 (metrics on density functions). For any 𝑘 ≥ 1 and periodic point sets
𝑆, 𝑄 ⊂ R𝑛, define the max metrics between their density functions as

|𝜓𝑘 [𝑆] − 𝜓𝑘 [𝑄] |∞ = sup
𝑡≥0

|𝜓𝑘 [𝑆] (𝑡) − 𝜓𝑘 [𝑄] (𝑡) |

and between their fingerprints 𝑑∞ (Ψ[𝑆],Ψ[𝑄]) = sup
𝑘≥0

|𝜓𝑘 [𝑆] − 𝜓𝑘 [𝑄] |∞
( 3√
𝑘 + 1)2

. ▲
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In practice, the max distance |𝜓𝑘 [𝑆] − 𝜓𝑘 [𝑄] |∞ is approximated for uniformly
sampled radii 𝑡, while 𝑑∞ (Ψ[𝑆],Ψ[𝑄]) is approximated by considering 𝑘 = 1, . . . , 8.

For any fixed index 𝑘 ≥ 0, the density function 𝜓𝑘 [𝑆] (𝑡) eventually vanishes for
large 𝑡 because the whole unit cell 𝑈 of 𝑆 includes only higher 𝑙-fold intersections

of ball 𝐵(𝑝; 𝑡) for 𝑙 > 𝑘 . The extra factor
1

( 3√
𝑘 + 1)2

reduces the apparently growing

sensitivity of the density functions 𝜓𝑘 [𝑆] (𝑡) to perturbations of points.

Definition 9.2.3 (radii 𝑟 (𝑆) and 𝑅(𝑆)). Let 𝑆 ⊂ R𝑛 be any periodic point set.

(a) The packing radius 𝑟 (𝑆) is the maximum 𝑟 such that the open balls 𝐵(𝑝; 𝑟) are
disjoint for all 𝑝 ∈ 𝑆, or 𝑟 (𝑆) is the minimum half-distance between any points of 𝑆.

(b) The covering radius 𝑅(𝑆) is the minimum radius 𝑅 such that the union of closed
balls 𝐵̄(𝑝; 𝑅) for all 𝑝 ∈ 𝑆 covers R𝑛. Alternatively, 𝑅(𝑆) is the maximum distance
from any point 𝑞 ∈ R𝑛 to its nearest neighbour in 𝑆. ▲

In terms of density functions, 𝑟 (𝑆) is the maximum radius 𝑡 ≥ 0 such that 𝜓1 [𝑆] (𝑡) =
0, while 𝑅(𝑆) is the maximum radius 𝑅 such that 𝜓1 [𝑆] (𝑡) = 0 for all 𝑡 ∈ [0, 𝑅].

Theorem 9.2.4 (continuity of density functions, [5, Theorem 1]). Let 𝑄 ⊂ R3 be a
periodic point set obtained from another periodic point set 𝑆 ⊂ R3 by perturbing any
point of 𝑆 up to Euclidean distance 𝜀 such that 0 ≤ 𝜀 < 𝑟 = min{𝑟 (𝑆), 𝑟 (𝑄)}. Set

𝑅 = max{𝑅(𝑆), 𝑅(𝑄)} and 𝜆 = 13
𝑅2

𝑟3 . Then 𝑑∞ (Ψ[𝑆],Ψ[𝑄]) ≤ 𝜆𝜀. ■

[5, section 5.1] describes technical conditions defining generic periodic point sets
𝑆 ⊂ R3, which satisfy Theorem 9.2.5.

Theorem 9.2.5 (generic completeness of density functions, [5, Theorem 1]). If any
generic periodic point sets 𝑆, 𝑄 ⊂ R3 are not isometric (𝑆 ; 𝑄), then Ψ[𝑆] ≠ Ψ[𝑄]. ■

Now we describe the first practical impact of density functions. Crystal Structure
Prediction (CSP) aims to predict whether a selected molecule can be crystallised into
a functional material, i.e. a crystal with useful functions or properties. In theory, CSP
seeks to answer the question of whether copies of a molecule can be arranged in such a
way that the resulting crystal is thermodynamically stable as well as useful. CSP aims
to answer this question purely computationally to streamline the trial-and-error.

Our colleagues at Liverpool’s Materials Innovation Factory [10] computationally
predicted that the T2 molecule in Fig. 9.6 can be crystallised into a new nanoporous
material for gas storage. As part of this process, they also identified four other structures
of interest. Following the CSP predictions, they synthesised 5 families of T2-crystals in
the laboratory by varying parameters like temperature and pressure, calling them T2-𝛼,
T2-𝛽, . . . , T2-𝜖 . One of them, T2-𝛾, indeed had the desired property of having only
half the physical density of the previously known structure T2-𝛼.

Structures of the synthesised crystals were reconstructed using X-ray powder diffrac-
tion yielding Crystallographic Information Files (CIFs), each containing a unit cell and
a motif of points representing atoms. These resulting CIFs were then compared with
the results of the simulations, by filtering by physical density and then by using the
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Fig. 9.6 Left: a T2 molecule. Middle: the T2-𝛿 crystal with highlighted unit cell. Right: a plot of
5679 simulated T2 crystals [10, Fig. 2d], each represented by two coordinates: the physical density
(atomic mass within a unit cell divided by the unit cell volume) and energy (determining the crystal’s
thermodynamic stability). Structures at the bottom of the ‘downward spikes’ are likely to be stable.

Compack algorithm—which compares only finite portions of infinite crystals — or by
looking at visualisations of structures. The experimental crystals were considered close
to some predictions and deposited into the Cambridge Structural Database (CSD).

|𝜓𝑘 [𝑆 ] − 𝜓𝑘 [𝑄] |∞ 𝑘 = 0 1 2 3 4 5 6 7

T2-𝛼 vs entry 99 0.0042 0.0092 0.0125 0.0056 0.0099 0.0088 0.0127 0.0099

T2-𝛽 vs entry 28 0.0157 0.0156 0.0159 0.0224 0.0334 0.0396 0.0357 0.0454

T2-𝛾 vs entry 62 0.0020 0.0080 0.0128 0.0155 0.0153 0.0250 0.0296 0.0391

T2-𝛿 vs entry 09 0.0610 0.0884 0.1267 0.0676 0.0915 0.0801 0.0733 0.0388

T2-𝜖 vs entry 01 0.0132 0.0152 0.0207 0.0571 0.0514 0.0431 0.0468 0.0550

T2-𝛽′ vs entry 09 0.2981 0.2631 0.3718 0.3747 0.2563 0.2360 0.3161 0.3232

Table 9.1 First five rows: the 𝐿∞-distances between the first eight pairs of corresponding density
functions of physically synthesised T2 crystals (T2-𝛼, T2-𝛽, etc.) and the simulated structures that had
predicted them from the CSP output dataset (entry XX). Last row: the suspiciously larger numbers
revealed the mix-up of the files T2-𝛿 and T2-𝛽′ and thus led to depositing the initially omitted
Crystallographic Information File of the T2-𝛿 crystal into the Cambridge Structural Database.

At a later time, we used our density functions to verify the past matchings between
the synthesised crystals T2-𝛼 to T2-𝜖 and their closest predictions numbered by 99, 28,
62, 09, 01 in the T2 dataset of all 5679 simulated crystals. We did so by computing, for
each of the five matches, the distance between the density functions of the synthesised
and the simulated crystal. As one is the prediction of the other, we expected to see small
distances. And for four of the five structures this was true: T2-𝛾, for example, always
has an 𝐿∞-distance of less than 0.04 over the first eight pairs of corresponding density
functions; see Table 9.1. However, when we came to check the distances between density



156 9 Density functions of periodic sets of points in R𝑛 and intervals in R

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

ψ
k
(t
)

Radius of Balls (Angstroms)

Density Functions for T2-α and Entry 99
k = 0  k = 1  k = 2  k = 3  k = 4  k = 5  k = 6  k = 7

Radius of Balls (Angstroms)

Density Functions for T2-α and Entry 99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

ψ
k
(t
)

Radius of Balls (Angstroms)

Density Functions for T2-β and Entry 28
k = 0  k = 1  k = 2  k = 3  k = 4  k = 5  k = 6  k = 7

Radius of Balls (Angstroms)

Density Functions for T2-β and Entry 28

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16

ψ
k
(t
)

Radius of Balls (Angstroms)

Density Functions for T2-γ and Entry 62
k = 0  k = 1  k = 2  k = 3  k = 4  k = 5  k = 6  k = 7

Radius of Balls (Angstroms)

Density Functions for T2-γ and Entry 62

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

ψ
k
(t
)

Radius of Balls (Angstroms)

Density Functions for T2-δ and Entry 9
k = 0  k = 1  k = 2  k = 3  k = 4  k = 5  k = 6  k = 7

Radius of Balls (Angstroms)

Density Functions for T2-δ and Entry 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

ψ
k
(t
)

Radius of Balls (Angstroms)

Density Functions for T2-ε and Entry 1
k = 0  k = 1  k = 2  k = 3  k = 4  k = 5  k = 6  k = 7

Radius of Balls (Angstroms)

Density Functions for T2-ϵ and Entry 1

Fig. 9.7 Left: experimental T2 crystals (curved grey molecules) and their simulated versions (straight
green molecules) are overlaid. Right: the density functions of the periodic sets of molecular centres of
the experimental T2 crystals (solid curves) vs. simulated crystals (dashed curves), produced by [12].

functions of T2-𝛿 with its predicted structure, we were surprised to see large distances
(the final row of Table 9.1). It turned out that a mix-up of files had happened, and what
was uploaded to the CSD as T2-𝛿 was in fact a version of the T2-𝛽 polymorph. The
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density fingerprint revealed this error, which was verified by chemists upon a visual
inspection, and it is because of this that T2-𝛿 was subsequently correctly deposited.

Plots of the density functions of correctly matched synthesised and simulated struc-
tures can be seen in Figure 9.7. As another application, we expect that the fingerprint
will be used to simplify the large output data sets produced by CSP by comparing
simulated structures with each other, thus speeding up what is currently a slow process.

9.3 Computing density functions via degree-𝒌 Voronoi domains

This section follows papers [5, 11] with minor updates. To compute any density function
𝜓𝑘 [𝑆] (𝑡), we introduce the degree-𝑘 Voronoi domains, also called the 𝑘-th Brillouin
zone, which generalise the Voronoi domain 𝑉̄ (Λ) of a lattice from Definition 8.1.3(a)
and differ from the order-𝑘 Voronoi domain [6] defined for a 𝑘-point subset 𝐴 ⊂ 𝑆 ⊂ R𝑛

and as the set of all points for whom the points in 𝐴 are the closest 𝑘 points in 𝑆.

Definition 9.3.1 (index-𝑘 Voronoi domain 𝑉𝑘 (𝑆; 𝑝) and degree-𝑘 Voronoi domain
𝑍𝑘 (𝑆; 𝑝)). (a) For a finite or a periodic point set 𝑆 ⊂ R𝑛 and a point 𝑝 ∈ 𝑆, the 𝑘-th
Voronoi domain 𝑉𝑘 (𝐶; 𝑝) is the closure of the set of all points 𝑞 ∈ R𝑛 such that 𝑝 is
among the 𝑘 nearest points of 𝑆 to 𝑞.

(b) For any periodic point set 𝑆 ⊂ R𝑛 and 𝑝 ∈ 𝑆, the degree-𝑘 Voronoi domain is
the difference between successive closed index-𝑘 Voronoi domains, i.e. 𝑍𝑘 (𝐶; 𝑝) =

𝑉𝑘 (𝐶; 𝑝) −𝑉𝑘−1(𝐶; 𝑝) for 𝑘 ≥ 1, where we set 𝑉0 (𝐶; 𝑝) = ∅. ▲

If 𝑘 = 1, 𝑉1 (𝑆; 𝑝) = 𝑍1 (𝑆; 𝑝) is the classical Voronoi domain for a point 𝑝 ∈ 𝑆.

The index-𝑘 Voronoi domain 𝑉𝑘 (𝐶; 𝑝) ⊂ R𝑛 is defined as a closed set above to
cover all cases where 𝑝 has equal distances to several neighbours, so a 𝑘-th neighbour
of 𝑝 may not be unique. Unlike order-𝑘 Voronoi domains, which tile R𝑛 [7], index-𝑘
Voronoi domains form a nested sequence. Any 𝑉𝑘 (𝐶; 𝑝) is star-convex, which means it
contains all line segments connecting 𝜕𝑉𝑘 (𝐶; 𝑝) to 𝑝. Indeed, if 𝑝 ∈ 𝐶 is among the 𝑘
nearest to 𝑞 ∈ 𝜕𝑉𝑘 (𝐶; 𝑝), then any intermediate point in the line segment [𝑝, 𝑞] has 𝑝
among its 𝑘 nearest neighbours of 𝐶.

Fig. 9.8 and 9.9 are outputs of Philip Smith’s software [13] and show degree-𝑘
Voronoi domains for the square and hexagonal lattices for 𝑘 = 1, . . . , 30. In each of
these images, any degree-𝑘 Voronoi domain is the union of polygons of the same colour,
and has the origin as its 𝑘-th nearest neighbour among all lattice points.

Theorem 9.3.2 implies that Fig. 9.8 and 9.9 have the same total area of each colour.

Theorem 9.3.2 (volumes of degree-𝑘 Voronoi domains, [11, Theorem 7]). For any
periodic point set 𝑆 ⊂ R𝑛 with a motif 𝑀 , the sum of the volumes of the degree-𝑘
Voronoi domains 𝑍𝑘 (𝑆; 𝑝) over all motif points 𝑝 ∈ 𝑀 is independent of 𝑘 . ■

Theorem 9.3.3 computes any density function 𝜓𝑘 [𝑆] via degree-𝑘 Voronoi domains
of 𝑆. Let vol[𝐶] denote the volume of any compact region 𝐶 ⊂ R𝑛.
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Fig. 9.8 Degree-𝑘 Voronoi domains 𝑍𝑘 (Λ4; 0) of the square latticeΛ4 of red points for 𝑘 = 1, . . . , 30.

Theorem 9.3.3 (formula for density functions, [5, Theorem 2]). Let 𝑆 = Λ + 𝑀 ⊂ R𝑛

be a periodic point set with a motif 𝑀 ⊆ 𝑈 in a unit cell𝑈 of a lattice Λ ⊂ R𝑛. Fix any

integer 𝑘 ≥ 1. Then 𝜓𝑘 [𝑆] (𝑡) =
1

vol[𝑈]
∑
𝑝∈𝑀

vol[𝑉𝑘 (𝑆; 𝑝) ∩ 𝐵̄(𝑝; 𝑡)]. ■

Lemma 9.3.4 can be considered a definition of a Minkowski-reduced basis, which is
needed to estimate the time for degree-𝑘 Voronoi domains in Theorem 9.3.5.

Lemma 9.3.4 ([9, Lemma 2.2.1]). A basis v1, . . . , v𝑛 of a lattice Λ ⊂ R𝑛 is Minkowski-
reduced if and only if, for any 𝑖 = 1, . . . , 𝑛 and 𝑐1, . . . , 𝑐𝑛 ∈ Z such that 𝑐𝑖 , . . . , 𝑐𝑛 have
no common integer factor 𝑐 > 1, the inequality |

𝑛∑
𝑗=1
𝑐 𝑗v 𝑗 | ≥ |v𝑖 | holds. ■

Theorem 9.3.5 (time of degree-𝑘 Voronoi domains, [11, Theorem 7]). For 𝑛 = 2, 3,
let a periodic point set 𝑆 = Λ + 𝑀 ⊂ R𝑛 have a motif 𝑀 of 𝑚 points and a lattice Λ
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Fig. 9.9 Degree-𝑘 Voronoi domains 𝑍𝑘 (Λ6; 0) of the hexagonal lattice Λ6 for 𝑘 = 1, . . . , 30.

with a Minkowski-reduced basis. For any point 𝑝 ∈ 𝑆, the time to compute all degree-𝑖
Voronoi domains 𝑍𝑖 (𝑆; 𝑝) for 𝑖 = 1, . . . , 𝑘 is 𝑂 (𝑚𝑛 (4𝑘)𝑛2 (𝑛 log(4𝑘) + log𝑚)). ■

9.4 A description of density functions of periodic sequences

All quoted results in this section have detailed proofs in [2].

For convenience, scale any periodic sequence to period 1 so that 𝑆 = {𝑝1, . . . , 𝑝𝑚}+
Z. Since the expanding balls in R are growing intervals, volumes of their intersections
linearly change in the variable radius 𝑡. Hence, any density function 𝜓𝑘 (𝑡) is piecewise
linear and uniquely determined by corner points (𝑎 𝑗 , 𝑏 𝑗 ) where the gradient changes.
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Examples 9.4.1 and 9.4.3 explain how the density functions 𝜓𝑘 (𝑡) are computed for the
periodic sequence 𝑆 = {0, 1

3 ,
1
2 } + Z, see all graphs in Fig. 9.10.

Example 9.4.1 (0-th density 𝜓0 (𝑡) for 𝑆 = {0, 1
3 ,

1
2 } + Z). By Definition 9.2.1 𝜓0 (𝑡)

is the fractional length within the period interval [0, 1] not covered by the intervals of
radius 𝑡 (length 2𝑡), which are the red intervals [0, 𝑡] ∪ [1 − 𝑡, 1], green dashed interval
[ 1

3 − 𝑡, 1
3 + 𝑡] and blue dotted interval [ 1

2 − 𝑡, 1
2 + 𝑡]. The graph of 𝜓0 (𝑡) starts from the

point (0, 1) at 𝑡 = 0. Then 𝜓0 (𝑡) linearly drops to the point ( 1
12 ,

1
2 ) at 𝑡 = 1

12 when a half
of the interval [0, 1] remains uncovered.

The next linear piece of 𝜓0 (𝑡) continues to the point ( 1
6 ,

1
6 ) at 𝑡 = 1

6 when only
[ 2

3 ,
5
6 ] is uncovered. The graph of 𝜓0 (𝑡) finally returns to the 𝑡-axis at the point ( 1

4 , 0)
and remains there for 𝑡 ≥ 1

4 . The piecewise linear behaviour of 𝜓0 (𝑡) can be briefly
described via the corner points (0, 1), ( 1

12 ,
1
3 ), (

1
6 ,

1
6 ), (

1
4 , 0). _

Fig. 9.10 Left: the periodic sequence 𝑆 = {0, 1
3 ,

1
2 } + Z with points of three colors. The growing

intervals around the red point 0 ≡ 1 (mod 1) , green point 1
3 , blue point 1

2 have the same color for
various radii 𝑡 . Right: the trapezium functions 𝜂 from Example 9.4.3.

Theorem 9.4.2 extends Example 9.4.1 to any periodic sequence 𝑆 and implies that
𝜓0 (𝑡) is uniquely determined by the ordered distances within a unit cell of 𝑆.

Theorem 9.4.2 (description of 𝜓0, [2, Theorem 5]). For any periodic sequence 𝑆 =

{𝑝1, . . . , 𝑝𝑚} +Z with motif points 0 ≤ 𝑝1 < · · · < 𝑝𝑚 < 1, set 𝑑𝑖 = 𝑝𝑖+1 − 𝑝𝑖 ∈ (0, 1),
where 𝑖 = 1, . . . , 𝑚 and 𝑝𝑚+1 = 𝑝1 + 1. Put the distances in the increasing order
𝑑[1] ≤ 𝑑[2] ≤ · · · ≤ 𝑑[𝑚] . Then the 0-th density function 𝜓0 is piecewise linear with

the following (unordered) corners: (0, 1) and ( 1
2𝑑[𝑖 ] , 1 −

𝑖−1∑
𝑗=1
𝑑[ 𝑗 ] − (𝑚 − 𝑖 + 1)𝑑[𝑖 ]) for

𝑖 = 1, . . . , 𝑚, so the last corner is ( 1
2𝑑[𝑚] , 0). If any corner points are repeated, e.g. if

𝑑[𝑖−1] = 𝑑[𝑖 ] , these corners are collapsed into one. ■
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Theorem 9.4.2 for the sequence 𝑆 = {0, 1
3 ,

1
2 } + Z gives the ordered distances

𝑑[1] = 1
6 < 𝑑[2] = 1

3 < 𝑑[3] = 1
2 , which determine the corner points (0, 1), ( 1

12 ,
1
2 ),

( 1
6 ,

1
6 ), (

1
4 , 0) of the density function 𝜓0 (𝑡) in Fig. 9.10, see Example 9.4.1.

For any periodic sequence with 𝑚 points in a unit cell, by Theorem 9.4.2, any
0th density function 𝜓0 (𝑡) is uniquely determined by the (unordered) set of lengths
of intervals between successive points. Hence, we can reorder these intervals without
changing𝜓0 (𝑡). For instance, the periodic sequence𝑄 = {0, 1

2 ,
2
3 }+Z has the same set of

interval lengths 𝑑[1] = 1
6 , 𝑑[2] = 1

3 , 𝑑[3] = 1
2 as the periodic sequence 𝑆 = {0, 1

3 ,
1
2 } +Z

in Example 9.4.1.

The above sequences 𝑆, 𝑄 are related by the mirror reflection 𝑡 ↦→ 1 − 𝑡. One can
easily construct many non-isometric sequences with 𝜓0 [𝑆] (𝑡) = 𝜓0 [𝑄] (𝑡). For any
1 ≤ 𝑖 ≤ 𝑚−3, the sequences 𝑆𝑚,𝑖 = {0, 2, 3, . . . , 𝑖+2, 𝑖+4, 𝑖+5, . . . , 𝑚+2}+ (𝑚+2)Z
have the same interval lengths 𝑑[1] = · · · = 𝑑[𝑚−2] = 1, 𝑑[𝑚−1] = 𝑑[𝑚] = 2 but are not
related by isometry (translations and reflections in R) because the intervals of length 2
are separated by 𝑖 − 1 intervals of length 1 in 𝑆𝑚,𝑖 .

Corollary 9.4.9 will prove that the 1st density function 𝜓1 [𝑆] (𝑡) uniquely determines
a periodic sequence 𝑆 ⊂ R in general position up to isometry of R.

Example 9.4.3 (functions 𝜓𝑘 (𝑡) for 𝑆 = {0, 1
3 ,

1
2 } + Z). The 1st density function 𝜓1 (𝑡)

can be obtained as a sum of the three trapezium functions 𝜂𝑅, 𝜂𝐺 , 𝜂𝐵, each measuring
the length of a region covered by a single interval (of one color). The red intervals
[0, 𝑡] ∪ [1 − 𝑡, 1] grow until 𝑡 = 1

6 when they touch the green interval [ 1
6 ,

1
2 ]. So the

length 𝜂𝑅 (𝑡) of this interval linearly grows from the origin (0, 0) to the corner point
( 1

6 ,
1
3 ). For 𝑡 ∈ [ 1

6 ,
1
4 ], the left red interval is shrinking at the same rate due to the

overlapping green interval, while the right red interval continues to grow until 𝑡 = 1
4 ,

when it touches the blue interval [ 1
4 ,

3
4 ]. Hence the graph of 𝜂𝑅 (𝑡) remains constant

up to the corner point ( 1
4 ,

1
3 ). After that 𝜂𝑅 (𝑡) linearly returns to the 𝑡-axis at 𝑡 = 5

12 .
Hence the trapezium function 𝜂𝑅 has the piecewise linear graph through the corner
points (0, 0), ( 1

6 ,
1
3 ), (

1
4 ,

1
3 ), (

5
12 , 0).

The 2nd function 𝜓2 (𝑡) is the sum of the trapezium functions 𝜂𝐺𝐵, 𝜂𝑅𝐺 , 𝜂𝑅𝐵, each
measuring the length of a double intersection. For the green interval [ 1

3 −𝑡,
1
3 +𝑡] and the

blue interval [ 1
2 −𝑡,

1
2 +𝑡], the graph of the trapezium function 𝜂𝐺𝐵 (𝑡) is piecewise linear

and starts at the point ( 1
12 , 0), where the intervals touch. The green-blue intersection

interval [ 1
2 − 𝑡, 1

3 + 𝑡] grows until 𝑡 = 1
4 , when [ 1

4 ,
7
12 ] touches the red interval on the

left. At the same time 𝜂𝐺𝐵 (𝑡) is linearly growing to the point ( 1
4 ,

1
3 ). For 𝑡 ∈ [ 1

4 ,
1
3 ], the

green-blue intersection interval becomes shorter on the left, but grows at the same rate
on the right until [ 1

3 ,
2
3 ] touches the red interval [ 2

3 , 1]. Then 𝜂𝐺𝐵 (𝑡) remains constant
up to the point ( 1

3 ,
1
3 ). For 𝑡 ∈ [ 1

3 ,
1
2 ] the green-blue intersection interval is shortening

from both sides. The graph of 𝜂𝐺𝐵 (𝑡) returns to the 𝑡-axis at ( 1
2 , 0), see Fig. 9.10. _

Theorem 9.4.4 extends Example 9.4.3 and proves that any𝜓𝑘 (𝑡) is a sum of trapezium
functions whose corners are explicitly described. We consider any index 𝑖 = 1, . . . , 𝑚
(of a point 𝑝𝑖 or a distance 𝑑𝑖) modulo 𝑚 so that 𝑚 + 1 ≡ 1 (mod 𝑚).
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Theorem 9.4.4 (description of 𝜓𝑘 for 𝑘 > 0, [2, Theorem 7]). For any periodic
sequence 𝑆 = {𝑝1, . . . , 𝑝𝑚} + Z with points 0 ≤ 𝑝1 < · · · < 𝑝𝑚 < 1 in a motif, set
𝑑𝑖 = 𝑝𝑖+1−𝑝𝑖 ∈ (0, 1), where 𝑖 = 1, . . . , 𝑚 and 𝑝𝑚+1 = 𝑝1+1. Any interval [𝑝𝑖−𝑡, 𝑝𝑖+𝑡]
is projected to [0, 1] modulo Z. For 1 ≤ 𝑘 ≤ 𝑚, the density function 𝜓𝑘 (𝑡) is the sum
of 𝑚 trapezium functions 𝜂𝑘,𝑖 with the corner points ( 𝑠2 , 0), (

𝑑𝑖−1+𝑠
2 , 𝑑), ( 𝑠+𝑑𝑖+𝑘−1

2 , 𝑑),

( 𝑑𝑖−1+𝑠+𝑑𝑖+𝑘−1
2 , 0), where 𝑑 = min{𝑑𝑖−1, 𝑑𝑖+𝑘−1}, 𝑠 =

𝑖+𝑘−2∑
𝑗=𝑖

𝑑 𝑗 , 𝑖 = 2, . . . , 𝑚 + 1. If

𝑘 = 1, then 𝑠 = 0 is the empty sum. So 𝜓𝑘 (𝑡) is determined by the unordered set of
triples (𝑑𝑖−1, 𝑠, 𝑑𝑖+𝑘−1) whose first and last entries are swappable. ■

In Example 9.4.3 for 𝑆 = {0, 1
3 ,

1
2 } + Z, we have 𝑑1 = 1

3 , 𝑑2 = 1
6 , 𝑑3 = 1

2 = 𝑑0.
For 𝑘 = 2, 𝑖 = 2, we get 𝑑𝑖−1 = 𝑑1 = 1

3 , 𝑑𝑖+𝑘−1 = 𝑑3 = 1
2 , i.e. 𝑑 = min{𝑑1, 𝑑3} = 1

3 ,
𝑠 = 𝑑2 = 1

6 . Then 𝜂22 = 𝜂𝐺𝐵 has the corner points ( 1
12 , 0), (

1
4 ,

1
3 ), (

1
3 ,

1
3 ), (

1
2 , 0).

Theorem 9.4.5 (symmetries of 𝜓𝑘 (𝑡), [2, Theorem 8]). For any periodic sequence
𝑆 ⊂ R with a unit cell [0, 1], we have the periodicity 𝜓𝑘+𝑚(𝑡 + 1

2 ) = 𝜓𝑘 (𝑡) for 𝑘 ≥ 0,
𝑡 ≥ 0, and the symmetry 𝜓𝑚−𝑘 ( 1

2 − 𝑡) = 𝜓𝑘 (𝑡) for 𝑘 = 0, . . . , [𝑚2 ], and 𝑡 ∈ [0, 1
2 ]. ■

Corollary 9.4.6 (time of 𝜓𝑘 (𝑡) for periodic sequences of points, [2, Corollary 9]). Let
𝑆, 𝑄 ⊂ R be periodic sequences with at most 𝑚 points in motifs. For 𝑘 ≥ 1, one can
draw the graph of the 𝑘-th density function 𝜓𝑘 [𝑆] in time 𝑂 (𝑚2). One can check in
time 𝑂 (𝑚3) if the full density fingerprints coincide: Ψ[𝑆] = Ψ[𝑄]. ■

To illustrate Corollary 9.4.6, Example 9.4.7 will justify that the periodic sequences
𝑆15 and 𝑄15 in Fig. 9.11 have identical density fingerprints Ψ[𝑆15] = Ψ[𝑄15].
Example 9.4.7 (periodic sequences 𝑆15, 𝑄15 ⊂ R). [16, Appendix B] discusses homo-
metric periodic sets that can be distinguished by the invariant AMD (Average Minimum
Distances) and not by inter-point distance distributions. The periodic sequences

𝑆15 = {0, 1, 3, 4, 5, 7, 9, 10, 12} + 15Z, 𝑄15 = {0, 1, 3, 4, 6, 8, 9, 12, 14} + 15Z

have period 15 and unit cell [0, 15] shown as a circle in Fig. 9.11.

Fig. 9.11 Circular versions of the periodic sets 𝑆15, 𝑄15. Distances are along round arcs.

These periodic sequences [8] are obtained as Minkowski sums 𝑆15 = 𝑈 + 𝑉 + 15Z
and𝑄15 = 𝑈 −𝑉 + 15Z for𝑈 = {0, 4, 9} and𝑉 = {0, 1, 3}. The last picture in Fig. 9.11
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shows the periodic set 4 − 𝑆15 isometric to 𝑆15. Now the difference between 𝑄15 and
4 − 𝑆15 is better visible: points 0, 1, 3, 4, 5, 12, 14 are common, but points 6, 8, 9 ∈ 𝑄15
are shifted to 7, 9, 10 in the circular set 4 − 𝑆15.

To avoid fractions, we keep the unit cell [0, 15] of the sequences 𝑆15, 𝑄15 without
scaling it down to [0, 1] because all quantities in Theorem 9.4.4 can be scaled up
by factor 15. To conclude that 𝜓0 [𝑆15] = 𝜓0 [𝑄15], by Theorem 9.4.2 we check that
𝑆15, 𝑄15 have the same set of the ordered distances 𝑑[𝑖 ] between successive points,
which is shown in identical rows 3 of Tables 9.2 and 9.3.

Table 9.2 Row 1: points 𝑝𝑖 from 𝑆15 in Fig. 9.11. Row 2: the distances 𝑑𝑖 between successive points
of 𝑆15. Row 3: the distances 𝑑[𝑖 ] are in the increasing order. Row 4: the unordered set of these
pairs determines the density function 𝜓1 by Theorem 9.4.4. Row 5: the pairs are lexicographically
ordered for comparison with row 5 in Table 9.3. Rows 6,8,10: the unordered sets of these triples
determine the density functions 𝜓2, 𝜓3, 𝜓4 by Theorem 9.4.4 for 𝑘 = 2, 3, 4. Rows 7,9,11: the triples
from rows 6,8,10 are ordered for easier comparison with corresponding rows 7,9,11 in Table 9.3, see
Example 9.4.7.

𝑝𝑖 0 1 3 4 5 7 9 10 12

𝑑𝑖 = 𝑝𝑖+1 − 𝑝𝑖 1 2 1 1 2 2 1 2 3

ordered 𝑑[𝑖 ] 1 1 1 1 2 2 2 2 3

(𝑑𝑖−1, 𝑑𝑖 ) (3,1) (1,2) (2,1) (1,1) (1,2) (2,2) (2,1) (1,2) (2,3)

order (𝑑𝑖−1, 𝑑𝑖 ) (1,1) (1,2) (1,2) (1,2) (1,2) (1,2) (1,3) (2,2) (2,3)

(𝑑𝑖−1, di, 𝑑𝑖+1 ) (3,1,2) (1,2,1) (2,1,1) (1,1,2) (1,2,2) (2,2,1) (2,1,2) (1,2,3) (2,3,1)

order (𝑑𝑖−1, di, 𝑑𝑖+1 ) (1,1,2) (1,1,2) (2,1,2) (2,1,3) (1,2,1) (1,2,2) (1,2,2) (1,2,3) (1,3,2)

(𝑑𝑖−1, s, 𝑑𝑖+2 ) (3,3,1) (1,3,1) (2,2,2) (1,3,2) (1,4,1) (2,3,2) (2,3,3) (1,5,1) (2,4,2)

order (𝑑𝑖−1, s, 𝑑𝑖+2 ) (2,2,2) (1,3,1) (1,3,2) (1,3,3) (2,3,2) (2,3,3) (1,4,1) (2,4,2) (1,5,1)

(𝑑𝑖−1, s, 𝑑𝑖+3 ) (3,4,1) (1,4,2) (2,4,2) (1,5,1) (1,5,2) (2,5,3) (2,6,1) (1,6,2) (2,6,1)

order (𝑑𝑖−1, s, 𝑑𝑖+3 ) (1,4,2) (1,4,3) (2,4,2) (1,5,1) (1,5,2) (2,5,3) (1,6,2) (1,6,2) (1,6,2)

To conclude that 𝜓1 [𝑆15] = 𝜓1 [𝑄15] by Theorem 9.4.4, we check that 𝑆15, 𝑄15
have the same set of unordered pairs (𝑑𝑖−1, 𝑑𝑖) of distances between successive points.
Indeed, Tables 9.2 and 9.3 have identical rows 5, where pairs are lexicograpically
ordered for comparison: (𝑎, 𝑏) < (𝑐, 𝑑) if 𝑎 < 𝑏 or 𝑎 = 𝑏 and 𝑐 < 𝑑.

To conclude that 𝜓𝑘 [𝑆15] = 𝜓𝑘 [𝑄15] for 𝑘 = 2, 3, 4, we compare the triples
(𝑑𝑖−1, s, 𝑑𝑖+𝑘−1) from Theorem 9.4.4 for 𝑆15, 𝑄15. For 𝑘 = 2 and 𝑘 = 3, Tables 9.2
and 9.3 have identical rows 7 and 9, where the triples are ordered for easier comparison
as follows. If needed, we swap 𝑑𝑖−1, 𝑑𝑖+𝑘−1 to make sure that the first entry is not larger
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Table 9.3 Row 1: points 𝑝𝑖 from𝑄15 in Fig. 9.11. Row 2: the distances 𝑑𝑖 between successive points
of 𝑄15. Row 3: the distances 𝑑[𝑖 ] are in the increasing order. Row 4: the unordered set of these pairs
determines the density function 𝜓1 by Theorem 9.4.4b. Row 5: the pairs are lexicographically ordered
for comparison with row 5 in Table 9.2. Rows 6,8,10: the unordered sets of these triples determine
the density functions 𝜓2, 𝜓3, 𝜓4 by Theorem 9.4.4 for 𝑘 = 2, 3, 4. Rows 7,9,11: the triples from rows
6,8,10 are ordered for comparison with corresponding rows 7,9,11 in Table 9.2, see Example 9.4.7.

𝑝𝑖 0 1 3 4 6 8 9 12 14

𝑑𝑖 = 𝑝𝑖+1 − 𝑝𝑖 1 2 1 2 2 1 3 2 1

ordered 𝑑[𝑖 ] 1 1 1 1 2 2 2 2 3

(𝑑𝑖−1, 𝑑𝑖 ) (1,1) (1,2) (2,1) (1,2) (2,2) (2,1) (1,3) (3,2) (2,1)

ordered (𝑑𝑖−1, 𝑑𝑖 ) (1,1) (1,2) (1,2) (1,2) (1,2) (1,2) (1,3) (2,2) (2,3)

(𝑑𝑖−1, di, 𝑑𝑖+1 ) (1,1,2) (1,2,1) (2,1,2) (1,2,2) (2,2,1) (2,1,3) (1,3,2) (3,2,1) (2,1,1)

order (𝑑𝑖−1, di, 𝑑𝑖+1 ) (1,1,2) (1,1,2) (2,1,2) (2,1,3) (1,2,1) (1,2,2) (1,2,2) (1,2,3) (1,3,2)

(𝑑𝑖−1, s, 𝑑𝑖+2 ) (1,3,1) (1,3,2) (2,3,2) (1,4,1) (2,3,3) (2,4,2) (1,5,1) (3,3,1) (2,2,2)

order (𝑑𝑖−1, s, 𝑑𝑖+2 ) (2,2,2) (1,3,1) (1,3,2) (1,3,3) (2,3,2) (2,3,3) (1,4,1) (2,4,2) (1,5,1)

(𝑑𝑖−1, s, 𝑑𝑖+3 ) (1,4,2) (1,5,2) (2,5,1) (1,5,3) (2,6,2) (2,6,1) (1,6,1) (3,4,2) (2,4,1)

order (𝑑𝑖−1, s, 𝑑𝑖+3 ) (1,4,2) (1,4,2) (2,4,3) (1,5,2) (1,5,2) (1,5,3) (1,6,1) (1,6,2) (2,6,2)

than the last. Then we order by the middle bold number s. Finally, we lexicographically
order the triples with the same middle value 𝑠.

Final rows 11 of Tables 9.2 and 9.3 look different for 𝑘 = 4. More exactly, the rows
share three triples (1,4,2), (1,5,2), (1,6,4), but the remaining six triples differ. However,
the density function 𝜓4 is the sum of nine trapezium functions. Fig. 9.12 shows that
these sums are equal for 𝑆15, 𝑄15. Then the sequences 𝑆15, 𝑄15 have identical density
functions 𝜓𝑘 for 𝑘 = 0, 1, 2, 3, 4, hence for all 𝑘 by the symmetry and periodicity from
Theorem 9.4.5. Fig. 9.13 shows the density functions 𝜓𝑘 for 𝑘 = 0, 1, . . . , 9. _

Recall that all indices 𝑖 of distances 𝑑𝑖 are considered modulo 𝑚.

Corollary 9.4.8 (𝑘-th density 𝜌𝑘 , [2, Corollary 11]). For any periodic sequence 𝑆 =

{𝑝1, . . . , 𝑝𝑚} + Z with inter-point distances 𝑑𝑖 = 𝑝𝑖+1 − 𝑝𝑖 , where 𝑖 = 1, . . . , 𝑚 and

𝑝𝑚+1 = 𝑝1 +1, the 𝑘-th density 𝜌𝑘 [𝑆] =
+∞∫
−∞

𝜓𝑘 (𝑡)𝑑𝑡 defined as the area under the graph

of 𝜓𝑘 (𝑡) over R equals 𝜌𝑘 [𝑆] =
1
2
𝑚∑
𝑖=1
𝑑𝑖−1𝑑𝑖+𝑘−1 for any 𝑘 > 0 and 𝜌0 [𝑆] =

1
4
𝑚∑
𝑖=1
𝑑2
𝑖
. ■

For 𝑆 = {0, 1
3 ,

1
2 } + Z, Corollary 9.4.8 gives 𝜌0 = 7

72 , 𝜌1 = 𝜌2 = 11
122 as in Fig. 9.10.
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Fig. 9.12 The 4th-density function 𝜓4 [𝑆15 ] includes the six trapezium functions on the left, which are
replaced by other six trapezium functions in 𝜓4 [𝑄15 ] on the right, compare the last rows of Tables 9.2
and 9.3. However, the sums of these six functions are equal, which can be checked at critical radii: both
sums of six functions have 𝜂 (2.5) = 2, 𝜂 (3) = 5, 𝜂 (3.5) = 6, 𝜂 (4) = 4, 𝜂 (4.5) = 1. Hence, the
sequences 𝑆15, 𝑄15 in Fig. 9.11 have identical density functions 𝜓𝑘 for all 𝑘 ≥ 0, see Example 9.4.7.

Fig. 9.13 The periodic sequences 𝑆15, 𝑄15 in Fig. 9.11 have identical density functions 𝜓𝑘 (𝑡 ) for all
𝑘 ≥ 0. Both axes are scaled by factor 15. Theorem 9.4.5 implies the symmetry 𝜓𝑘 ( 15

2 − 𝑡 ) = 𝜓9−𝑘 (𝑡 ) ,
𝑡 ∈ [0, 15

2 ], and periodicity 𝜓9 (𝑡 + 15
2 ) = 𝜓0 (𝑡 ) , 𝑡 ≥ 0.

Corollary 9.4.9 (generic completeness of 𝜓1, [2, Corollary 12]). Let 𝑆 ⊂ R be a
sequence with period 1 and 𝑚 points 0 ≤ 𝑝1 < · · · < 𝑝𝑚 < 1. The sequence 𝑆 is called
generic if 𝑑𝑖 = 𝑝𝑖+1 − 𝑝𝑖 are distinct, where 𝑖 = 1, . . . , 𝑚 and 𝑝𝑚+1 = 𝑝1 + 1. Then any
generic 𝑆 can be reconstructed from the 1st density function 𝜓1 [𝑆] (𝑡) up to isometry
in R. Hence 𝜓1 (𝑡) is a complete isometry invariant for all generic 𝑆. ■

9.5 Density functions of periodic sequences of intervals in R

This section follows [3, sections 2-5] by extending density functions to periodic sets of
points with radii, including periodic sequences of disjoint intervals in R.
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Definition 9.5.1 (density functions for periodic sets of points with radii). Let a periodic
set 𝑆 = Λ + 𝑀 ⊂ R𝑛 have a unit cell 𝑈. For every point 𝑝 ∈ 𝑀 , fix a radius 𝑟 (𝑝) ≥ 0.
For any integer 𝑘 ≥ 0, let 𝑈𝑘 (𝑡) be the region within the cell 𝑈 covered by exactly 𝑘
closed balls 𝐵̄(𝑝; 𝑟 (𝑝) + 𝑡) for 𝑡 ≥ 0 and all points 𝑝 ∈ 𝑀 and their translations by Λ.
The 𝑘-th density function 𝜓𝑘 [𝑆] (𝑡) = vol[𝑈𝑘 (𝑡)]/vol[𝑈] is the fractional volume of
the 𝑘-fold intersections of these balls within𝑈. ■

In Definition 9.5.1, the balls are growing at all points of 𝑆, because centers 𝑝 ∈ 𝑀
are translated by all lattice vectors 𝑣 ∈ Λ. The initially different radii 𝑟𝑖 are motivated
by real lengths of continuous events in periodic time series for 𝑛 = 1 and also by atomic
radii of different chemical elements for 𝑛 = 3. Another (possibly, non-linear) growth of
radii lead to more complicated density functions.

The density 𝜓𝑘 [𝑆] (𝑡) can be interpreted as the probability that a random (uniformly
chosen in 𝑈) point 𝑞 is at a maximum distance 𝑡 to exactly 𝑘 balls with initial radii
𝑟 (𝑝) and all centers 𝑝 ∈ 𝑆. For 𝑘 = 0, the 0-th density 𝜓0 [𝑆] (𝑡) measures the fractional
volume of the empty space not covered by any expanding balls 𝐵̄(𝑝; 𝑟 (𝑝) + 𝑡)

For 𝑘 = 1 and small 𝑡 > 0 while all equal-sized balls 𝐵̄(𝑝; 𝑡) remain disjoint, the
1st density 𝜓1 [𝑆] (𝑡) increases proportionally to 𝑡𝑛 but later reaches a maximum and
eventually drops back to 0 when all points of R𝑛 are covered of by at least two balls.

The original densities helped find a missing crystal in the Cambridge Structural
Database, which was accidentally confused with a slight perturbation (measured at a
different temperature) of another crystal (polymorph) with the same chemical compo-
sition, see [5, section 7].

The new weighted case with radii 𝑟 (𝑝) ≥ 0 in Definition 9.5.1 is even more practically
important due to different Van der Waals radii, which are individually defined for all
chemical elements.

The key advantage of density functions over other isometry invariants of periodic
crystals (such as symmetries or conventional representations based on a geometry of a
minimal cell) is their continuity under perturbations. The only limitation is the infinite
size of densities 𝜓𝑘 (𝑡) due to the unbounded parameters: integer index 𝑘 ≥ 0 and
continuous radius 𝑡 ≥ 0.

Theorem 9.5.3 will explicitly describing the 0-th density function 𝜓0 [𝑆] (𝑡) for any
periodic sequence 𝑆 ⊂ R of intervals. All intervals are considered closed and called
disjoint if their open interiors (not endpoints) have no common points.

For convenience, scale any periodic sequence 𝑆 to period 1 so that 𝑆 is given by
points 0 ≤ 𝑝1 < · · · < 𝑝𝑚 < 1 with radii 𝑟1, . . . , 𝑟𝑚, respectively. Since the expanding
balls in R are growing intervals, volumes of their intersections linearly change with
respect to the variable radius 𝑡. Hence any density function 𝜓𝑘 (𝑡) is piecewise linear
and uniquely determined by corner points (𝑎 𝑗 , 𝑏 𝑗 ) where the gradient of 𝜓𝑘 (𝑡) changes.
To illustrate Theorem 9.5.3, we consider Example 9.5.2 for the simple sequence 𝑆.

Example 9.5.2 (0-th density function 𝜓0). Let the periodic sequence 𝑆 = {0, 1
3 ,

1
2 } + Z

have three points 𝑝1 = 0, 𝑝2 = 1
3 , 𝑝3 = 1

2 of radii 𝑟1 = 1
12 , 𝑟2 = 0, 𝑟3 = 1

12 , respectively.
Fig. 9.14 shows each point 𝑝𝑖 and its growing interval
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𝐿𝑖 (𝑡) = [(𝑝𝑖 − 𝑟𝑖) − 𝑡, (𝑝𝑖 + 𝑟𝑖) + 𝑡] of the length 2𝑟𝑖 + 2𝑡

for 𝑖 = 1, 2, 3 in its own color: red, green, blue.

Fig. 9.14 The sequence 𝑆 = {0, 1
3 ,

1
2 } + Z has the points of weights 1

12 , 0,
1
12 , respectively. The

intervals around the red point 0 ≡ 1 (mod 1) , green point 1
3 , blue point 1

2 have the same color for
various radii 𝑡 , see Examples 9.5.2, 9.5.5, 9.5.8.

By Definition 9.5.1, each density function 𝜓𝑘 [𝑆] (𝑡) measures a fractional length
covered by exactly 𝑘 intervals within the unit cell [0, 1]. It is convenient to periodically
map the endpoints of each growing interval to the unit cell [0, 1].

For instance, the interval [− 1
12 − 𝑡, 1

12 + 𝑡] of the point 𝑝1 = 0 ≡ 1 (mod 1) maps
to the red intervals [0, 1

12 + 𝑡] ∪ [ 11
12 − 𝑡, 1] shown by solid red lines in Fig. 9.14. The

same image shows the green interval [ 1
3 − 𝑡,

1
3 + 𝑡] by dashed lines and the blue interval

[ 5
12 − 𝑡, 7

12 + 𝑡] by dotted lines.
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At the moment 𝑡 = 0, since the starting intervals are disjoint, they cover the length
𝑙 = 2( 1

12 + 0 + 1
12 ) =

1
3 . The non-covered part of [0, 1] has length 1 − 1

3 = 2
3 . So the

graph of 𝜓0 (𝑡) at 𝑡 = 0 starts from the point (0, 2
3 ), see Fig. 9.15 (right).

Fig. 9.15 Left: the 0-th density function 𝜓0 (𝑡 ) for the 1-period sequence 𝑆 = {0, 1
3 ,

1
2 } +Z with radii

0. Right: the 0-th density 𝜓0 (𝑡 ) for the 1-period sequence 𝑆 whose points 0, 1
3 ,

1
2 have radii 1

12 , 0,
1

12 ,
respectively, see Example 9.5.2.

At the first critical moment 𝑡 = 1
24 when the green and blue intervals collide at

𝑝 = 3
8 , only the intervals [ 1

8 ,
7
24 ] ∪ [ 5

8 ,
7
8 ] of total length 5

12 remain uncovered. Hence
𝜓0 (𝑡) linearly drops to the point ( 1

12 ,
5
12 ). At the next critical moment 𝑡 = 1

8 when the
red and green intervals collide at 𝑝 = 5

24 , only the interval [ 17
24 ,

19
24 ] of length 1

12 remain
uncovered, so 𝜓0 (𝑡) continues to ( 1

8 ,
1
12 ).

The graph of 𝜓0 (𝑡) finally returns to the 𝑡-axis at the point ( 1
6 , 0) and remains there

for 𝑡 ≥ 1
6 . The piecewise linear behaviour of 𝜓0 (𝑡) can be described by specifying the

corner points in Fig. 9.15: (0, 2
3 ), (

1
24 ,

5
12 ), (

1
8 ,

1
12 ), (

1
6 , 0). _

Theorem 9.5.3 extends Example 9.5.2 to any periodic sequence 𝑆 and implies that the
0-th density function 𝜓0 (𝑡) is uniquely determined by the ordered gap lengths between
successive intervals.

Theorem 9.5.3 (description of 𝜓0, [3, Theorem 3.2]). Let a periodic sequence 𝑆 =

{𝑝1, . . . , 𝑝𝑚} + Z consist of disjoint intervals with centers 0 ≤ 𝑝1 < · · · < 𝑝𝑚 < 1 and
radii 𝑟1, . . . , 𝑟𝑚 ≥ 0. Consider the total length 𝑙 = 2

𝑚∑
𝑖=1
𝑟𝑖 and gaps between successive

intervals 𝑔𝑖 = (𝑝𝑖 − 𝑟𝑖) − (𝑝𝑖−1 + 𝑟𝑖−1), where 𝑖 = 1, . . . , 𝑚 and 𝑝0 = 𝑝𝑚 − 1, 𝑟0 = 𝑟𝑚.
Put the gaps in increasing order: 𝑔[1] ≤ 𝑔[2] ≤ · · · ≤ 𝑔[𝑚] . Then the 0-th density
𝜓0 [𝑆] (𝑡) is piecewise linear with the following (unordered) corner points: (0, 1− 𝑙) and

( 𝑔[𝑖 ]2 , 1 − 𝑙 −
𝑖−1∑
𝑗=1
𝑔[ 𝑗 ] − (𝑚 − 𝑖 + 1)𝑔[𝑖 ]) for 𝑖 = 1, . . . , 𝑚, so the last corner is ( 𝑔[𝑚]

2 , 0).

If any corners are repeated, e.g. if 𝑔[𝑖−1] = 𝑔[𝑖 ] , these corners are collapsed into one. ■
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Example 9.5.4 applies Theorem 9.5.3 to get 𝜓0 for the sequence 𝑆 in Example 9.5.2.

Example 9.5.4 (using Theorem 9.5.3). The sequence 𝑆 = {0, 1
3 ,

1
2 }+Z in Example 9.5.2

with points 𝑝1 = 0, 𝑝2 = 1
3 , 𝑝3 = 1

2 of radii 𝑟1 = 1
12 , 𝑟2 = 0, 𝑟3 = 1

12 , respectively, has
𝑙 = 2(𝑟1 + 𝑟2 + 𝑟3) = 1

3 and the initial gaps between successive intervals

𝑔1 = 𝑝1 − 𝑟1 − 𝑝3 − 𝑟3 = (1 − 1
12 ) − ( 1

2 + 1
12 ) =

1
3 ,

𝑔2 = 𝑝2 − 𝑟2 − 𝑝1 − 𝑟1 = ( 1
3 − 0) − (0 + 1

12 ) =
1
4 ,

𝑔3 = 𝑝3 − 𝑟3 − 𝑝2 − 𝑟2 = ( 1
2 − 1

12 ) − ( 1
3 + 0) = 1

12 .

Order the gaps: 𝑔[1] = 1
12 < 𝑔[2] =

1
4 < 𝑔[3] =

1
3 . Then

1 − 𝑙 = 1 − 1
3 = 2

3 ,

1 − 𝑙 − 3𝑔[1] = 2
3 − 3

12 = 5
12 ,

1 − 𝑙 − 𝑔[1] − 2𝑔[2] = 2
3 − 1

12 − 2
4 = 1

12 ,

1 − 𝑙 − 𝑔[1] − 𝑔[2] − 𝑔[3] = 2
3 − 1

12 − 1
4 − 1

3 = 0.

By Theorem 9.5.3 𝜓0 (𝑡) has the corner points

(0, 1 − 𝑙) = (0, 2
3 ),

( 1
2𝑔[1] , 1 − 𝑙 − 3𝑔[1]) = ( 1

24 ,
5
12 ),

( 1
2𝑔[2] , 1 − 𝑙 − 𝑔[1] − 2𝑔[2]) = ( 1

8 ,
1

12 ),

( 1
2𝑔[3] , 1 − 𝑙 − 𝑔[1] − 𝑔[2] − 𝑔[3]) = ( 1

6 , 0).

See the graph of the 0-th density 𝜓0 (𝑡) in Fig. 9.15. _

By Theorem 9.5.3 any 0-th density function 𝜓0 (𝑡) is uniquely determined by the
(unordered) set of gap lengths between successive intervals. Hence we can re-order these
intervals without changing 𝜓0 (𝑡). For instance, the periodic sequence𝑄 = {0, 1

2 ,
2
3 } +Z

with points 0, 1
2 ,

2
3 of weights 1

12 ,
1
12 , 0 has the same set ordered gaps 𝑔[1] = 1

12 , 𝑑[2] = 1
3 ,

𝑑[3] =
1
2 as the periodic sequence 𝑆 = {0, 1

3 ,
1
2 } + Z in Example 9.5.2.

The above sequences 𝑆, 𝑄 are related by the mirror reflection 𝑡 ↦→ 1 − 𝑡. One can
easily construct many non-isometric sequences with 𝜓0 [𝑆] (𝑡) = 𝜓0 [𝑄] (𝑡). For any
1 ≤ 𝑖 ≤ 𝑚−3, the sequences 𝑆𝑚,𝑖 = {0, 2, 3, . . . , 𝑖+2, 𝑖+4, 𝑖+5, . . . , 𝑚+2}+ (𝑚+2)Z
have the same interval lengths 𝑑[1] = · · · = 𝑑[𝑚−2] = 1, 𝑑[𝑚−1] = 𝑑[𝑚] = 2 but are not
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related by isometry (translations and reflections in R) because the intervals of length 2
are separated by 𝑖 − 1 intervals of length 1 in 𝑆𝑚,𝑖 .

Theorem 9.5.6 will explicitly describe the 1st density function 𝜓1 [𝑆] (𝑡) for any
periodic sequence 𝑆 of disjoint intervals. To illustrate Theorem 9.5.6, Example 9.5.5
finds 𝜓1 [𝑆] for the sequence 𝑆 from Example 9.5.2.

Fig. 9.16 Left: the trapezium functions 𝜂𝑅 , 𝜂𝐺 , 𝜂𝐵 and the 1st density function 𝜓1 (𝑡 ) for the 1-
period sequence 𝑆 whose points 0, 1

3 ,
1
2 have radii 1

12 , 0,
1

12 , see Example 9.5.5. Right: The trapezium
functions 𝜂𝐺𝐵 , 𝜂𝐵𝑅 , 𝜂𝑅𝐺 and the 2nd density function 𝜓2 (𝑡 ) for the 1-period sequence 𝑆 whose
points 0, 1

3 ,
1
2 have radii 1

12 , 0,
1

12 , see Example 9.5.8.
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Example 9.5.5 (𝜓1 for the sequence 𝑆 = {0, 1
3 ,

1
2 } +Z). The 1st density function 𝜓1 (𝑡)

can be obtained as a sum of the three trapezium functions 𝜂𝑅, 𝜂𝐺 , 𝜂𝐵, each measuring
the length of a region covered by a single interval of one color, see Fig. 9.14.

At the initial moment 𝑡 = 0, the red intervals [0, 1
12 ] ∪ [ 11

12 , 1] have the total length
𝜂𝑅 (0) = 1

6 . These red intervals [0, 1
12 + 𝑡] ∪ [ 11

12 − 𝑡, 1] for 𝑡 ∈ [0, 1
8 ] grow until they

touch the green interval [ 7
24 ,

3
8 ] and have the total length 𝜂𝑅 ( 1

8 ) =
1
6 + 2

8 = 5
12 in the

second picture of Fig. 9.14. So the graph of the red length 𝜂𝑅 (𝑡) linearly grows with
gradient 2 from the point (0, 1

6 ) to the corner point ( 1
8 ,

5
12 ).

For 𝑡 ∈ [ 1
8 ,

1
6 ], the left red interval is shrinking at the same rate (due to the overlapping

green interval) as the right red interval continues to grow until 𝑡 = 1
6 , when it touches

the blue interval [ 1
4 ,

3
4 ]. Hence the graph of 𝜂𝑅 (𝑡) remains constant for 𝑡 ∈ [ 1

8 ,
1
6 ] up to

the corner point ( 1
6 ,

5
12 ). After that, the graph of 𝜂𝑅 (𝑡) linearly decreases (with gradient

−2) until all red intervals are fully covered by the green and blue intervals at moment
𝑡 = 3

8 , see the 6th picture in Fig. 9.14.

Hence, the trapezium function 𝜂𝑅 has the piecewise linear graph through the corner
points (0, 1

6 ), (
1
8 ,

5
12 ), (

1
6 ,

5
12 ), (

3
8 , 0). After that, 𝜂𝑅 (𝑡) = 0 remains constant for 𝑡 ≥ 3

8 .
Fig. 9.16 shows the graphs of 𝜂𝑅, 𝜂𝐺 , 𝜂𝐵 and 𝜓1 = 𝜂𝑅 + 𝜂𝐺 + 𝜂𝐵. _

Theorem 9.5.6 extends Example 9.5.5 and proves that any𝜓1 (𝑡) is a sum of trapezium
functions whose corners are explicitly described. We consider any index 𝑖 = 1, . . . , 𝑚
(of a point 𝑝𝑖 or a gap 𝑔𝑖) modulo 𝑚 so that 𝑚 + 1 ≡ 1 (mod 𝑚).
Theorem 9.5.6 (description of 𝜓1, [3, Theorem 4.2]). Let a periodic sequence 𝑆 =

{𝑝1, . . . , 𝑝𝑚} + Z consist of disjoint intervals with centers 0 ≤ 𝑝1 < · · · < 𝑝𝑚 < 1 and
radii 𝑟1, . . . , 𝑟𝑚 ≥ 0, respectively. Consider the gaps 𝑔𝑖 = (𝑝𝑖 − 𝑟𝑖) − (𝑝𝑖−1 + 𝑟𝑖−1),
between successive intervals, where 𝑖 = 1, . . . , 𝑚 and 𝑝0 = 𝑝𝑚 − 1, 𝑟0 = 𝑟𝑚. Then the
1st density 𝜓1 (𝑡) is the sum of 𝑚 trapezium functions 𝜂𝑖 , 𝑖 = 1, . . . , 𝑚, with the corners
(0, 2𝑟𝑖), ( 𝑔𝑖2 , 𝑔 + 2𝑟𝑖), ( 𝑔𝑖+1

2 , 𝑔 + 2𝑟𝑖), ( 𝑔𝑖+𝑔𝑖+1
2 + 𝑟𝑖 , 0), where 𝑔 = min{𝑔𝑖 , 𝑔𝑖+1}. Hence,

𝜓1 (𝑡) is determined by the unordered set of unordered pairs (𝑔𝑖 , 𝑔𝑖+1), 𝑖 = 1, . . . , 𝑚. ■

Fig. 9.17 The distances 𝑔, 𝑠, 𝑔′ between line intervals in Theorems 9.5.6 and 9.5.9, shown for 𝑘 = 3.

Example 9.5.7 applies Theorem 9.5.6 to get 𝜓1 for the sequence 𝑆 in Example 9.5.5.

Example 9.5.7 (using Theorem 9.5.6 for 𝜓1). The sequence 𝑆 = {0, 1
3 ,

1
2 } + Z in

Example 9.5.5 with points 𝑝1 = 0, 𝑝2 = 1
3 , 𝑝3 = 1

2 of radii 𝑟1 = 1
12 , 𝑟2 = 0, 𝑟3 = 1

12 ,
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respectively, has the initial gaps between successive intervals 𝑔1 = 1
3 , 𝑔2 = 1

4 , 𝑔3 = 1
12 ,

see all the computations in Example 9.5.4.

Case (R). In Theorem 9.5.6 for the trapezium function 𝜂𝑅 = 𝜂1 measuring the fractional
length covered only by the red interval, we set 𝑖 = 1. Then 𝑟𝑖 = 1

12 , 𝑔𝑖 = 1
3 and 𝑔𝑖+1 = 1

4 ,

𝑔𝑖+𝑔𝑖+1
2 + 𝑟𝑖 = 1

2 (
1
3 + 1

4 ) +
1
12 = 3

8 ,

𝑔 = min{𝑔𝑖 , 𝑔𝑖+1} = 1
4 , 𝑔 + 2𝑟𝑖 = 1

4 + 2
12 = 5

12 .

Then 𝜂𝑅 = 𝜂1 has the following corner points:

(0, 2𝑟𝑖) = (0, 1
6 ), ( 𝑔𝑖2 , 𝑔 + 2𝑟𝑖) = ( 1

6 ,
5
12 ),

( 𝑔𝑖+1
2 , 𝑔 + 2𝑟𝑖) = ( 1

8 ,
5
12 ),

( 𝑔𝑖+𝑔𝑖+1
2 + 𝑟𝑖 , 0) = ( 3

8 , 0),

where the two middle corners are accidentally swapped due to 𝑔𝑖 > 𝑔𝑖+1 but they define
the same trapezium function as in the first picture of Fig. 9.16.

Case (G). In Theorem 9.5.6 for the trapezium function 𝜂𝐺 = 𝜂2 measuring the fractional
length covered only by the green interval, we set 𝑖 = 2. Then 𝑟𝑖 = 0, 𝑔𝑖 = 1

4 and 𝑔𝑖+1 =

1
12 , 𝑔𝑖+𝑔𝑖+1

2 + 𝑟𝑖 = 1
2 (

1
4 + 1

12 ) + 0 = 1
6 , 𝑔 = min{𝑔𝑖 , 𝑔𝑖+1} = 1

12 , 𝑔 + 2𝑟𝑖 = 1
12 + 0 = 1

12 .

Then 𝜂𝐺 = 𝜂2 has the following corner points exactly as shown in the second picture
of Fig. 9.16 (left):

(0, 2𝑟𝑖) = (0, 0), ( 𝑔𝑖2 , 𝑔 + 2𝑟𝑖) = ( 1
8 ,

1
12 ),

( 𝑔𝑖+1
2 , 𝑔 + 2𝑟𝑖) = ( 1

24 ,
5
12 ), (

𝑔𝑖+𝑔𝑖+1
2 + 𝑟𝑖 , 0) = ( 1

6 , 0).

Case (B). In Theorem 9.5.6 for the trapezium function 𝜂𝐵 = 𝜂3 measuring the fractional
length covered only by the blue interval, we set 𝑖 = 3. Then 𝑟𝑖 = 1

12 , 𝑔𝑖 = 1
12 and 𝑔𝑖+1 = 1

3 ,

𝑔𝑖+𝑔𝑖+1
2 + 𝑟𝑖 = 1

2 (
1
12 + 1

3 ) +
1
12 = 7

24 , 𝑔 = min{𝑔𝑖 , 𝑔𝑖+1} = 1
12 , 𝑔 + 2𝑟𝑖 = 1

12 + 2
12 = 1

4 .

Then 𝜂𝐵 = 𝜂3 has the following corner points:

(0, 2𝑟𝑖) = (0, 1
6 ), ( 𝑔𝑖2 , 𝑔 + 2𝑟𝑖) = ( 1

24 ,
1
4 ),

( 𝑔𝑖+1
2 , 𝑔 + 2𝑟𝑖) = ( 1

6 ,
1
4 ), (

𝑔𝑖+𝑔𝑖+1
2 + 𝑟𝑖 , 0) = ( 7

24 , 0)
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exactly as shown in the third picture of Fig. 9.16. _

Theorem 9.5.9 describing the 𝑘-th density function 𝜓𝑘 [𝑆] (𝑡) for any 𝑘 ≥ 2 and a
periodic sequence 𝑆 of disjoint intervals. To illustrate Theorem 9.5.9, Example 9.5.8
computes 𝜓2 [𝑆] for the periodic sequence 𝑆 from Example 9.5.2.

Example 9.5.8 (𝜓2 for the sequence 𝑆 = {0, 1
3 ,

1
2 }+Z). The density 𝜓2 (𝑡) can be found

as the sum of the trapezium functions 𝜂𝐺𝐵, 𝜂𝐵𝑅, 𝜂𝑅𝐺 , each measuring the length of
a double intersection, see Fig. 9.14. For the green interval [ 1

3 − 𝑡, 1
3 + 𝑡] and the blue

interval [ 5
12 − 𝑡, 7

12 + 𝑡], the graph of the function 𝜂𝐺𝐵 (𝑡) is piecewise linear and starts
at the point ( 1

24 , 0) because these intervals touch at 𝑡 = 1
24 .

The green-blue intersection [ 5
12 − 𝑡, 1

3 + 𝑡] grows until 𝑡 = 1
6 , when the resulting

interval [ 1
4 ,

1
2 ] touches the red interval on the left. At the same time, the graph of

𝜂𝐺𝐵 (𝑡) is linearly growing (with gradient 2) to the corner ( 1
6 ,

1
4 ), see Fig, 9.16.

For 𝑡 ∈ [ 1
6 ,

7
24 ], the green-blue intersection interval becomes shorter on the left, but

grows at the same rate on the right until 𝑡 = 7
24 when [ 1

8 ,
5
8 ] touches the red interval

[ 5
8 , 1] on the right, see the 5th picture in Fig. 9.14. So the graph of 𝜂𝐺𝐵 (𝑡) remains

constant up to the point ( 7
24 ,

1
4 ).

For 𝑡 ∈ [ 7
24 ,

5
12 ] the green-blue intersection interval is shortening from both sides.

So the graph of 𝜂𝐺𝐵 (𝑡) linearly decreases (with gradient −2) and returns to the 𝑡-axis
at the corner ( 5

12 , 0), then remains constant 𝜂𝐺𝐵 (𝑡) = 0 for 𝑡 ≥ 5
12 . Fig. 9.16 shows all

trapezium functions for double intersections and 𝜓2 = 𝜂𝐺𝐵 + 𝜂𝐵𝑅 + 𝜂𝑅𝐺 . _

Theorem 9.5.9 (description of𝜓𝑘 for 𝑘 ≥ 2, [3, Theorem 5.2]). Let a periodic sequence
𝑆 = {𝑝1, . . . , 𝑝𝑚} + Z consist of disjoint intervals with centers 0 ≤ 𝑝1 < · · · < 𝑝𝑚 < 1
and radii 𝑟1, . . . , 𝑟𝑚 ≥ 0, respectively. Consider the gaps 𝑔𝑖 = (𝑝𝑖 − 𝑟𝑖) − (𝑝𝑖−1 + 𝑟𝑖−1)
between the successive intervals of 𝑆, where 𝑖 = 1, . . . , 𝑚 and 𝑝0 = 𝑝𝑚 − 1, 𝑟0 = 𝑟𝑚.

For 𝑘 ≥ 2, the density function𝜓𝑘 (𝑡) equals the sum of𝑚 trapezium functions 𝜂𝑘,𝑖 (𝑡),
𝑖 = 1, . . . , 𝑚, each having the corner points ( 𝑠2 , 0), (

𝑔+𝑠
2 , 𝑔), ( 𝑠+𝑔

′

2 , 𝑔), ( 𝑔+𝑠+𝑔
′

2 , 0),
where 𝑔, 𝑔′ are the minimum and maximum values in the pair {𝑔𝑖 +2𝑟𝑖 , 𝑔𝑖+𝑘 +2𝑟𝑖+𝑘−1},

and 𝑠 =
𝑖+𝑘−1∑
𝑗=𝑖+1

𝑔 𝑗 + 2
𝑖+𝑘−2∑
𝑗=𝑖+1

𝑟 𝑗 . For 𝑘 = 2, we have 𝑠 = 𝑔𝑖+1. Hence, 𝜓𝑘 (𝑡) is determined

by the unordered set of the ordered tuples (𝑔, 𝑠, 𝑔′), 𝑖 = 1, . . . , 𝑚. ■

Example 9.5.10 applies Theorem 9.5.9 to get 𝜓2 for the sequence 𝑆 in Example 9.5.2.

Example 9.5.10 (using Theorem 9.5.9 for 𝜓2). The sequence 𝑆 = {0, 1
3 ,

1
2 } + Z in

Example 9.5.5 with points 𝑝1 = 0, 𝑝2 = 1
3 , 𝑝3 = 1

2 of radii 𝑟1 = 1
12 , 𝑟2 = 0, 𝑟3 = 1

12 ,
respectively, has the initial gaps 𝑔1 = 1

3 , 𝑔2 = 1
4 , 𝑔3 = 1

12 , see Example 9.5.4.

In Theorem 9.5.9, the 2nd density function 𝜓2 [𝑆] (𝑡) is expressed as a sum of the
trapezium functions computed via their corners below.

Case (GB). For the function 𝜂𝐺𝐵 measuring the double intersections of the green and
blue intervals centered at 𝑝2 = 𝑝𝑖 and 𝑝3 = 𝑝𝑖+𝑘−1, we set 𝑘 = 2 and 𝑖 = 2. Then we
have the radii 𝑟𝑖 = 0 and 𝑟𝑖+1 = 1

12 , the gaps 𝑔𝑖 = 1
4 , 𝑔𝑖+1 = 1

12 , 𝑔𝑖+2 = 1
3 , and the sum
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𝑠 = 𝑔𝑖+1 = 1
12 . The pair {𝑔𝑖 + 2𝑟𝑖 , 𝑔𝑖+2 + 2𝑟𝑖+1} = { 1

4 + 0, 1
3 + 2

12 } has the minimum
value 𝑔 = 1

4 and maximum value 𝑔′ = 1
2 . Then 𝜂2,2 [𝑆] (𝑡) = 𝜂𝐺𝐵 has the following

corners as in the top picture of Fig. 9.16 (right):

( 𝑠2 , 0) = ( 1
24 , 0),

( 𝑔+𝑠2 , 𝑔) = ( 1
2 (

1
4 + 1

12 ),
1
4 ) = ( 1

6 ,
1
4 ),

( 𝑠+𝑔
′

2 , 𝑔) = ( 1
2 (

1
12 + 1

2 ),
1
4 ) = ( 7

24 ,
1
4 ),

( 𝑔+𝑠+𝑔
′

2 , 0) = ( 1
2 (

1
4 + 1

12 + 1
2 ), 0) = ( 5

12 , 0).

Case (BR). For the trapezium function 𝜂𝐵𝑅 measuring the double intersections of the
blue and red intervals centered at 𝑝3 = 𝑝𝑖 and 𝑝1 = 𝑝𝑖+𝑘−1, we set 𝑘 = 2 and 𝑖 = 3.
Then we have the radii 𝑟𝑖 = 1

12 = 𝑟𝑖+1, the gaps 𝑔𝑖 = 1
12 , 𝑔𝑖+1 = 1

3 , 𝑔𝑖+2 = 1
4 , and

𝑠 = 𝑔𝑖+1 = 1
3 . The pair {𝑔𝑖 + 2𝑟𝑖 , 𝑔𝑖+2 + 2𝑟𝑖+1} = { 1

12 + 2
12 ,

1
4 + 2

12 } has the minimum
𝑔 = 1

4 and maximum 𝑔′ = 5
12 . Then 𝜂2,3 [𝑆] (𝑡) = 𝜂𝐵𝑅 has the following corners as

expected in the second picture of Fig. 9.16 (right):

( 𝑠2 , 0) = ( 1
6 , 0),

( 𝑔+𝑠2 , 𝑔) = ( 1
2 (

1
4 + 1

3 ),
1
4 ) = ( 7

24 ,
1
4 ),

( 𝑠+𝑔
′

2 , 𝑔) = ( 1
2 (

1
3 + 5

12 ),
1
4 ) = ( 3

8 ,
1
4 ),

( 𝑔+𝑠+𝑔
′

2 , 0) = ( 1
2 (

1
4 + 1

3 + 5
12 ), 0) = ( 1

2 , 0).

Case (RG). For the trapezium function 𝜂𝑅𝐺 measuring the double intersections of the
red and green intervals centered at 𝑝1 = 𝑝𝑖 and 𝑝2 = 𝑝𝑖+𝑘−1, we set 𝑘 = 2 and 𝑖 = 1.
Then we have the radii 𝑟𝑖 = 1

12 and 𝑟𝑖+1 = 0, the gaps 𝑔𝑖 = 1
3 , 𝑔𝑖+1 = 1

4 , 𝑔𝑖+2 = 1
12 , and

𝑠 = 𝑔𝑖+1 = 1
4 . The pair {𝑔𝑖 + 2𝑟𝑖 , 𝑔𝑖+2 + 2𝑟𝑖+1} = { 1

3 + 2
12 ,

1
12 + 0} has the minimum

𝑔 = 1
12 and maximum 𝑔′ = 1

2 . Then 𝜂2,1 [𝑆] (𝑡) = 𝜂𝑅𝐺 has the following corners:

( 𝑠2 , 0) = ( 1
8 , 0),

( 𝑔+𝑠2 , 𝑔) = ( 1
2 (

1
12 + 1

4 ),
1
12 ) = ( 1

6 ,
1
12 ),

( 𝑠+𝑔
′

2 , 𝑔) = ( 1
2 (

1
4 + 1

2 ),
1
12 ) = ( 3

8 ,
1
12 ),

( 𝑔+𝑠+𝑔
′

2 , 0) = ( 1
2 (

1
12 + 1

4 + 1
2 ), 0) = ( 5

12 , 0).

as expected in the third picture of Fig. 9.16 (right). _
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Fig. 9.18 The densities 𝜓𝑘 , 𝑘 = 0, . . . , 9 for the 1-period sequence 𝑆 whose points 0, 1
3 ,

1
2 have

radii 1
12 , 0,

1
12 , respectively. The densities 𝜓0, 𝜓1, 𝜓2 are described in Examples 9.5.2, 9.5.5, 9.5.8 and

determine all other densities by periodicity in Theorem 9.6.2.

9.6 Properties of density functions of periodic sequences of intervals

All results in this section have detailed proofs in [3, sections 6]. Now we study the
periodicity of the sequence {𝜓𝑘} with respect to the index 𝑘 ≥ 0 in Theorem 9.6.2,
which was a bit unexpected from Definition 9.5.1. We start with the simpler example
for the familiar 3-point sequence in Fig. 9.14.
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Fig. 9.19 Top: Example 9.6.3 illustrates the proof of Theorem 9.6.2 for 𝑚 = 1. Bottom: the density
functions 𝜓𝑘 of 𝑆 = Z whose points have a radius 0 < 𝑟 < 1

4 satisfy the periodicity 𝜓𝑘+1 (𝑡 + 1
2 ) =

𝜓𝑘 (𝑡 ) for any 𝑘 ≥ 0 and 𝑡 ≥ 0.

Example 9.6.1 (periodicity of 𝜓𝑘 in the index 𝑘). Let the periodic sequence 𝑆 =

{0, 1
3 ,

1
2 } +Z have three points 𝑝1 = 0, 𝑝2 = 1

3 , 𝑝3 = 1
2 of radii 𝑟1 = 1

12 , 𝑟2 = 0, 𝑟3 = 1
12 ,

respectively. The initial intervals 𝐿1 (0) = [− 1
12 ,

1
12 ], 𝐿2 (0) = [ 1

3 ,
1
3 ], 𝐿3 (0) = [ 5

12 ,
7
12 ]

have the 0-fold intersection measured by𝜓0 (0) = 2
3 and the 1-fold intersection measured

by 𝜓1 (0) = 1
3 , see Fig. 9.15 and 9.16.

By the time 𝑡 = 1
2 the initial intervals will grow to 𝐿1 ( 1

2 ) = [− 7
12 ,

7
12 ], 𝐿2 ( 1

2 ) =

[− 1
6 ,

5
6 ], 𝐿3 ( 1

2 ) = [− 1
12 ,

13
12 ]. The grown intervals at the radius 𝑡 = 1

2 have the 3-fold
intersection [− 1

12 ,
7
12 ] of the length 𝜓3 ( 1

2 ) =
2
3 , which coincides with 𝜓0 (0) = 2

3 .

With the extra interval 𝐿4 ( 1
2 ) = [ 5

12 ,
19
12 ] centered at 𝑝4 = 1, the 4-fold intersection

is 𝐿1 ∩ 𝐿2 ∩ 𝐿3 ∩ 𝐿4 = [ 5
12 ,

7
12 ]. With the extra interval 𝐿5 ( 1

2 ) = [ 5
6 ,

11
6 ] centered

at 𝑝5 = 4
3 , the 4-fold intersection 𝐿2 ∩ 𝐿3 ∩ 𝐿4 ∩ 𝐿5 is the single point 5

6 . With
the extra interval 𝐿6 ( 1

2 ) = [ 11
12 ,

13
12 ] centered at 𝑝6 = 3

2 , the 4-fold intersection is
𝐿3 ∩ 𝐿4 ∩ 𝐿5 ∩ 𝐿6 = [ 11

12 ,
13
12 ]. Hence the total length of the 4-fold intersection at 𝑡 = 1

2
is 𝜓4 ( 1

2 ) =
1
3 , which coincides with 𝜓1 (0) = 1

3 .

For the larger 𝑡 = 1, the six grown intervals

𝐿1 (1) =
[
− 13

12 ,
13
12

]
, 𝐿2 (1) =

[
− 2

3 ,
4
3
]
,

𝐿3 (1) =
[
− 7

12 ,
19
12

]
, 𝐿4 (1) =

[
− 1

12 ,
25
12

]
,

𝐿5 (1) =
[ 1

3 ,
7
3
]
, 𝐿6 (1) =

[ 5
12 ,

31
12

]
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have the 6-fold intersection
[ 5

12 ,
13
12

]
of length 𝜓6 (1) = 2

3 coinciding with 𝜓0 (0) =
𝜓3 ( 1

2 ) =
2
3 . _

Corollary 9.6.2 says that the coincidences in Example 9.6.1 are not accidental. The
periodicity of 𝜓𝑘 with respect to 𝑘 is illustrated by Fig. 9.18.

Theorem 9.6.2 (periodicity of 𝜓𝑘 in the index 𝑘 , [3, Theorem 6.2]). The density
functions 𝜓𝑘 [𝑆] of a periodic sequence 𝑆 = {𝑝1, . . . , 𝑝𝑚} + Z consisting of disjoint
intervals with centers 0 ≤ 𝑝1 < · · · < 𝑝𝑚 < 1 and radii 𝑟1, . . . , 𝑟𝑚 ≥ 0, respectively,
satisfy the periodicity 𝜓𝑘+𝑚(𝑡 + 1

2 ) = 𝜓𝑘 (𝑡) for any 𝑘 ≥ 0 and 𝑡 ≥ 0. ■

Fig. 9.20 The densities 𝜓𝑘 , 𝑘 = 0, . . . , 10, distinguish (already for 𝑘 ≥ 2) the sequences (scaled down
by period 15) 𝑆15 = {0, 1, 3, 4, 5, 7, 9, 10, 12}+15Z (top) and𝑄15 = {0, 1, 3, 4, 6, 8, 9, 12, 14}+15Z
(bottom), where the radius 𝑟𝑖 of any point is the half-distance to its closest neighbour, see Example 9.4.7.
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Example 9.6.3 (Theorem 9.6.2 for 𝑚 = 1 in Fig. 9.19). Let a 1-period sequence 𝑆 have
one point 𝑝1 = 0 of a radius 0 < 𝑟 < 1

2 . The grown interval [−𝑟 − 𝑡 − 1
2 , 𝑟 + 𝑡 +

1
2 ]

around 0 has the 1-fold intersection 𝐼 = [𝑟 + 𝑡 − 1
2 ,

1
2 − 𝑟 − 𝑡] centered at 𝑝 = 0 and not

covered by the adjacent intervals centered at ±1, so 𝜓1 (𝑡 + 1
2 ) = 1 − 2(𝑡 + 𝑟).

After collapsing [− 1
2 ,

1
2 ] to 0, which is excluded from 𝑆, the periodic sequence has

new points ± 1
2 of the smaller radius 𝑟 + 𝑡. The new shorter intervals have the same

endpoints − 1
2 + (𝑟 + 𝑡) and 1

2 − (𝑟 + 𝑡) around 𝑝 = 0. Now 𝐼 = [𝑟 + 𝑡 − 1
2 ,

1
2 − 𝑟 − 𝑡] is not

covered by any shorter intervals, so the get the same length of the 0-fold intersection:
𝜓0 (𝑡) = 1 − 2(𝑡 + 𝑟). _

The symmetry 𝜓𝑚−𝑘 ( 1
2 − 𝑡) = 𝜓𝑘 (𝑡) for 𝑘 = 0, . . . , [𝑚2 ], and 𝑡 ∈ [0, 1

2 ] from
[2, Theorem 8] no longer holds for points with different radii. For example, 𝜓1 (𝑡) ≠

𝜓2 ( 1
2 − 𝑡) for the periodic sequence 𝑆 = {0, 1

3 ,
1
2 } + Z, see Fig. 9.16. If all points have

the same radius 𝑟, [2, Theorem 8] implies the symmetry after replacing 𝑡 by 𝑡 + 2𝑟.

Example 9.6.4 justified that all density functions cannot distinguish the non-isometric
sequences 𝑆15 = {0, 1, 3, 4, 5, 7, 9, 10, 12} + 15Z and 𝑄15 = {0, 1, 3, 4, 6, 8, 9, 12, 14} +
15Z of points with zero radii. Example 9.6.4 shows that the densities for sequences with
non-zero radii are strictly stronger and distinguish the sequences 𝑆15 � 𝑄15.

Example 9.6.4 (𝜓𝑘 for 𝑆15, 𝑄15 with radii). For any point 𝑝 in a periodic sequence
𝑆 ⊂ R, define its neighbour radius as the half-distance to a closest neighbour of 𝑝 within
the sequence 𝑆. This choice of radii respects the isometry in the sense that periodic
sequences 𝑆, 𝑄 with zero-sized radii are isometric if and only if 𝑆, 𝑄 with neighbour
radii are isometric. Fig. 9.20 shows that the densities 𝜓𝑘 for 𝑘 ≥ 2 distinguish the
non-isometric sequences 𝑆15 and 𝑄15 scaled down by factor 15 to the unit cell [0, 1],
see Example 9.4.7. _

Fig. 9.21 For the periodic sequence 𝑆 = {0, 1
8 ,

1
4 ,

3
4 } +Z whose all points have radii 0, the 2nd density

𝜓2 [𝑆 ] (𝑡 ) has the local minimum at 𝑡 = 1
4 between two local maxima.
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Corollary 9.6.5 (time of 𝜓𝑘 (𝑡), [3, Corollary 6.5]). Let 𝑆, 𝑄 ⊂ R be periodic sequences
with at most 𝑚 motif points. For 𝑘 ≥ 1, one can draw the graph of the 𝑘-th density
function 𝜓𝑘 [𝑆] in time 𝑂 (𝑚2). One can check in time 𝑂 (𝑚3) if Ψ[𝑆] = Ψ[𝑄]. ■

All previous examples show densities with a single local maximum. However, the
new R code [1] helped us discover the opposite examples.

Example 9.6.6 (densities with multiple maxima). Fig. 9.21 shows a simple 4-point
sequence 𝑆 whose 2nd density 𝜓2 [𝑆] has two local maxima. Figs. 9.22 and 9.23 show
complicated sequences whose density functions have more than two maxima. Fig. 9.24
shows that two local maxima are more common than one maximum. _

Problem 9.6.7 (density functions for 2D lattices). Find an analytic description of all
density functions {𝜓𝑘 [Λ]}+𝑘=0∞ for any lattices Λ ⊂ R2 in terms of the root invariant
RI(Λ) from Definition 8.3.1. ⋆
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Fig. 9.22 For the sequence 𝑆 =

{
0, 1

81 ,
1
27 ,

1
9 ,

1
3

}
+ Z whose all points have radii 0, 𝜓2 [𝑆 ] equal to

the sum of the shown five trapezium functions has three maxima.
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Fig. 9.23 For the sequence 𝑆 =

{
0, 1

64 ,
1
16 ,

1
8 ,

1
4 ,

3
4

}
+ Z whose all points have radii 0, 𝜓3 [𝑆 ] has 5

local maxima.
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Fig. 9.24 Percentages of cases when the density functions 𝜓𝑘 (𝑡 ) , 𝑘 = 1, . . . , 5 (shown in five different
colors) have one or multiple local maxima for 1000 sequences of 10 points with zero radii, which are
uniformly sampled in the internal [0, 1].
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9. Phong Q Nguyen and Damien Stehlé. Low-dimensional lattice basis reduction revisited. ACM
Transactions on algorithms (TALG), 5(4):1–48, 2009.

10. A Pulido et al. Functional materials discovery using energy–structure maps. Nature, 543:657–664,
2017.

11. Phil Smith and Vitaliy Kurlin. A practical algorithm for degree-k voronoi domains of three-
dimensional periodic point sets. In Lecture Notes in Computer Science (Proceedings of ISVC),
volume 13599, pages 377–391, 2022.

12. Philip Smith. Density functions of periodic point sets in 3d. GitHub Repository, 2020.
13. Philip Smith. Voronoi zones of periodic point sets in c++. GitHub Repository, 2021.
14. Daniel Widdowson and Vitaliy Kurlin. Resolving the data ambiguity for periodic crystals. Ad-

vances in Neural Information Processing Systems, 35:24625–24638, 2022.



References 183

15. Daniel Widdowson and Vitaliy Kurlin. Pointwise distance distributions for detecting
near-duplicates in large materials databases. SIAM Journal on Applied Mathematics
(doi:10.1137/25M1736657, arxiv:2108.04798), 2026.

16. Daniel Widdowson, Marco M Mosca, Angeles Pulido, Andrew I Cooper, and Vitaliy Kurlin.
Average minimum distances of periodic point sets - foundational invariants for mapping all
periodic crystals. MATCH Commun. Math. Comput. Chem., 87:529–559, 2022.





Chapter 10
Pointwise Distance Distributions of periodic point
sets in R𝒏

Abstract This chapter extends the Pointwise Distance Distribution (PDD) from the
case of finite clouds of unordered points to arbitrary periodic point sets. We prove that
the PDD is Lipschitz continuous and generically complete for periodic point sets under
isometry in R𝑛. The PDD is computable in a near-linear asymptotic time of key input
sizes and detects numerous near-duplicates among about 2 million crystals in major
materials databases within two hours on a modest desktop computer.

10.1 Pointwise Distance Distributions for lattices and 𝒍-periodic sets

This section follows papers [31, 28, 29] with minor updates. Definition 10.1.1 ex-
tends 1-periodic point sets from Definition 7.1.1 and fully periodic sets in R𝑛 from
Definition 9.1.1 to the more general sets that are periodic in 𝑙 directions for 1 ≤ 𝑙 ≤ 𝑛.

Definition 10.1.1 (𝑙-periodic point set in R𝑛). Let vectors v1, . . . , v𝑛 ∈ R𝑛 form a basis

of R𝑛, define the lattice Λ = {
𝑙∑
𝑖=1
𝑐𝑖v𝑖 | 𝑐1, . . . , 𝑐𝑙 ∈ Z} Fix any 1 ≤ 𝑙 ≤ 𝑛. The unit cell

defined by v1, . . . , v𝑛 is𝑈 = {
𝑛∑
𝑖=1
𝑥𝑖v𝑖 | 𝑥1, . . . , 𝑥𝑙 ∈ [0, 1), 𝑥𝑙+1, . . . , 𝑥𝑛 ∈ R} ⊂ R𝑛.

If 𝑙 = 𝑛, then 𝑈 is an 𝑛-dimensional parallelepiped. If 𝑙 < 𝑛, then 𝑈 is an infinite
slab over an 𝑙-dimensional parallelepiped on v1, . . . , v𝑙 . For any finite motif of points
𝑀 ⊂ 𝑈, the sum 𝑆 = 𝑀 + Λ = {p + v | 𝑝 ∈ 𝑀, 𝑣 ∈ Λ} is an 𝑙-periodic point set. ▲

Fig. 10.1 (left) illustrates the discontinuity of cell-based representations under noise.
Definition 9.1.2 of generic periodic sets and crystal spaces under equivalences extends
to 𝑙-periodic point sets with motifs of𝑚 points in R𝑛. We use similar notations and add 𝑙
as an extra parameter. This chapter studies the Crystal Isometry Space CIMS(R𝑛;𝑚, 𝑙)
of 𝑙-periodic sets with motifs of up to 𝑚 points under isometry in R𝑛.

Problem 10.1.2 extends Problem 9.1.3 to 𝑙-periodic point sets and add the extra
condition of realisability in 10.1.2(b). This realisability condition was unrealistic for

185
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Fig. 10.1 Left: the symmetry group and a reduced cell discontinuously change under tiny noise. Mid-
dle: the most stable crystals are deep minima surrounded by high energy barriers in the crystal space.
Right: energy landscapes of crystals show optimised structures as isolated peaks of height= −energy.
To see beyond the ‘fog’, we need an explicit geomap parametrised by geocodes in Problem 10.1.2.

density functions from the previous chapter, at least in dimensions 𝑛 ≥ 2, but will be
achieved for generic periodic sets with 𝑙 = 𝑛 by Pointwise Distance Distributions.

Problem 10.1.2 (isometry invariants of 𝑙-periodic point sets inR𝑛). Design an invariant
𝐼 on the Crystal Isometry Space CIMS(R𝑛;𝑚, 𝑙) satisfying the following conditions.
(a) Generic completeness: let 𝑆, 𝑄 be any generic sets whose isometry classes are in a
dense subspace of CIMS(R𝑛;𝑚, 𝑙), then 𝑆, 𝑄 are isometric if and only if 𝐼 (𝑆) = 𝐼 (𝑄).
(b) Reconstruction: any generic periodic point set 𝑆 ⊂ R𝑛 is reconstructable from its
invariant 𝐼 (𝑆), a lattice Λ of 𝑆 and the motif size 𝑚, uniquely under isometry in R𝑛.

(c) Metric: there is a distance 𝑑 on the Crystal Isometry Space CIMS(R𝑛;𝑚, 𝑙) satisfying
all metric axioms in Definition 1.3.1(a).

(d) Continuity: there is a constant 𝜆 > 0, such that, for all sufficiently small 𝜀 > 0, if a
periodic point set𝑄 is obtained by perturbing every point of a periodic point set 𝑆 ⊂ R𝑛

up to Euclidean distance 𝜀, then 𝑑 (𝐼 (𝑆), 𝐼 (𝑄)) ≤ 𝜆𝜀.

(e) Computability: for fixed 1 ≤ 𝑙 ≤ 𝑛, the invariant 𝐼 (𝑆), a reconstruction of 𝑆 ⊂
R𝑛 from 𝐼 (𝑆), and the metric 𝑑 (𝐼 (𝑆), 𝐼 (𝑄)) can be computed in times that depend
polynomially on the maximum motif size of 𝑙-periodic point sets 𝑆, 𝑄. ⋆

Definition 10.1.3 introduces our main invariant PDD and its average AMD.

Definition 10.1.3 (PDD(𝑆; 𝑘) and AMD(𝑆; 𝑘) of any 𝑙-periodic set 𝑆). Let 𝑀 =

{𝑝1, . . . , 𝑝𝑚} be a motif of any 𝑙-periodic point set 𝑆 ⊂ R𝑛. Fix an integer 𝑘 ≥ 1.
For every point 𝑝 ∈ 𝑀 , let 𝑑1 (𝑝) ≤ · · · ≤ 𝑑𝑘 (𝑝) be the distances from 𝑝 to its 𝑘
nearest neighbours within the full set 𝑆 (not restricted to 𝑀). The matrix 𝐷 (𝑆; 𝑘) has
𝑚 rows consisting of the distances 𝑑1 (𝑝𝑖), . . . , 𝑑𝑘 (𝑝𝑖) for 𝑖 = 1, . . . , 𝑚. If any 𝑙 ≥ 2
rows coincide, we collapse them into a single row with the weight 𝑙/𝑚. The resulting
unordered set (written as a matrix) of maximum𝑚 rows and 𝑘+1 columns, including the
extra column of weights, is the Pointwise Distance Distribution PDD(𝑆; 𝑘). The Average
Minimum Distance AMD𝑖 is the weighted average of the 𝑖-th column in PDD(𝑆; 𝑘) for
each 𝑖 = 1, . . . , 𝑘 . Let AMD(𝑆; 𝑘) denote the vector (AMD1, . . . ,AMD𝑘). ▲

Theorem 10.1.4 shows that PDD and hence AMD are independent of a motif 𝑀 ⊂ 𝑆,
so there is no need to include a motif 𝑀 in the notation PDD(𝑆; 𝑘).
Theorem 10.1.4 (isometry invariance of PDD, [31, Theorem 3.3(b)]). For any 𝑙-
periodic point set 𝑆 ⊂ R𝑛, where 1 ≤ 𝑙 ≤ 𝑛, PDD(𝑆; 𝑘) and AMD(𝑆; 𝑘) are invariants
of 𝑆 (independent of a motif 𝑀 ⊂ 𝑆) under isometry of R𝑛 for 𝑘 ≥ 1. ■
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10.2 Asymptotic and time of Pointwise Distance Distributions

This section analyses the behaviour of PDD(𝑆; 𝑘) as the index of neighbours 𝑘 → +∞.
Definition 10.2.1 will help describe this asymptotic in Theorem 10.2.2.

Definition 10.2.1 (Point Packing Coefficient PPC of a cell-periodic set 𝑆). (a) For 1 ≤

𝑙 ≤ 𝑛 and a basis v1, . . . , v𝑛 ∈ R𝑛, consider the lattice Λ = {
𝑙∑
𝑖=1
𝑐𝑖v𝑖 | 𝑐1, . . . , 𝑐𝑙 ∈ Z}

and the unit cell 𝑈 = {
𝑛∑
𝑖=1
𝑥𝑖v𝑖 | 𝑥1, . . . , 𝑥𝑙 ∈ [0, 1), 𝑥𝑙+1, . . . , 𝑥𝑛 ∈ R}. A set 𝑆 ⊂ R𝑛 is

cell-periodic if 𝑆 has a fixed number 𝑚 points in every shifted cell𝑈 + v for all v ∈ Λ.

(b) If 𝑙 < 𝑛, let 𝑅𝑙 ⊂ R𝑛 be the subspace spanned by v1, . . . , v𝑙 , then 𝑈 is an infinite
slab based on the 𝑙-dimensional parallelepiped of volume vol[𝑈 ∩ 𝑅𝑙] . The volume of

the unit ball in R𝑙 is𝑉𝑙 =
𝜋𝑙/2

Γ( 𝑙2 + 1)
, where Euler’s Gamma function is Γ(𝑚) = (𝑚−1)!

and Γ(𝑚2 +1) =
√
𝜋(𝑚− 1

2 ) (𝑚− 3
2 ) · · ·

1
2 for any integer𝑚 ≥ 1. Define the Point Packing

Coefficient of the cell-periodic set 𝑆 as PPC(𝑆) = 𝑙

√︄
vol[𝑈 ∩ 𝑅𝑙]

𝑚𝑉𝑙
.

Any 𝑙-periodic set is cell-periodic, but all cell-periodic sets form a wider collection
of Delone sets and model disordered solid materials that can have an underlying lattice
with atoms at different positions in periodically translated cells𝑈 + v, see Fig. 9.1.

Theorem 10.2.2 (asymptotic of PDD(𝑆; 𝑘) as 𝑘 → +∞, [31, Theorem 3.7]). For a point
𝑝 in a cell-periodic set 𝑆 ⊂ R𝑛, let 𝑑𝑘 (𝑆; 𝑝) be the distance from 𝑝 to its 𝑘-th nearest

neighbour in 𝑆. Then lim
𝑘→+∞

𝑑𝑘 (𝑆; 𝑝)
𝑙
√
𝑘

= PPC(𝑆) and lim
𝑘→+∞

AMD𝑘 (𝑆)
𝑙
√
𝑘

= PPC(𝑆). ■

By Theorem 10.2.2, AMD𝑘 (𝑆) and all distances in the last column of PDD(𝑆; 𝑘)
asymptotically approach PPC(𝑆) 𝑙

√
𝑘 as 𝑘 → +∞ and hence are mainly determined

by PPC(𝑆) for large 𝑘 . That is why the most descriptive information is contained in
PDD(𝑆; 𝑘) for smaller values of 𝑘 , e.g. we use 𝑘 = 100 atomic neighbours in most
experiments on crystals. To neutralise the asymptotic growth, we subtract and also
normalise by the term PPC(𝑆) 𝑙

√
𝑘 to get simpler invariants under uniform scaling.

Definition 10.2.3 (simplified invariants ADA, PDA,AND, PND). Let 𝑆 ⊂ R𝑛 be any
𝑙-periodic set with an underlying lattice generated by 𝑙 vectors.

(a) The Average Deviation from Asymptotic is ADA𝑘 (𝑆) = AMD𝑘 (𝑆) − PPC(𝑆) 𝑙
√
𝑘 ,

𝑘 ≥ 1. To get the Pointwise Deviation from Asymptotic PDA(𝑆; 𝑘) from PDD(𝑆; 𝑘)
subtracting PPC(𝑆) 𝑙

√
𝑗 from each distance in a row 𝑖 and a column 𝑗 for 𝑖 ≥ 1 ≤ 𝑗 ≤ 𝑘 .

(b) The Average Normalised Deviation is AND𝑘 (𝑆) = ADA𝑘 (𝑆)/(PPC(𝑆) 𝑙
√
𝑘), 𝑘 ≥ 1.

The Pointwise Normalised Deviation PND(𝑆; 𝑘) obtained from PDA(𝑆; 𝑘) by dividing
every element in a row 𝑖 and a column 𝑗 by PPC(𝑆) 𝑙

√
𝑗 for 𝑖 ≥ 1 ≤ 𝑗 ≤ 𝑘 . ▲

The invariants AMD𝑘 and ADA𝑘 form vectors of length 𝑘 , e.g. set AMD(𝑆; 𝑘) =

(AMD1 (𝑆), . . . ,AMD𝑘 (𝑆)) and ADA(𝑆; 𝑘) = (ADA1 (𝑆), . . . ,ADA𝑘 (𝑆)). These vec-
tors can be compared by many metrics. The metric 𝐿∞ (𝑢, 𝑣) = max

𝑖=1,...,𝑘
|𝒖𝑖 − 𝒗𝑖 | for
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Fig. 10.2 The average invariants AMD𝑘 and ADA𝑘 from Definition 10.2.3 for 𝑘 = 1, . . . , 25 and five
simple crystals from the Materials Project.

any vectors 𝒖, 𝒗 ∈ R𝑘 preserves the intuition of atomic displacements in the follow-
ing sense. If 𝑆 is obtained from 𝑄 by perturbing every point up to a small 𝜀, then
𝐿∞ (AMD(𝑆; 𝑘),AMD(𝑄; 𝑘)) ≤ 2𝜀 by [32, Theorem 9]. Other distances such as Eu-
clidean can be considered but will accumulate a larger deviation depending on 𝑘 .

All invariants above and metrics on them are measured in the same units as original
coordinates, i.e. in Angstroms for crystals given by Crystallographic Information Files
(CIFs). The Point Packing Coefficient PPC(𝑆) was defined as the cube root of the cell
volume per atom (of the same radius 1Å) and can be interpreted as an average radius of
balls ‘packed’ in a unit cell. So PPC(𝑆) is roughly inversely proportional to the physical
density but they are exactly related only when materials have the same average atomic
mass (total mass of atoms in a unit cell divided by the cell volume).

While AMD𝑘 (𝑆) monotonically increases in 𝑘 , the invariants ADA𝑘 (𝑆) can be
positive or negative as deviations around the asymptotic PPC(𝑆) 3√

𝑘 . Fig. 10.3 reveals
geometric differences between the mainly organic databases CSD and Crystallography
Open Database (COD) [15] versus the more inorganic collections ICSD and MP.

The first average of ADA1 ∈ [−0.25,−0.17] in the top images of Fig. 10.3 can be
explained by the presence of many hydrogen atoms, which have distances smaller than
PPC(𝑆) to their first neighbour in most organic materials. Indeed, hydrogens are usually
bonded at distances less than 1.2Å, while PPC(𝑆) is often larger than 1.2Å because
most chemical elements have van der Waals radii above 1.2Å [6].

For inorganic materials, metal atoms or ions have relatively large distances to their
neighbours, so the average ADA1 is in [0.58, 0.62] in the bottom images of Fig. 10.3.

For all types of materials in Fig. 10.3, the value of ADA𝑘 experimentally converges
to 0 on average, so there is no need to substantially increase 𝑘 because the important
structural information emerges for smaller indices 𝑘 of neighbours.

If we increase 𝑘 , the matrix PDD(𝑆; 𝑘) and hence the vector ADA(𝑆; 𝑘) become
longer by including distance data to further neighbours but all initial values remain the
same. Hence we consider 𝑘 not as a parameter that changes the output but as a degree
of approximation similarly to the number of decimal places on a calculator.

The experimental convergence ADA𝑘 → 0 as 𝑘 → +∞ in Fig. 10.3justifies com-
puting the distance 𝐿∞ between ADA vectors up to a reasonable 𝑘 . We use 𝑘 = 100
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Fig. 10.3 The averages of ADA𝑘 and standard deviations (1 sigma shaded) vs 3√
𝑘 for four databases.

because all ADA𝑘 for 𝑘 > 100 are close to 0 (the range of 1 sigma between ±0.2Å) in
Fig. 10.3.

Corollary 10.2.4 (invariance of AND, PND under uniform scaling, [31, Corollary 3.9]).
For any 𝑙-periodic set 𝑆 ⊂ R𝑛, AND𝑘 (𝑆) and PND(𝑆; 𝑘) in Definition 10.2.3 are
invariant under isometry and uniform scaling for 𝑘 ≥ 1. Also, AND𝑘 (𝑆) → 0 as
𝑘 → +∞. ■

The following conjecture is justified by Example 10.2.6 and Fig 10.3.

Conjecture 10.2.5 (asymptotic of ADA(𝑆; 𝑘) as 𝑘 → +∞). For any periodic point set
𝑆 ⊂ R𝑛, we have ADA𝑘 (𝑆) → 0 as 𝑘 → +∞. ⋆

Example 10.2.6 (asymptotic ADA𝑘 (𝑆) → 0 as 𝑘 → +∞ for the cubic lattice 𝑆 = Z𝑛).
The survey [17] describes progress on the generalised Gauss circle problem expressing
the number of points from the cubic lattice Z𝑛 within a ball of a radius 𝑟 as 𝑘 =

𝑉𝑛𝑟
𝑛 − 𝑂 (𝑟𝛼𝑛+𝜀) for any 𝜀 > 0, where 𝛼𝑛 < 𝑛 − 1 for 𝑛 ≥ 2, e.g. 𝛼2 ≤ 2

3 , 𝛼3 ≤ 3
2 , and

𝛼𝑛 ≤ 𝑛 − 2 for any 𝑛 ≥ 4. The cubic lattice 𝑆 = Z𝑛 has PPC(Z𝑛) = 1/ 𝑛
√
𝑉𝑛. Let 𝑑𝑘

denote the distance from the origin 0 to its 𝑘-th neighbour in Z𝑛. Then

𝑘 = 𝑉𝑛𝑑
𝑛
𝑘 −𝑂 (𝑑𝛼𝑛+𝜀

𝑘
), so 𝑑𝑘 =

𝑛

√︄
𝑘 +𝑂 (𝑑𝛼𝑛+𝜀

𝑘
)

𝑉𝑛
= PPC(Z𝑛) 𝑛

√︃
𝑘 +𝑂 (𝑑𝛼𝑛+𝜀

𝑘
),

ADA𝑘 (Z𝑛)
PPC(Z𝑛) =

𝑑𝑘

PPC(Z𝑛) −
𝑛
√
𝑘 =

𝑛

√︃
𝑘 +𝑂 (𝑑𝛼𝑛+𝜀

𝑘
) − 𝑛

√
𝑘 =

𝑂 (𝑑𝛼𝑛+𝜀
𝑘

)

𝑃𝑛 ( 𝑛

√︃
𝑘 +𝑂 (𝑑𝛼𝑛+𝜀

𝑘
), 𝑛
√
𝑘)
,
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where 𝑃𝑛 is a homogeneous polynomial of degree 𝑛−1, e.g. 𝑃2 (𝑥, 𝑦) = 𝑥+𝑦, 𝑃3 (𝑥, 𝑦) =
𝑥2 + 𝑥𝑦 + 𝑦2. Since the numerator has the power 𝛼𝑛 < 𝑛 − 1 of 𝑑𝑘 = 𝑂 ( 𝑛

√
𝑘) for 𝑛 ≥ 2,

the final expression of
ADA𝑘 (Z𝑛)
PPC(Z𝑛) and hence ADA𝑘 (Z𝑛) have limit 0 as 𝑘 → +∞. _

Theorem 10.2.7 (time of PDD, [31, Theorem 3.10]). Let 𝑆 ⊂ R𝑛 be any 𝑙-periodic set
with a minimum inter-point distance 𝑑min and a unit cell 𝑈 = 𝑃 × 𝑅𝑛−𝑙 , where 𝑃 is
a parallelepiped in the 𝑙-dimensional subspace 𝑅𝑙 with the orthogonal subspace 𝑅𝑛−𝑙
in R𝑛. Consider the width 𝑤 = sup

𝑢,𝑣∈𝑃
|u − v| and the height ℎ equal to the maximum

distance between points in the orthogonal projection of 𝑆 to 𝑅𝑛−𝑙 . If the motif𝑀 = 𝑆∩𝑈
consists of 𝑚 points, then PDD(𝑆; 𝑘) can be computed for any 𝑘 ≥ 1 in time

𝑂 (𝑘𝑚(24𝑛 log 𝑘 + log𝑚) + 212𝑛𝑚 log2 𝑘 + (28𝑛/𝑙)𝑘 log 𝑘 + 28𝑛𝑎𝑙𝑏𝑘),

where 𝑎 = 1+ 2.5𝑤 + 2ℎ
PPC(𝑆) and 𝑏 = log(2PPC(𝑆) + 3𝑤 + 5ℎ) − log 𝑑min. The complexity

of AMD(𝑆; 𝑘) and invariants PDA(𝑆; 𝑘), PND(𝑆; 𝑘) from Definition 10.2.3 is the same
as for PDD(𝑆; 𝑘), because the extra computations can be done in time 𝑂 (𝑘𝑚). ■

The worst-case estimate in Theorem 10.2.7 is conservative due to the upper bound
2𝑛 for the expansion constants 𝑐min, 𝑐 from [13, Definition 1.4]. We conjecture that this
upper bound can be reduced to 2𝑙 for any 𝑙-periodic point set 𝑆 ⊂ R𝑛.

For any fixed dimensions 𝑙 ≤ 𝑛, if we ignore the parameters 𝑎, 𝑏, 𝑑min, and PPC(𝑆),
then the complexity in Theorem 10.2.7 becomes 𝑂 (𝑘𝑚(log 𝑘 + log𝑚)), which is near-
linear in both 𝑘, 𝑚. For the most practical dimensions 𝑙 = 𝑛 = 3, experiments in
section 10.5 will report running times in minutes on a modest desktop computer for
about 2 million real crystals from the world’s largest materials databases.

10.3 Lipschitz continuous metrics and local novelty distances

This section proves the Lipschitz continuity of the vectorial invariants AMD,ADA,AND,
matrix invariants PDD, PDA, PND, and their averages in Theorem 10.3.4.

The widely used Mercury software visually compares periodic structures [10] by
minimizing the Root Mean Square Deviation (RMSD) of atomic positions from up to a
given number𝑚 (15 by default) of closest molecules in two structures. This comparison
depends on many parameters (maximum number of matched molecules, thresholds
for matched distances and angles), fails the triangle inequality in metric axioms, see
Definition 1.3.1, and is too slow for pairwise comparisons. In fact, this RMSD tries to
measure a maximum displacement of atoms only by using finite subsets of crystals.

For full infinite crystals, the theoretically better alternative is the bottleneck distance
BD(𝑆, 𝑄) equal to the maximum Euclidean distance needed to perturb every point
𝑝 ∈ 𝑆 to its unique match in 𝑄, see Example 1.3.3(b).

Example 10.3.1 shows that the periodic sequences have 𝑑𝐵 = +∞ for any 𝛿 > 0.
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Example 10.3.1 (infinite bottleneck). We show that 𝑆 = Z and 𝑄 = (1 + 𝛿)Z for any
𝛿 > 0 have 𝑑𝐵 (𝑆, 𝑄) = +∞. Assuming that 𝑑𝐵 (𝑆, 𝑄) is finite, consider an interval
[−𝑁, 𝑁] ⊂ R containing 2𝑁 + 1 points of 𝑆. If there is a bijection 𝑔 : 𝑆 → 𝑄 such that
|𝑝 − 𝑔(𝑝) | ≤ 𝑑𝐵 for all points 𝑝 ∈ 𝑆, the image of 2𝑁 + 1 points 𝑆∩ [−𝑁, 𝑁] under this
bijection 𝑔 should be within the interval [−𝑁 − 𝑑𝐵, 𝑁 + 𝑑𝐵]. The last interval contains
only 1 + 2(𝑁+𝑑𝐵 )

1+𝛿 points, which is smaller than 1 + 2𝑁 when 𝑁+𝑑𝐵
1+𝛿 < 𝑁 or 𝑑𝐵 < 𝛿𝑁 .

We get a contradiction by choosing a large 𝑁 >
𝑑𝐵
𝛿

. _

If 𝑆, 𝑄 are lattices of equal density (equal unit cell volume), they have a finite
bottleneck distance 𝑑𝐵 by [11, Theorem 1(iii)]. If we consider only periodic point sets
𝑆, 𝑄 ⊂ R𝑛 with the same density (or unit cells of the same volume), 𝑑𝐵 (𝑆, 𝑄) becomes
a well-defined wobbling distance [7], which is discontinuous under perturbations below.
Example 10.3.2 (discontinuous wobbling). Slightly perturb the basis (1, 0), (0, 1) of
the integer lattice Z2 to the basis vectors (1, 0), (𝜀, 1) of the new lattice Λ. We prove
that 𝑑𝐵 (Λ,Z2) ≥ 1

3 for any 𝜀 > 0. Map R2 by Z2-translations to the unit square [0, 1]2

with identified opposite sides (a torus). Then the whole square lattice Z2 is mapped to
the single point represented by the corners of the square [0, 1]2. The perturbed lattice
Λ maps to the sequence of points {𝑘𝜀 (mod 1)}+∞

𝑘=0 × {0, 1} in the horizontal edges. If
𝑑𝐵 (Λ,Z2) = 𝑟 < 1

3 , then all above points should be covered by the closed disks of the
radius 𝑟 centred at the corners of [0, 1]2. For 0 < 𝜀 < 1

3 − 𝑟, we can find 𝑘 ∈ Z so that
𝑘𝜀 is strictly between 𝑟, 1 − 𝑟, hence not covered by these disks, so 𝑑𝐵 (Λ,Z2) ≥ 1

3 . _
We will use the Earth Mover’s Distance (EMD) from Definition 3.5.4, which is

well-defined for any normalised distributions of different sizes and makes sense for
any matrix invariant 𝐼 (𝑆) that is an unordered collection of row vectors R𝑖 (𝑆) with

weights 𝑤𝑖 (𝑆) ∈ (0, 1] satisfying
𝑚(𝑆)∑
𝑖=1

𝑤𝑖 (𝑆) = 1. Each row R𝑖 (𝑆) should have a

size independent of 𝑖, e.g. the number 𝑘 of neighbours in PDD(𝑆; 𝑘). For any vectors
R𝑖 = (𝑟𝑖1, . . . , 𝑟𝑖𝑘) and R 𝑗 = (𝑟 𝑗1, . . . , 𝑟 𝑗𝑘), we will use the Minkowski and Chebyshev

distances from Example 1.3.3(b): 𝐿𝑞 (R𝑖 ,R 𝑗 ) =
( 𝑘∑
𝑙=1

|𝑟𝑖𝑙 − 𝑟 𝑗𝑙 |𝑞
)1/𝑞 , 𝐿∞ (R𝑖 ,R 𝑗 ) =

max
𝑙=1,...,𝑘

|𝑟𝑖𝑙 − 𝑟 𝑗𝑙 |.

Example 10.3.3 (EMD under noise). We illustrate EMD for perturbations that scale
up a unit cell as in Fig. 10.1 (left). The integer sequence Z has PDD(Z; 2) = (1; 1, 1),
a single row of weight 1 and unit distances to 2 neighbours. The periodic sequence
Z𝜀 = {0, 1 + 𝜀, 2 − 𝜀} + 3Z is obtained from Z by 𝜀-perturbations of points 1, 2 and

all their translates with period 3. Then PDD(Z𝜀; 2) =
©­­­«

1/3 1 + 𝜀 1 + 𝜀

2/3 1 − 2𝜀 1 + 𝜀

ª®®®¬, where the

2nd row represents the shifted points 1 + 𝜀, 2 − 𝜀. After splitting PDD(Z; 2) = (1; 1, 1)
into two identical rows of weights 1

3 ,
2
3 and using 𝐿∞ on vectors of two distances, a

difference between PDDs can be defined as the weighted average 1
3𝜀 +

2
3 2𝜀 = 2

3𝜀. _

Fig. 10.4 illustrates the continuity of PDD(𝑆; 4) under a perturbation of a square
lattice 𝑆 ⊂ R2, which scales up an initial cell by a factor of 4.
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Fig. 10.4 The Pointwise Distance Distribution PDD(𝑆; 4) of a unit square lattice 𝑆 changes continu-
ously under noise, shown here in the case when a 1-point motif extends to a motif of 4-points that form
an isosceles trapezium with parallel sides of lengths 0.8 (red) and 1.2 (blue).

The Lipschitz continuity of invariants in EMD will use bounded perturbations of
points up to Euclidean distance 𝜀 in R𝑛. Recall that the packing radius 𝑟 (𝑆) is the
minimum half-distance between any points of 𝑆, see Definition 9.2.3(a).

Theorem 10.3.4 (Lipschitz continuity of PDA and PND, [31, Theorem 4.2]). Let
𝑆, 𝑄 ⊂ R𝑛 be 𝑙-periodic point sets such that 𝑄 is obtained from 𝑆 by perturbing every
point of 𝑆 up to Euclidean distance 𝜀. Fix any 𝑞 ∈ [1,+∞] and an integer 𝑘 ≥ 1. Interpret
𝑞
√
𝑘 as 1 in the limit case 𝑞 = +∞. If min{𝑟 (𝑆), 𝑟 (𝑄)} > 𝜀, then PPC(𝑆) = PPC(𝑄),

(a) EMD𝑞 (PDA(𝑆; 𝑘), PDA(𝑄; 𝑘)) ≤ 2𝜀 𝑞
√
𝑘 , and

(b) EMD𝑞 (PND(𝑆; 𝑘), PND(𝑄; 𝑘)) ≤ 2𝜀 𝑞
√
𝑘

PPC(𝑆) . ■

All columns of PDD, PDA, PND are ordered by the index 𝑘 of neighbours. Though
their rows are unordered (as points of a motif 𝑀), all such matrices (even with different
numbers of rows) can be compared by Earth Mover’s Distance, or by any other metrics
on weighted distributions, see Definition 3.5.4. We can simplify any PDD into a fixed-
size matrix, which can be flattened into a vector, while keeping the continuity and
almost all invariant data. Any distribution of 𝑚 unordered values can be reconstructed
from its𝑚 moments in Definition 5.1.4. When all weights 𝑤𝑖 are rational, as in our case,
the distribution can be expanded to equal-weighted values 𝑎1, . . . , 𝑎𝑚. The 𝑚 moments
can recover all 𝑎1, . . . , 𝑎𝑚 as roots of a degree 𝑚 polynomial whose coefficients are
expressed via the 𝑚 moments [22], e.g. any 𝑎, 𝑏 ∈ R can be found from 𝑎 + 𝑏, 𝑎2 + 𝑏2

as the roots of 𝑥2 − (𝑎 + 𝑏)𝑥 + 𝑎𝑏, where 𝑎𝑏 = 1
2 ((𝑎 + 𝑏)

2 − (𝑎2 + 𝑏2)).

For 𝑡 = 1, the 1 × 𝑘 matrix 𝜇 (1) [PDD(𝑆; 𝑘)] appeared in Definition 10.1.3 as the
vector AMD(𝑆; 𝑘) = (AMD1, . . . ,AMD𝑘) of column averages. All rows and columns
of 𝜇 (𝑡 ) [𝐼 (𝑆)] are ordered, but this matrix is a bit weaker than 𝐼 (𝑆) because each column
can be reconstructed from its moments (for a large enough 𝑡) only up to permutation.
We can flatten any matrix 𝜇 (𝑡 ) [𝐼 (𝑆)] to a vector for machine learning.
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Theorem 10.3.5 (lower bounds, [31, Theorem 4.4]). For any 𝑙-periodic sets 𝑆, 𝑄 ⊂ R𝑛,

(a) EMD𝑞 (PDD(𝑆; 𝑘), PDD(𝑄; 𝑘)) ≥ 𝐿𝑞 (AMD(𝑆; 𝑘),AMD(𝑄; 𝑘));

(b) EMD𝑞 (PDA(𝑆; 𝑘), PDA(𝑄; 𝑘)) ≥ 𝐿𝑞 (ADA(𝑆; 𝑘),ADA(𝑄; 𝑘));

(c) EMD𝑞 (PND(𝑆; 𝑘), PND(𝑄; 𝑘)) ≥ 𝐿𝑞 (AND(𝑆; 𝑘),AND(𝑄; 𝑘)) for 𝑞, 𝑘 ≥ 1. ■

10.4 Generic completeness of PDDs for periodic point sets in R𝒏

While the generic completeness of the PDD was easy for any finite clouds in R𝑛, this
section extends Theorem 4.5.4 to the much harder periodic case in Theorem 10.4.5.

For a periodic point set 𝑆 ⊂ R𝑛, the generic completeness of PDD is not straight-
forward, because infinitely many distances between points of 𝑆 are repeated due to
periodicity. We introduce a few auxiliary concepts for distance-generic periodic sets in
Definition 10.4.3. For any point 𝑝 in a lattice Λ ⊂ R𝑛, the open Voronoi domain

𝑉 (Λ; 𝑝) = {𝑞 ∈ R𝑛 such that |𝑞 − 𝑝 | < |𝑞 − 𝑝′ | for any 𝑝′ ∈ Λ − 𝑝}

is the neighbourhood of all points 𝑞 ∈ R𝑛 that are strictly closer to 𝑝 than to all other
points 𝑝′ of the lattice Λ. Definition 8.1.3(a) used the closed version 𝑉̄ (Λ; 𝑝).

Open Voronoi domains 𝑉 (Λ; 𝑝) of different points 𝑝 ∈ Λ are disjoint translation
copies of each other and their closures tile R𝑛, so ∪𝑝∈Λ𝑉̄ (Λ; 𝑝) = R𝑛. For example, for
a generic lattice Λ ⊂ R2, the domain 𝑉 (Λ; 𝑝) is a centrally symmetric hexagon.

Points 𝑝, 𝑝′ ∈ Λ are Voronoi neighbours if their Voronoi domains share a boundary
point, so 𝑉̄ (Λ; 𝑝) ∩ 𝑉̄ (Λ, 𝑝′) ≠ ∅. Below we always assume that any lattice Λ is shifted
to contain the origin 0, also any periodic point set 𝑆 = Λ + 𝑀 has a point at 0.

Definition 10.4.1 (neighbour set 𝑁 (Λ) and base distances). For any lattice Λ ⊂ R𝑛,
the neighbour set of the origin 0 is 𝑁 (Λ) = Λ ∩ 𝐵̄(0; 𝑟) \ {0} for a minimum radius 𝑟
such that 𝑁 (Λ) is not contained in any affine (𝑛 − 1)-dimensional subspace of R𝑛, and
𝑁 (Λ) includes all 𝑛 + 1 nearest neighbours (within Λ) of any point 𝑞 ∈ 𝑉 (Λ; 0).

Consider all sets of unordered points 𝑝1, . . . , 𝑝𝑛 ∈ 𝑁 (Λ) that are linearly indepen-
dent, i.e. the vectors p1, . . . , p𝑛 form a linear basis of R𝑛. For any point 𝑞 ∈ 𝑉 (Λ; 0),
a lexicographically smallest list of distances 𝑑1 (𝑞) ≤ · · · ≤ 𝑑𝑛 (𝑞) from 𝑞 to a set of
linearly independent points 𝑝1, . . . , 𝑝𝑛 ∈ 𝑁 (Λ) is the list of base distances of 𝑞. ▲

The linear independence of vectors p1, . . . , p𝑛 in Definition 10.4.1 guarantees that
any point 𝑞 is uniquely determined in R𝑛 by its distances |𝑞 |, 𝑑1 (𝑞), . . . , 𝑑𝑛 (𝑞) to 𝑛 + 1
neighbours 0, 𝑝1, . . . , 𝑝𝑛, which are not in the same (𝑛 − 1)-dimensional subspace.

Example 10.4.2 (neighbour sets). The vector (2, 0), (0, 1) generate the rectangular
lattice Λ ⊂ R2. The Voronoi domain𝑉 (Λ; 0) is the rectangle (−1, 1) × (−0.5, 0, 5). The
neighbour set 𝑁 (Λ) ⊂ Λ includes the 3rd neighbours (0,±2) of the points (0,±0.4) ∈
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𝑉 (Λ; 0). Indeed, if in Definition 10.4.1 Λ has a radius 𝑟 < 2, then Λ ∩ 𝐵̄(0; 𝑟) \ {0} =
{(0,±1)} is in the 1-dimensional subspace (𝑦-axis) of R2. For 𝑞 = (0, 0.4), considering
all pairs (p1, p2) that generate R2 among the four possibilities ((0,±1), (±2, 0)), we
find the base distances 𝑑1 (𝑞) = 0.6 < 𝑑2 (𝑞) =

√
0.42 + 22 ≈ 2.04 for the 2nd and 3rd

lattice neighbours 𝑝1 = (0, 1) and 𝑝2 = (±2, 0) of 𝑞, respectively. _

Definition 10.4.3 (a distance-generic set). A periodic point set 𝑆 = 𝑀 + Λ ⊂ R𝑛 with
the origin 0 ∈ Λ ⊂ 𝑆 is called distance-generic if the following conditions hold.
(a) For any points 𝑝, 𝑞 ∈ 𝑆 ∩𝑉 (Λ; 0), the vectors p, q are not orthogonal.

(b) For vectors u, v between any two pairs of points in 𝑆, if |u| = 𝑙 |v| ≤ 2𝑅(Λ) for
𝑙 = 1, 2, then u = ±𝑙v and v ∈ Λ.

(c) For any point 𝑞 ∈ 𝑆 ∩ 𝑉 (Λ; 0), let 𝑑0 = |𝑞 | be its distance to the closest neighbour
𝑝0 = 0 in Λ. Take any linearly independent points 𝑝1, . . . , 𝑝𝑛 ∈ 𝑁 (Λ) and any distances
𝑑1 ≤ · · · ≤ 𝑑𝑛 from 𝑞 to some points in 𝑆 ∩ 𝐵̄(0; 2𝑅(Λ)). The 𝑛 + 1 spheres 𝜕𝐵(𝑝𝑖; 𝑑𝑖)
can meet at a single point of 𝑆 ∩ 𝑉 (Λ; 0) only if 𝑑1 ≤ · · · ≤ 𝑑𝑛 are the base distances
of 𝑞 and only for two tuples 𝑝1, . . . , 𝑝𝑛 ∈ 𝑁 (Λ) related by v ↦→ −v. ▲

Condition 10.4.3(b) means that all inter-point distances are distinct apart from nec-
essary exceptions due to periodicity. Since any periodic set 𝑆 = 𝑀+Λ ⊂ R𝑛 is invariant
under translations along all vectors of Λ, condition 10.4.3(b) for |v| ≤ 2𝑅(Λ) can be
checked only for vectors from all points of 𝑆 in the original Voronoi domain 𝑉 (Λ; 0)
to all points in the domain 3𝑉 (Λ; 0) extended by factor 3. Condition 10.4.3(b) implies
that 𝑆 has no points on the boundary 𝜕𝑉 (Λ; 0), because any such point is equidistant to
points 0, 𝑣 ∈ Λ and hence should belong to Λ. Let a lattice distance be the Euclidean
distance from any 𝑝 ∈ 𝑀 = 𝑆 ∩𝑉 (Λ; 0) to its lattice translate 𝑝 + v for all v ∈ Λ. Con-
dition 10.4.3(a) guarantees that only a lattice distance 𝑑 appears together with 2𝑑 (and
possibly with higher multiples) in a row of PDD(𝑆; 𝑘). Any such 𝑑 and its multiples
are repeated twice in every row, because Λ is centrally symmetric.

Lemma 10.4.4 (almost any periodic set is distance-generic, [31, Lemma 5.7]). Let
𝑆 = 𝑀 + Λ ⊂ R𝑛 be any periodic point set. For any 𝜀 > 0, one can perturb coordinates
of a basis of Λ and of points from 𝑀 up to 𝜀 such that the resulting perturbation 𝑆′ of
𝑆 is a distance-generic periodic point set in the sense of Definition 10.4.3. ■

The size 𝑚 of a motif 𝑀 is an isometry invariant because any isometry maps
𝑁 to another hose motif of the same size. In dimensions 𝑛 = 2, 3, any lattice Λ

can be reconstructed from its complete isometry invariants [20, 19]. Theorem 10.4.5
reconstructs a periodic point set 𝑆 = 𝑀 + Λ ⊂ R𝑛 in any dimension 𝑛 ≥ 2 from the
invariant 𝐼 (𝑆) consisting of 𝑚, PDD(𝑆; 𝑘), and (complete invariants of) a lattice Λ

to satisfy condition 10.1.2(a) for distance-generic periodic sets 𝑆 ⊂ R𝑛. Recall that
the packing radius 𝑅(Λ) is the smallest radius 𝑅 such that

⋃
𝑝∈Λ

𝐵̄(𝑝; 𝑅) = R𝑛, see

Definition 9.2.3(b).

Theorem 10.4.5 (generic completeness of PDD for periodic sets, [31, Theorem 5.8]).
Let 𝑆 = 𝑀 + Λ ⊂ R𝑛 be any distance-generic periodic set. For any 𝑘 such that all
distances in the last column of PDD(𝑆; 𝑘) are larger than 2𝑅(Λ), the set 𝑆 can be
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reconstructed from Λ, PDD(𝑆; 𝑘) and the size 𝑚 of a motif of 𝑆, uniquely under
isometry in R𝑛. ■

10.5 Detecting near-duplicates in the world’s largest databases

This section reports thousands of previously unknown (near-)duplicates in the world’s
largest databases [26, 15, 33, 18, 24]. The sizes in Table 10.1 below are the numbers
of all periodic crystals (with no disorder and full geometric data) in September 2024
(total number is 1,847,462, see Table 10.5 and all experimental details in [31, appendix
SM1].

Table 10.1 Links and verisons of the world’s largest materials databases, see their sizes in Table 10.5.

database and web address version

CSD: Cambridge Structural Database, http://ccdc.cam.ac.uk version 6.00

COD: Crystallography Open Database, crystallography.net/cod July 30, 2024

ICSD: Inorganic Crystal Structures, icsd.products.fiz-karlsruhe.de Feb 25, 2025

MP: Materials Project, http://next-gen.materialsproject.org v2023.11.1

GNoME: github.com/google-deepmind/materials discovery Nov 29, 2023

We first used the vector ADA(𝑆; 100) to find nearest neighbours across all databases
by 𝑘-d trees [14] up to 𝐿∞ ≤ 0.01Å. Since the smallest inter-atomic distances are about
1Å = 10−10m, atomic displacements up to 0.01Å are considered experimental noise.
For the closest pairs found by ADA(𝑆; 100), the stronger PDA(𝑆; 100) can have only
equal or larger EMD ≥ 𝐿∞ by Theorem 10.3.5. The CSD, COD, ICSD should contain
experimental structures. MP is obtained from ICSD by extra optimisation.

Table 10.2 shows that the well-curated 60-year-old CSD has 0.9% near-duplicate
crystals, while more than a third of the ICSD consists of near-duplicates that are geo-
metrically almost identical so that all atoms can be matched by an average perturbation
up to 0.01Å. Table 1 in [2, section 6] reported many thousands of exact duplicates,
where chemical elements were replaced while keeping all coordinates fixed. These
replacements are physically impossible without more substantial perturbations. Five
journals are investigating integrity [9].

The bold numbers in Table 10.2 count near-duplicates, and their percentages within
each database, which should be filtered out, else the ground truth data becomes skewed.
Table 10.3 confirms that cell-based comparisons miss near-duplicates as in Fig. 10.1.
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Table 10.2 Count and percentage of all ideal periodic crystals in each database (left) found to have a
near-duplicate in other databases (top) by the distance EMD ≤ 0.01Å on matrices PDA(𝑆; 100) .

duplicates CSD COD ICSD MP GNoME

in databases count % count % count % count % count %

CSD 8343 0.92 283000 31.19 26506 2.92 33 0.00 1 0.00

COD 286663 80.18 19568 5.47 47065 13.16 5231 1.46 2705 0.76

ICSD 26853 15.78 69948 41.10 51085 30.01 27194 15.98 15449 9.08

MP 73 0.05 11986 7.82 15188 9.91 19177 12.51 10681 6.97

GNoME 2 0.00 1800 0.47 2614 0.68 3401 0.88 82859 21.53

Table 10.3 Near-duplicates from Table 10.2 whose unit cells differ by 0.01Å. Unit cells are compared
by the Chebyshev metric 𝐿∞ between vectors of corresponding lengths of 3 edges and 3 face diagonals.

duplicates CSD COD ICSD MP GNoME

in databases count % count % count % count % count %

CSD 776 0.09 419 0.05 210 0.02 29 0.00 1 0.00

COD 472 0.13 7263 2.03 8629 2.41 5059 1.42 2684 0.75

ICSD 462 0.27 28863 16.96 42946 25.23 26554 15.60 15360 9.02

MP 70 0.05 11790 7.69 14915 9.73 18582 12.13 10608 6.92

GNoME 2 0.00 1786 0.46 2590 0.67 3346 0.87 60248 15.65

Figures 10.5, 10.6, 10.7, 10.8, 10.9, show near-duplicates with very different cells,
which were counted in Table 10.3. In the past, the (near-)duplicates were impossible
to detect at scale, because the traditional comparison through iterative alignment of
15 (by default) molecules by the COMPACK algorithm [10] is too slow for all-vs-all
comparisons. Tables 10.4 and SM6 compare the running times: minutes of PDA(𝑆; 100)
vs years of RMSD, extrapolated for the same machine from the median time 117
milliseconds (582 ms on average) for 500 random pairs in the CSD. On the same 500
pairs, PDA(𝑆; 100) for two crystals and EMD together took only 7.48 ms on average. All
experiments were done on a modest desktop computer (AMD Ryzen 5 5600X 6-core,
32GB RAM).

Table 10.6 compares the proven properties of past and new descriptors. All invariants
based on cut-off atomic environments, such as MACE [5], discontinuously change under
almost any perturbation that arbitrarily scales up a primitive cell, as in Fig. 10.1 (left).
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Fig. 10.5 In the CSD, near-duplicates PUBTEM (left) and PUBTEM01 (right) have a very small
EMD = 0.00038Å on invariants PDA(𝑆; 100) , though their unit cells are rather different.

Fig. 10.6 In the COD, near-duplicates 2310812 (top) and 2310813 (bottom) have a very small EMD =

0.0008Å on invariants PDA(𝑆; 100) , though their unit cells differ by a factor of about 3.

Fig. 10.7 In the ICSD, near-duplicates 42291 (top) and 42302 (bottom) have a very small EMD =

0.0024Å on invariants PDA(𝑆; 100) , though their unit cells differ by a factor of about 3.

Fig. 10.8 In the Materials Project, near-duplicate entries mp-90 (left) and mp-1221808 (right) have a
very small EMD = 0.0087Å on invariants PDA(𝑆; 100) , though their unit cells substantially differ.
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Fig. 10.9 In the GNoME, near-duplicates 4cb3b6ed9f (left) and 776c1b7570 (right) in the GNoME
have EMD = 0.0079Å on invariants PDA(𝑆; 100) , though their unit cells are very different.

Table 10.4 Times to compute PDA(𝑆; 100) and find all near-duplicates in Table 10.2 with EMD ≤
0.01Å across all major databases (seconds in the last 4 columns), compare with years in Table 10.5.

database PDA, min:sec EMD, min:sec CSD COD ICSD MP GNoME

CSD 60:44 12:21 125.5 498.1 77.0 19.1 20.6

COD 30:16 16:29 524.5 122.0 235.1 79.6 27.0

ICSD 5:57 22:04 80.5 239.3 515.8 414.9 73.5

MP 1:40 13:31 28.2 82.9 413.8 222.8 63.0

GNoME 4:07 18:59 29.0 26.7 74.5 64.5 943.7

Table 10.5 These times for all comparisons by COMPACK [10] are extrapolated from the median
time of 117 ms on 500 random pairs from the CSD on the same machine, which completed Table 10.2
of near-duplicates across all the major databases within 2 hours.

database periodic crystals unordered pairs COMPACK time, sec years

CSD 907,246 411,547,198,635 4.81 × 1010 1526

COD 357,510 63,906,521,295 7.48 × 109 237

ICSD 170,206 14,484,956,115 1.69 × 109 53

MP 153,235 11,740,405,995 1.37 × 109 43

GNoME 384,938 74,088,439,453 8.67 × 109 274

The PDD remains continuous by taking into account only distances to neighbours
rather than indices or relative positions of neighbours, which are discontinuous at cut-
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off boundaries. Another exception is the complete isoset invariant in the next chapter.

Descriptor Invariant Continuity Complete Reconstruction Time

primitive cell × × × × ✓

reduced cell ✓ × × × ✓

space group ✓ × × × ✓

PDF [27] ✓ ✓ × × ✓*

MACE [5] ✓ × ✓* × ✓*

densities [12] ✓ ✓ ✓* × ✓*

AMD [32] ✓ ✓ × × ✓

PDD [28] ✓ ✓ ✓* ✓* ✓

isosets [1, 3] ✓ ✓ ✓ ✓ ✓*

Table 10.6 Comparison of crystal descriptors in the context of Problem 10.1.2.✓* in the ‘Computable’
column indicates that only an approximate algorithm exists for distances, and ✓* in the ‘Complete’ and
‘Reconstruction’ columns means that the condition holds only for generic periodic sets as in 10.1.2(a).

10.6 Structural novelty of crystals and navigating materials space

This section leverages the strength of PDAs to quickly and continuously quantify the
novelty of any periodic crystal relative to a given dataset in Definition 10.6.1.

Definition 10.6.1 (Local Novelty Distance LND(𝑆;𝐷)). Let 𝐷 be a finite dataset of
periodic point sets. Fix an integer 𝑘 ≥ 1. For any periodic point set 𝑆, the Local Novelty
Distance LND(𝑆;𝐷) = min

𝑄∈𝐷
EMD(PDA(𝑆; 𝑘), PDA(𝑄; 𝑘)) is the shortest 𝐿∞-based

EMD distance from 𝑆 to its nearest neighbour 𝑄 in the given crystal dataset 𝐷. ▲

If 𝑆 is already contained in the dataset 𝐷, then LND(𝑆;𝐷) = 0, so 𝑆 cannot be
considered novel. Conversely, if LND(𝑆;𝐷) = 0 then 𝑆 highly likely belongs to 𝑆,
because PDD(𝑆; 100) distinguished all non-duplicate periodic crystals in the CSD.

LND(𝑆;𝐷) is based on PDAs instead of PDDs because distances to 𝑘-th neighbours
in PDD(𝑆; 𝑘) asymptotically increase as PPC(𝑆) 3√

𝑘 by Theorem 10.2.2. If crystals
𝑆, 𝑄 have PPC(𝑆) ≠ PPC(𝑄), the Chebyshev distance 𝐿∞ between rows of PDDs
equals the largest absolute difference of 𝑖-th distances, which likely happens for 𝑖 = 𝑘 .
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Hence, subtracting PPC(𝑆) 3√
𝑘 in Definition 10.2.3 makes any metric on PDAs more

informative than on PDDs. If a newly synthesised periodic crystal 𝑆 is a near-duplicate
of some known 𝑄 ∈ 𝐷, then LND(𝑆;𝐷) is small as justified below.
Theorem 10.6.2 (continuity of LND, [29, Theorem 6]). For periodic point sets 𝑆, 𝑄 ⊂
R3, if 𝑆 is obtained from 𝑄 in a dataset 𝐷 by perturbing every point of 𝑄 up to
𝜀 < 𝑟 (𝑄), then LND(𝑆;𝐷) ≤ 2𝜀. To get 𝑆 from a periodic point set 𝑄 ∈ 𝐷 with
LND(𝑆;𝐷) < 2𝑟 (𝑄), a point of 𝑄 should be perturbed by at least 0.5LND(𝑆;𝐷). ■

[29, section 3] describes how the 43 materials reported by Berkeley’s A-lab [25]
can be automatically positioned relative to the ICSD and the MP within the full Crystal
Isometry Space CIMS(R3) = ⋃

𝑚≥1
CIMS(R3;𝑚) in seconds, see Table 10.7.

Stage ICSD (s) MP (s)

Binary search on ADA(𝑆; 100) in the full database 3.023 2.450

PDA(𝑄; 100) for 100 neighbours 𝑄 of 𝑆 found by ADA 5.272 5.990

EMD on PDAs for 100 neighbours 𝑄 found by ADA 0.535 0.742

Elemental Mover’s Distance (ElMD) for 100 neighbours 9.534 9.737

Table 10.7 Time (seconds) to complete each stage of the process of finding nearest neighbours in
the ICSD and Materials Project for 43 A-lab crystals [25] on a modest desktop computer. The binary
search used 6-cores for multiprocessing.

Two A-lab crystals were found to already exist in the ICSD with the same composi-
tion: KNaP6(PbO3)8 matched ICSD 182501 reported in 2011 [4], and MnAgO2 matched
ICSD 670065 reported as a hypothetical structure in 2015 [8]. In particular, MnAgO2
was one of three crystals that the later rebuttal said was synthesized successfully [21],
and they go on to state that the material was first reported in 2021 [16] (ICSD 139006),
after the snapshot used to train the GNoME, and so was not included in the original
training data and could be considered a success. Our findings show this crystal did in
fact exist in the ICSD prior to the 2021 snapshot. The pre-existing version of this crystal
was not found by [21] using a unit cell search because the unit cell of ICSD 670065 sig-
nificantly differs from that of the A-lab version or ICSD 139006, with the former listing
its space group as A 2/m and the latter two having space group C 2/m, see Fig. 10.10.
Such cell-based search can always miss near-duplicates as in Fig. 10.1 (left), while con-
tinuous invariants independent of a unit cell find near-duplicates despite disagreement
on a space group, which breaks down under almost any noise.

Aside from the two structures above, all other A-lab crystals were found to have
a geometric near-duplicate in the ICSD with a different composition. Many of these
near-duplicates involve the substitution of only one atom, replacing a disordered site
with a fully ordered one or adjusting the occupancy ratios of atoms at a site.

These structural analogues of A-lab’s claimed crystals are not surprising, as the
GNoME [23] used atomic substitution on existing crystals to generate potential new
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Fig. 10.10 Left: MnAgO2 synthesized by A-lab. Middle: ICSD entry 670065 with the same compo-
sition and EMD = 0.097Å found by PDA(𝑆; 100) in [29, Table 2], though its unit cell is very different
from the cell of MnAgO2. Right: another ICSD entry 139006 from 2021 matched by [21] and found
by unit cell search, but is more distant from MnAgO2 by EMD = 0.368Å on invariants PDA(𝑆; 100) .

ones without substantially changing the atomic geometry. The fact that pre-existing
structures in the ICSD were missed by the later rebuttal [21] suggests that a more robust
method is needed for comparing structures in the aid of materials discovery.

In conclusion, crystals were classified for hundreds of years almost exclusively by
discrete tools such as space groups or by using reduced cells, which are unique in theory.
Fig. 10.1 (left) showed that any known crystal can be disguised by changing a unit cell,
shifting atoms a bit, changing chemical elements, and then claiming them as ‘new’.

Artificial near-duplicates threaten the integrity of experimental databases [9], which
are skewed by previously undetectable near-duplicates. These challenges motivated
the stronger question (if different, by how much?) that was formalised by Lipschitz
continuity in condition 10.1.2(d) and inspired the research leading to this book.

Our future paper [30] extends the PDD to stronger higher-order invariants. Since the
ultra-fast PDD distinguished all non-duplicate crystals among all experimental materials
in the periodic case, these invariants already parametrise the known ‘universe’ of all
existing crystals as ‘shiny stars’, while all not yet discovered crystals remain hidden in
empty spots on the same map. Fig. 10.11 shows an example for two invariant coordinates.
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Chapter 11
Complete and continuous isosets of all periodic
point sets in R𝒏

Abstract This chapter adapts the general Geo-Mapping Problem to periodic point sets
under rigid motion in R𝑛. We introduce a complete isoset invariant with a Lipschitz
continuous metric. For a fixed dimension 𝑛, the isoset is computable in polynomial
time of the input size, while the distance metric is approximated with a constant factor
in polynomial time. The isoset distinguished all known homometric crystals that have
identical diffraction patterns and detected several pairs of exact (but unlikely) mirror
images in the Cambridge Structural Database of experimental materials.

11.1 Geo-mapping for periodic point sets under rigid motion in R𝒏

This chapter follows papers [1, 3]. In comparison with Problem 10.1.2 in the previous
chapter, Problem 11.1.1 covers all (not only generic) periodic point sets and asks for
completeness under rigid motion, which distinguishes mirror images.
Problem 11.1.1 (invariants of periodic point sets under rigid motion in R𝑛). Design an
invariant 𝐼 on the Crystal Rigid Space CRIS(R𝑛;𝑚) satisfying the conditions below.
(a) Completeness: any periodic point sets 𝑆, 𝑄 ⊂ R𝑛 are related by rigid motion in R𝑛

if and only if 𝐼 (𝑆) = 𝐼 (𝑄).
(b) Reconstruction: any periodic point set 𝑆 ⊂ R𝑛 is reconstructable from its invariant
value 𝐼 (𝑆), uniquely under rigid motion in R𝑛.
(c) Metric: there is a distance 𝑑 on the Crystal Rigid Space CRIS(R𝑛;𝑚) satisfying all
metric axioms in Definition 1.3.1(a).
(d) Continuity: there is a constant 𝜆 > 0, such that, for all sufficiently small 𝜀 > 0
and periodic point set 𝑆, 𝑄 ⊂ R𝑛 if 𝑄 is obtained by perturbing every point of 𝑆 up to
Euclidean distance 𝜀, then 𝑑 (𝐼 (𝑆), 𝐼 (𝑄)) ≤ 𝜆𝜀.
(e) Computability: for a fixed dimension 𝑛, the invariant 𝐼 (𝑆) of any periodic point set
𝑆 and a reconstruction of 𝑆 ⊂ R𝑛 from 𝐼 (𝑆) can be computed in times that depend poly-
nomially on the motif size 𝑚 of 𝑆, while the metric 𝑑 (𝐼 (𝑆), 𝐼 (𝑄)) can be approximated
in polynomial time of the maximum motif size of 𝑆, 𝑄. ⋆
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One remaining limitation in Problem 11.1.1 is an approximate algorithm for a Lips-
chitz continuous metric, which will be improved to an exact one in future work.

Fig. 11.1 visualises the practical consequences of discontinuous cell-based repre-
sentations. Starting from any periodic crystal with a unit cell of (say) 𝑚 atoms, one can
extend this cell to get an arbitrarily large motif of 2𝑚 or 3𝑚 or 𝑠𝑚 atoms for any integer
scale 𝑠 ≥ 2. If 𝑠 is not prime, then any extension can be done in different geometric
ways. For example, an extension of unit cell𝑈 (v1, v2, v3) ⊂ R3 by factor 𝑠 = 8, can be
by factor 8 in the direction of v𝑖 for 𝑖 = 1, 2, 3, or by factor 4 in the direction of v1 and
by factor 2 in the direction of v2 or v3, or by factor in each of the directions v2, v2, v3.

Fig. 11.1 The full Crystal Rigid Space CRIS(R3 ) is ‘totally singular’ in the sense that every periodic
set with 𝑚 points in a minimal cell is infinitesimally close to infinitely many subspaces of periodic
structures with 𝑘𝑚 points in a minimal cell for any integer factor 𝑘 = 1, 2, 3, . . .

To solve Problem 11.1.1, we introduce an isoset 𝐼 (𝑆) consisting of local clusters
around points 𝑝 in a motif of 𝑆. Each cluster of 𝑝 is considered under rotations from
the group SO(R𝑛). The completeness of isosets under rigid motion in R𝑛 reduces
Problem 11.1.1 to several subproblems for finite clouds with fixed centres under rotations
from SO(R𝑛). Then we define a continuous metric on isosets in several steps.

The first step introduces a boundary tolerant metric BT on local clusters around
points of a periodic set 𝑆, which continuously changes when points cross a cluster
boundary. This discontinuity at the boundary can be formally resolved by an extra
factor, which smoothly goes down to 0 depending on an extra parameter. Without using
extra parameters, the metric BT will be expressed in terms of simpler distances.

The second step uses the Earth Mover’s Distance from Definition 3.5.4 to extend the
boundary tolerant metric BT to complete invariants [1] that are weighted distributions of
local clusters under rotations. The resulting metric on periodic sets inR𝑛 is approximated
with a factor 𝜂, e.g. 𝜂 ≈ 4 in R3, in a time depending polynomially on the input size.

The third step proves the metric axioms and continuity 𝑑 (𝑆, 𝑄) ≤ 2𝜀, which also
has practical importance. Indeed, if 𝑑 (𝑆, 𝑄) is approximated by a value 𝑑 with a factor
𝜂, we get the lower bound 𝜀 ≥ 𝑑

2𝜂 for the maximum displacement 𝜀 of points. Such a
lower bound is impossible to guarantee by analysing only finite subsets, which can be
very different in identical periodic sets, see Fig. 11.2.
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Fig. 11.2 Comparing periodic crystals by finite subsets is hard to justify because any periodic point
set has many non-isometric subsets of different numbers of points within a box or a ball of a fixed size.

11.2 Isotree of local clusters of points in a periodic set in R𝒏

This section defines the complete invariant [1] based on local clusters and their sym-
metry groups, which were previously studied in [5, 6].

Definition 11.2.1 (global clusters and𝑚-regular periodic sets). (a) For any point 𝑝 in a
periodic set 𝑆 ⊂ R𝑛, the global cluster is 𝐶 (𝑆, 𝑝) = {q − p | 𝑞 ∈ 𝑆}. For any 𝑝, 𝑞 ∈ R𝑛,
let the set O(R𝑛; 𝑝, 𝑞) consist of all isometries of R𝑛 that map 𝑝 to 𝑞.

(b) Global clusters 𝐶 (𝑆, 𝑝) and 𝐶 (𝑆, 𝑞) are called isometric if there is 𝑓 ∈ O(R𝑛; 𝑝, 𝑞)
such that 𝑓 (𝑆) = 𝑆. A periodic point set 𝑆 ⊂ R𝑛 is called𝑚-regular if all global clusters
of 𝑆 form exactly 𝑚 ≥ 1 isometry classes. ▲

For any point 𝑝 ∈ 𝑆, its global cluster is a view of 𝑆 from the position of 𝑝. We view
all astronomical stars in the universe 𝑆 from our Earth at 𝑝. Any lattice is 1-regular since
all its global clusters are related by translations. Though global clusters𝐶 (𝑆, 𝑝), 𝐶 (𝑆, 𝑞)
at any different points 𝑝, 𝑞 ∈ 𝑆 contain the same set 𝑆, they may not match under the
translation shifting 𝑝 to 𝑞. The global clusters are infinite, hence distinguishing them
under isometry is not easier than the original periodic sets. However, the 𝑚-regularity
of a periodic set can be checked in terms of local 𝛼-clusters below.

Definition 11.2.2 (local 𝛼-clusters𝐶 (𝑆, 𝑝;𝛼) and symmetry groups Sym(𝑆, 𝑝;𝛼)). For
a point 𝑝 in a periodic point set 𝑆 ⊂ R𝑛 and any 𝛼 ≥ 0, the local 𝛼-cluster 𝐶 (𝑆, 𝑝;𝛼)
is the set of all vectors q − p such that 𝑞 ∈ 𝑆 and |q − p| ≤ 𝛼. Let the group O(R𝑛; 𝑝)
consist of all isometries that fix 𝑝. If 𝑝 = 0 is the origin, O(R𝑛; 0) is the usual orthogonal
group. The symmetry group Sym(𝑆, 𝑝;𝛼) consists of all isometries 𝑓 ∈ O(R𝑛; 𝑝) that
map 𝐶 (𝑆, 𝑝;𝛼) to itself so that 𝑓 (𝑝) = 𝑝. ▲

Fig. 11.3 (left) shows the 1-regular periodic set 𝑆1 ⊂ R2 whose all points (close
to vertices of square cells) have isometric global clusters related by translations and
rotations through 90◦, 180◦, 270◦. The 2-regular periodic set 𝑆2 has extra points at the
centers of all square cells. The local 𝛼-clusters around these centers are not isometric
to 𝛼-clusters around the points close to cell vertices for any 𝛼 ≥ 3

√
2.

The 1-regular periodic point set 𝑆1 in Fig. 11.3 for any 𝑝 ∈ 𝑆1 has the symmetry
group Sym(𝑆1, 𝑝;𝛼) = O(R2) for 𝛼 ∈ [0, 4). Then Sym(𝑆1, 𝑝;𝛼) stabilizes as Z2 with
one reflection for 𝛼 ≥ 4 as soon as 𝐶 (𝑆1, 𝑝;𝛼) includes one more point.
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Fig. 11.3 Left: in R2, the periodic point set 𝑆1 has the square unit cell [0, 10)2 containing the
four points (2, 2) , (2, 8) , (8, 2) , (8, 8) , so 𝑆1 isn’t a lattice, but is 1-regular by Definition 11.2.1,
and 𝛽 (𝑆1 ) = 6. All local 𝛼-clusters of 𝑆1 are isometric, shown by red arrows for 𝛼 = 5, 6, 8, see
Definition 11.2.2. Right: 𝑆2 has the extra point (5, 5) in the center of the cell [0, 10)2 and is 2-regular
with 𝛽 (𝑆2 ) = 3

√
2, so 𝑆2 has green and yellow isometry types of 𝛼-clusters.

For any periodic set 𝑆, if 𝛼 is smaller than the minimum distance between all points
of 𝑆, then any 𝛼-cluster 𝐶 (𝑆, 𝑝;𝛼) is one point {𝑝}. Its symmetry group consists of
all isometries fixing the centre 𝑝, so Sym(𝑆, 𝑝;𝛼) = O(R𝑛; 𝑝). When 𝛼 is increasing,
the 𝛼-clusters 𝐶 (𝑆, 𝑝;𝛼) become larger and there can be fewer (not more) isometries
𝑓 ∈ O(R𝑛; 𝑝) that bijectively map 𝐶 (𝑆, 𝑝;𝛼) to itself.

So the group Sym(𝑆, 𝑝;𝛼) can become smaller (not larger) and eventually stabilises
(stops changing), which is formalised in Definition 11.3.1. This stabilization uses the
bridge length extending the idea of a longest edge in a Minimum Spanning Tree to a
periodic set 𝑆, which does not easily reduce to the finite case [10].

Definition 11.2.3 (bridge length 𝛽(𝑆)). For a periodic point set 𝑆 ⊂ R𝑛, the bridge
length is a minimum distance 𝛽(𝑆) > 0 such that any 𝑝, 𝑞 ∈ 𝑆 can be connected by a
sequence of points 𝑝0 = 𝑝, 𝑝1, . . . , 𝑝𝑘 = 𝑞 such that any two successive points 𝑝𝑖−1, 𝑝𝑖
are close so that |p𝑖−1 − p𝑖 | ≤ 𝛽(𝑆) for 𝑖 = 1, . . . , 𝑘 . ▲

The seminal result in [6, Theorem 1.3] described how a family of clusters determines
a periodic point set under isometry. These results motivated the isotree, stable radius,
and isoset in Definitions 11.2.4, 11.3.1, 11.3.5, respectively, leading to the isometry
classification of periodic point sets via isosets in Theorem 11.3.7.

The isotree in Definition 11.2.4 is inspired by a clustering dendrogram because
points of 𝑆 split into isometry classes of 𝛼-clusters at variable radii 𝛼, not at a fixed 𝛼.

Fig. 11.4 illustrates the isotrees of the periodic sets 𝑆1, 𝑆2 in Fig. 11.3, as defined
below.

Definition 11.2.4 (isotree IT(𝑆) of 𝛼-partitions). (a) Fix a periodic point set 𝑆 ⊂ R𝑛.
Points 𝑝, 𝑞 ∈ 𝑆 are 𝛼-equivalent if their 𝛼-clusters 𝐶 (𝑆, 𝑝;𝛼) and 𝐶 (𝑆, 𝑞;𝛼) can
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Fig. 11.4 Top: the isotree IT(𝑆1 ) from Definition 11.2.4 of the 1-regular set 𝑆1 in Fig. 11.3 for any
𝛼 ≥ 0 has one isometry class of 𝛼-clusters under rotations. Bottom: the isotree IT(𝑆2 ) of the 2-regular
set 𝑆2 in Fig. 11.3 stabilizes with two non-isometric classes of 𝛼-clusters for 𝛼 ≥ 4.

be related by an isometry that matches their centres. The isometry class [𝐶 (𝑆, 𝑝;𝛼)]
consists of all 𝛼-clusters isometric to𝐶 (𝑆, 𝑝;𝛼). The 𝛼-partition 𝑃(𝑆;𝛼) is the splitting
of 𝑆 into𝛼-equivalence classes of points. Call a value𝛼 singular if 𝑃(𝑆;𝛼) ≠ 𝑃(𝑆;𝛼−𝜀)
for any small enough 𝜀 > 0.

(b) Represent each 𝛼-equivalence class by a vertex of the isotree IT(𝑆). The top vertex
of IT(𝑆) represents the 0-equivalence class coinciding with 𝑆. For any successive
singular values 𝛼 < 𝛼′, connect the vertices representing any classes 𝐴 ∈ 𝑃(𝑆;𝛼) and
𝐴′ ∈ 𝑃(𝑆;𝛼′) such that 𝐴′ ⊂ 𝐴 by an edge of the length 𝛼′ − 𝛼 in IT(𝑆). ▲

For any periodic point set 𝑆 ⊂ R𝑛, the root vertex of IT(𝑆) at 𝛼 = 0 is the single
class 𝑆, because any 0-cluster 𝐶 (𝑆, 𝑝; 0) of a point 𝑝 ∈ 𝑆 consists only of its centre
𝑝. When 𝛼 is increasing, 𝛼-clusters 𝐶 (𝑆, 𝑝;𝛼) include more points and hence may
not be isometric. In other words, any 𝛼-equivalence class from 𝑃(𝑆;𝛼) may split into
two or more classes, which cannot merge at any larger 𝛼′. Branched vertices of IT(𝑆)
correspond to the values of 𝛼 when an 𝛼-equivalence class is split into subclasses for
𝛼′ slightly larger than 𝛼. So the number |𝑃(𝑆;𝛼) | of 𝛼-equivalence is non-decreasing
in 𝛼, see Fig. 11.5. The isotree IT(𝑆) is continuously parametrised by 𝛼 ≥ 0 and is
visualised as a tree of 𝛼-equivalence classes in Fig. 11.5. due to Lemma 11.2.5.

Our proofs of Lemmas 11.2.5, 11.2.6, 11.2.7, and 11.3.2 were peer-reviewed but
were published only in appendices of [3] online, so we include them for completeness.
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Fig. 11.5 Left: the 1-dimensional set 𝑆4 = {0, 1
4 ,

1
3 ,

1
2 } + Z has four points in the unit cell [0, 1) and

is 4-regular by Definition 11.2.1. Right: the colored disks show 𝛼-clusters in the line R with radii
𝛼 = 0, 1

12 ,
1
6 ,

1
4 ,

3
4 and represent points in the isotree IT(𝑆4 ) from Definition 11.2.4.

Lemma 11.2.5 (properties of 𝛼-partitions and isotrees, [3, Lemma 4.1]). The isotree
IT(𝑆) from Definition 11.2.4 has the following properties.

(a) for 𝛼 = 0, the 𝛼-partition 𝑃(𝑆; 0) consists of one class.

(b) if 𝛼 < 𝛼′, then Sym(𝑆, 𝑝;𝛼′) ⊆ Sym(𝑆, 𝑝;𝛼) for any point 𝑝 ∈ 𝑆.

(c) If 𝛼 < 𝛼′, the 𝛼′-partition 𝑃(𝑆;𝛼′) refines 𝑃(𝑆;𝛼), i.e. any 𝛼′-equivalence class
from 𝑃(𝑆;𝛼′) is included into an 𝛼-equivalence class from the partition 𝑃(𝑆;𝛼). So
the cluster count |𝑃(𝑆;𝛼) | is a non-strictly increasing integer-valued function of 𝛼, i.e.
|Iso(𝑆;𝛼) | ≤ |Iso(𝑆;𝛼′) | for 𝛼 < 𝛼′. ■

Proof. (a) Let 𝛼 ≥ 0 be smaller than the minimum distance 2𝑟 (𝑆) betweens any points
of 𝑆. Then any cluster 𝐶 (𝑆, 𝑝;𝛼) is the single-point set {𝑝}. All these 1-point clusters
are isometric to each other. So |𝑃(𝑆;𝛼) | = 1 for 𝛼 < 2𝑟 (𝑆).
(b) For any 𝑝 ∈ 𝑆, the inclusion of clusters 𝐶 (𝑆, 𝑝;𝛼) ⊆ 𝐶 (𝑆, 𝑝;𝛼′) implies that any
isometry 𝑓 ∈ O(R𝑛; 𝑝) that isometrically maps the larger cluster 𝐶 (𝑆, 𝑝;𝛼′) to itself
also maps the smaller cluster𝐶 (𝑆, 𝑝;𝛼) to itself. Hence any element of Sym(𝑆, 𝑝;𝛼′) ⊆
O(R𝑛; 𝑝) belongs to Sym(𝑆, 𝑝;𝛼).
(c) If points 𝑝, 𝑞 ∈ 𝑆 are 𝛼′-equivalent at the larger radius 𝛼′, i.e. the clusters𝐶 (𝑆, 𝑝;𝛼′)
and 𝐶 (𝑆, 𝑞;𝛼′) are related by an isometry from O(R𝑛; 𝑝, 𝑞), then 𝑝, 𝑞 are 𝛼-equivalent
at the smaller radius 𝛼. Hence any 𝛼′-equivalence class of points in 𝑆 is a subset of an
𝛼-equivalence class in 𝑆. ⊓⊔

The 𝛼-clusters of the periodic sequence 𝑆4 ⊂ R in Fig. 11.5 are intervals in R,
shown as disks for better visibility. In Fig. 11.5, the initial 1-point class persists until
𝛼 = 1

12 , when all points 𝑝 ∈ 𝑆4 are split into two classes: one represented by 1-point
cluster {𝑝} for 𝑝 ∈ {0, 1

2 } + Z, and another represented by 2-point clusters {𝑝, 𝑝 + 1
12 },

𝑝 ∈ { 1
4 ,

1
3 } + Z.



11.2 Isotree of local clusters of points in a periodic set in R𝑛 211

The sequence 𝑆4 has four 𝛼-equivalence classes for any radius 𝛼 ≥ 1
6 . For any point

𝑝 ∈ Z ⊂ 𝑆4, the symmetry group Sym(𝑆4, 𝑝;𝛼) = Z2 is generated by the reflection in
𝑝 for 𝛼 ∈ [0, 1

4 ). For all 𝑝 ∈ 𝑆4, the symmetry group Sym(𝑆4, 𝑝;𝛼) is trivial for 𝛼 ≥ 1
4 .

Lemmas 11.2.6 and 11.2.7 are key steps towards a complete classification of periodic
point sets under isometry and rigid motion in Theorem 11.3.7.

Lemma 11.2.6 (local extension). Let 𝑆, 𝑄 ⊂ R𝑛 be periodic point sets and Sym(𝑆, 𝑝;𝛼−
𝛽) = Sym(𝑆, 𝑝;𝛼) for some point 𝑝 ∈ 𝑆 and 𝛼 > 𝛽. Assume that there is an isometry
𝑔 ∈ O(R𝑛; 𝑝, 𝑞) such that 𝑔(𝐶 (𝑆, 𝑝;𝛼)) = 𝐶 (𝑄, 𝑞;𝛼). Let 𝑓 ∈ O(R𝑛; 𝑝, 𝑞) be any
isometry such that 𝑓 (𝐶 (𝑆, 𝑝;𝛼 − 𝛽)) = 𝐶 (𝑄, 𝑞;𝛼 − 𝛽). Then 𝑓 isometrically maps the
larger clusters: 𝑓 (𝐶 (𝑆, 𝑝;𝛼)) = 𝐶 (𝑄, 𝑞;𝛼). ■

Proof. The composition ℎ = 𝑓 −1 ◦ 𝑔 fixes 𝑝 and isometrically maps 𝐶 (𝑆, 𝑝;𝛼 − 𝛽)
to itself, so ℎ ∈ Sym(𝑆, 𝑝;𝛼 − 𝛽). The condition Sym(𝑆, 𝑝;𝛼 − 𝛽) = Sym(𝑆, 𝑝;𝛼)
implies that ℎ ∈ Sym(𝑆, 𝑝;𝛼), so the isometry ℎ ∈ O(R𝑛; 𝑝) isometrically maps the
larger cluster 𝐶 (𝑆, 𝑝;𝛼) to itself. Then the given isometry 𝑓 = 𝑔 ◦ ℎ−1 isometrically
maps 𝐶 (𝑆, 𝑝;𝛼) to 𝑓 (𝐶 (𝑆, 𝑝;𝛼)) = 𝑔(𝐶 (𝑆, 𝑝;𝛼)) = 𝐶 (𝑄, 𝑞;𝛼). ⊓⊔

Lemma 11.2.7 (global extension). Let periodic point sets 𝑆, 𝑄 ⊂ R𝑛 have a common
stable radius 𝛼 satisfying Definition 11.3.1 for an upper bound 𝛽 ≥ 𝛽(𝑆), 𝛽(𝑄). Let
𝐼 (𝑆;𝛼) = 𝐼 (𝑄;𝛼) and 𝑝 ∈ 𝑆, 𝑞 ∈ 𝑄 be any points with an isometry 𝑓 ∈ O(R𝑛; 𝑝, 𝑞)
such that 𝑓 (𝐶 (𝑆, 𝑝;𝛼)) = 𝐶 (𝑄, 𝑞;𝛼). Then 𝑓 (𝑆) = 𝑄. ■

Proof. To show that 𝑓 (𝑆) ⊂ 𝑄, it suffices to check that the image 𝑓 (𝑎) of any point
𝑎 ∈ 𝑆 belongs to 𝑄. By Definition 11.2.3 the points 𝑝, 𝑎 ∈ 𝑆 are connected by a
sequence of points 𝑝 = 𝑎0, 𝑎1, . . . , 𝑎𝑘 = 𝑎 ∈ 𝑆 such that the distances |𝑎𝑖−1 − 𝑎𝑖 |
between any successive points have the upper bound 𝛽 for 𝑖 = 1, . . . , 𝑘 .

We will prove that 𝑓 (𝐶 (𝑆, 𝑎𝑘 ;𝛼)) = 𝐶 (𝑄, 𝑓 (𝑎𝑘);𝛼) by induction on 𝑘 , where the
base 𝑘 = 0 is given. The induction step below goes from 𝑖 to 𝑖 + 1.

The ball 𝐵̄(𝑎𝑖;𝛼) contains the smaller ball 𝐵̄(𝑎𝑖+1;𝛼− 𝛽) around the closely located
center 𝑎𝑖+1. Indeed, since |𝑎𝑖+1 − 𝑎𝑖 | ≤ 𝛽, the triangle inequality for the Euclidean
distance implies that any point 𝑎′

𝑖+1 ∈ 𝐵̄(𝑎𝑖+1;𝛼 − 𝛽) with |𝑎′
𝑖+1 − 𝑎𝑖 | ≤ 𝛼 − 𝛽 satisfies

|𝑎′𝑖+1−𝑎𝑖 | ≤ |𝑎′𝑖+1−𝑎𝑖+1 | + |𝑎𝑖+1−𝑎𝑖 | ≤ (𝛼− 𝛽) + 𝛽 = 𝛼, so 𝐵̄(𝑎𝑖+1;𝛼− 𝛽) ⊂ 𝐵̄(𝑎𝑖;𝛼).

Then the inductive assumption 𝑓 (𝐶 (𝑆, 𝑎𝑖;𝛼)) = 𝐶 (𝑄, 𝑓 (𝑎𝑖);𝛼) gives

𝑓 (𝐶 (𝑆, 𝑎𝑖+1;𝛼 − 𝛽)) = 𝑓 (𝐶 (𝑆, 𝑎𝑖;𝛼)) ∩ 𝑓 (𝐵̄(𝑎𝑖+1;𝛼 − 𝛽)) =

𝐶 (𝑄, 𝑓 (𝑎𝑖);𝛼) ∩ 𝐵̄( 𝑓 (𝑎𝑖+1);𝛼 − 𝛽) = 𝐶 (𝑄, 𝑓 (𝑎𝑖+1);𝛼 − 𝛽)
.

Due to 𝐼 (𝑆;𝛼) = 𝐼 (𝑄;𝛼), the isometry class of𝐶 (𝑆, 𝑎𝑖+1;𝛼) equals an isometry class
of𝐶 (𝑄, 𝑏𝑖+1;𝛼) for some point 𝑏𝑖+1 ∈ 𝑄, i.e. there is an isometry 𝑔 ∈ O(R𝑛; 𝑎𝑖+1, 𝑏𝑖+1)
such that 𝑔(𝐶 (𝑆, 𝑎𝑖+1;𝛼)) = 𝐶 (𝑄, 𝑏𝑖+1;𝛼).
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Since 𝑓 ◦𝑔−1 ∈ O(R𝑛; 𝑏𝑖+1) isometrically maps𝐶 (𝑄, 𝑏𝑖+1;𝛼−𝛽) to𝐶 (𝑄, 𝑓 (𝑎𝑖+1);𝛼−
𝛽), the points 𝑏𝑖+1, 𝑓 (𝑎𝑖+1) ∈ 𝑄 are in the same (𝛼 − 𝛽)-equivalence class of 𝑄.

By condition (11.3.1a), the splitting of the periodic point set 𝑄 ⊂ R𝑛 into 𝛼-
equivalence classes coincides with its splitting into (𝛼 − 𝛽)-equivalence classes.
Hence, the points 𝑏𝑖+1, 𝑓 (𝑎𝑖+1) ∈ 𝑄 are in the same 𝛼-equivalence class of 𝑄. Then
𝐶 (𝑄, 𝑓 (𝑎𝑖+1);𝛼) is isometric to 𝐶 (𝑄, 𝑏𝑖+1;𝛼) = 𝑔(𝐶 (𝑆, 𝑎𝑖+1;𝛼)).

Now we can apply Lemma 11.2.6 for 𝑝 = 𝑎𝑖+1, 𝑞 = 𝑓 (𝑎𝑖+1) and conclude that
the given isometry 𝑓 , which satisfies 𝑓 (𝐶 (𝑆, 𝑎𝑖+1;𝛼 − 𝛽)) = 𝐶 (𝑄, 𝑓 (𝑎𝑖+1);𝛼 − 𝛽),
isometrically maps the larger clusters: 𝑓 (𝐶 (𝑆, 𝑎𝑖+1;𝛼)) = 𝐶 (𝑄, 𝑓 (𝑎𝑖+1);𝛼).

The induction step is finished. The inclusion 𝑓 −1 (𝑄) ⊂ 𝑆 is proved similarly. ⊓⊔

11.3 A complete isoset of periodic point sets under rigid motion in
R

𝒏

This section shows that, for any periodic point set 𝑆 ⊂ R𝑛, the 𝛼-partition of 𝑆 stabilises,
which allows us to form a complete invariant at a stable radius defined below.

Definition 11.3.1 (the minimum stable radius 𝛼(𝑆)). Let 𝑆 ⊂ R𝑛 be a periodic point,
𝛽 ≥ 𝛽(𝑆) be an upper bound of the bridge length 𝛽(𝑆) from Definition 11.2.3. A radius
𝛼 ≥ 𝛽 is called stable if the following conditions hold:

(a) the 𝛼-partition 𝑃(𝑆;𝛼) equals the (𝛼 − 𝛽)-partition 𝑃(𝑆;𝛼 − 𝛽);
(b) the groups stabilise so that Sym(𝑆, 𝑝;𝛼) = Sym(𝑆, 𝑝;𝛼 − 𝛽) for any 𝑝 ∈ 𝑆, i.e. any
isometry 𝑓 ∈ Sym(𝑆, 𝑝;𝛼 − 𝛽) preserves the larger cluster 𝐶 (𝑆, 𝑝;𝛼).
A minimum value of a stable radius 𝛼 satisfying 11.3.1(a,b) for 𝛽 = 𝛽(𝑆) from Defini-
tion 11.2.3 is called the minimum stable radius and denoted by 𝛼(𝑆). ▲

Due to the upper bounds in Lemma 11.3.3(b,c), the minimum stable radius 𝛼(𝑆) ≥ 0
exists and is achieved because 𝑃(𝑆;𝛼) and Sym(𝑆, 𝑝;𝛼) are continuous on the right
(unchanged when 𝛼 increases by a sufficiently small value).

Any 𝑚-regular periodic point set 𝑆 ⊂ R𝑛 has at most 𝑚 𝛼-equivalence classes, so
the isotree IT(𝑆) stabilises with maximum 𝑚 branches. Though 11.3.1(b) is stated for
all points 𝑝 ∈ 𝑆 for simplicity, it suffices to check condition 11.3.1(b) for points only
from a finite motif 𝑀 of 𝑆 due to periodicity.

Lemma 11.3.2 (all stable radii 𝛼 ≥ 𝛼(𝑆)). If 𝛼 is a stable radius of a periodic point
set 𝑆 ⊂ R𝑛, then so is any larger radius 𝛼′ > 𝛼. Then all stable radii form the interval
[𝛼(𝑆),+∞), where 𝛼(𝑆) is the minimum stable radius of 𝑆. ■

Proof. Due to Lemma (11.2.5bc), conditions (11.3.1ab) imply that the 𝛼′-partition
𝑃(𝑆;𝛼′) and the symmetry groups Sym(𝑆, 𝑝;𝛼′) remain the same for all 𝛼′ ∈ [𝛼 −
𝛽(𝑆), 𝛼], where 𝛽(𝑆) is the bridle length. We need to show that they remain the same
for any 𝛼′ > 𝛼 and will apply Lemma 11.2.7 for 𝑆 = 𝑄 and 𝛽 = 𝛽(𝑆).
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Let points 𝑝, 𝑞 ∈ 𝑆 be 𝛼-equivalent, i.e. there is an isometry 𝑓 ∈ O(R𝑛; 𝑝, 𝑞) such
that 𝑓 (𝐶 (𝑆, 𝑝;𝛼)) = 𝐶 (𝑆, 𝑞;𝛼). By Lemma 11.2.7, 𝑓 isometrically maps the full set 𝑆
to itself. Then all larger 𝛼′-clusters of 𝑝, 𝑞 are matched by 𝑓 , so 𝑝, 𝑞 are 𝛼′-equivalent
and 𝑃(𝑆;𝛼) = 𝑃(𝑆, 𝛼′). Similarly, any isometry 𝑓 ∈ Sym(𝑆, 𝑝;𝛼) by Lemma 11.2.7
for 𝑆 = 𝑄 and 𝑝 = 𝑞, isometrically maps the full set 𝑆 to itself. Then Sym(𝑆, 𝑝;𝛼′)
coincides with Sym(𝑆, 𝑝;𝛼) for any 𝛼′ > 𝛼. ⊓⊔

All stable radii of 𝑆 form the interval [𝛼(𝑆),+∞) by Lemma 11.3.2. The periodic
sequence 𝑆4 in Fig. 11.5 has 𝛽(𝑆4) = 1

2 and 𝛼(𝑆) = 3
4 since the 𝛼-partition and

symmetry groups Sym(𝑆4, 𝑝;𝛼) are stable for 1
4 ≤ 𝛼 ≤ 3

4 .

Condition 11.3.1(b) doesn’t follow from condition 11.3.1(a) due to the following
example. Let Λ be the 2D lattice with the basis (1, 0) and (0, 𝛽) for 𝛽 > 1. Then 𝛽 is
the bridge length of Λ. Condition 11.3.1(a) is satisfied for any 𝛼 ≥ 0, because all points
of any lattice are equivalent under translations.

However, condition 11.3.1(b) fails for any𝛼 < 𝛽+1. Indeed, the𝛼-cluster of the origin
(0, 0) contains five points (0, 0), (±1, 0), (0,±𝛽), whose symmetries are generated by
the two reflections in the axes 𝑥, 𝑦, but the (𝛼 − 𝛽)-cluster of the origin (0, 0) consists
of its centre and has the symmetry group O(R2).

It is possible that condition 11.3.1(b) might imply 11.3.1(a), but in practice it makes
sense to verify 11.3.1(b) only after checking much simpler condition 11.3.1(a). Both
conditions are essentially used in the proof of Isometry Classification Theorem 11.3.7.

Conditions 11.3.1(ab) appeared in [6] with different notations 𝜌, 𝜌 + 𝑡. Since many
applied papers use 𝜌 for the physical density and have many types of bond distances, we
replaced 𝑡 and 𝜌 + 𝑡 with the bridge length 𝛽 and radius 𝛼, respectively, as for growing
𝛼-shapes in Topological Data Analysis [12].

Recall that the covering radius 𝑅(𝑆) of a periodic point set 𝑆 ⊂ R𝑛 is the minimum
radius 𝑅 > 0 such that

⋃
𝑝∈𝑆

𝐵̄(𝑆; 𝑅) = R𝑛, or the largest radius of an open ball in

the complement R𝑛 \ 𝑆. For 𝑚-regular point sets in R𝑛, an upper bound of 𝛼(𝑆)
can be extracted from [6, Theorem 1.3] whose proof motivated a stronger bound in
Lemma 11.3.3(c), see comparisons in Example 11.3.4(c).

A periodic point set 𝑆 is locally antipodal if the local cluster 𝐶 (𝑆, 𝑝; 2𝑅(𝑆)) is
centrally symmetric for any point 𝑝 ∈ 𝑆, i.e. bijectively maps to itself under q ↦→ 2p−q,
𝑞 ∈ R𝑛. The important result in [7, Theorem 1] says that all locally antipodal Delone
sets, hence all periodic sets 𝑆, are globally antipodal, i.e. 𝑆 is preserved under the
isometry q ↦→ 2p − q for any fixed 𝑝 ∈ 𝑆, e.g. any lattice is antipodal.

Lemma 11.3.3 (upper bounds for a stable radius 𝛼(𝑆), [3, Lemma 3.6]). (a) Let 𝑆 ⊂ R𝑛

be a periodic point set with a unit cell 𝑈, which has the longest edge 𝑏 and longest
diagonal 𝑑. Set 𝑟 (𝑈) = max{𝑏, 𝑑2 }. Then the bridge length 𝛽(𝑆) from Definition 11.2.3
has the upper bound min{2𝑅(𝑆), 𝑟 (𝑈)} ≥ 𝛽(𝑆).

(b) For any antipodal periodic set 𝑆 ⊂ R𝑛 whose covering radius is 𝑅(𝑆), the minimum
stable radius has the upper bound 2𝑅(𝑆) + 𝛽(𝑆) > 𝛼(𝑆).
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(c) Let 𝑆 ⊂ R𝑛 be any periodic point set with the bridge length 𝛽. For any point
𝑝 ∈ 𝑆 and a radius 𝛼0 ≥ 2𝑅(𝑆), the order |Sym(𝑆, 𝑝;𝛼0) | of the group Sym(𝑆, 𝑝;𝛼0)
should be finite. Let 𝑝1, . . . , 𝑝𝑚 ∈ 𝑆 be all points of an asymmetric unit of 𝑆. Set

𝐿 =

[
𝑚∑
𝑖=1

(
log2 |Sym(𝑆, 𝑝𝑖;𝛼0) | − log2 |Sym(𝑆, 𝑝𝑖) |

) ]
. Then the minimum stable radius

𝛼(𝑆) from Definition 11.3.1 has the upper bound 𝛼0+ (𝐿+𝑚)𝛽 ≥ 𝛼(𝑆). If 𝛼0 = 2𝑅(𝑆),
then (𝐿 + 𝑚 + 1)2𝑅(𝑆) ≥ 𝛼(𝑆). ■

The upper bound in Lemma 11.3.3(a) holds for any unit cell of 𝑆. If a cell is non-
reduced and too long, its reduced form can have smaller bounds for 𝛽(𝑆).

Example 11.3.4 (upper bounds for 𝛼(𝑆) and 𝛽(𝑆)). Let Λ(𝑏) ⊂ R𝑛 be a lattice whose
unit cell is a rectangular box with the longest edge 𝑏 ≥ 1.
(a) In Lemma 11.3.3(a), the upper bound 𝑏 ≥ 𝛽(𝑆) is tight because 𝛽(Λ(𝑏)) = 𝑏.
(b) In Lemma 11.3.3(b), the ratio (2𝑅(𝑆) + 𝛽(𝑆))/𝛼(𝑆) ≥ 1 tends to 1 as 𝑏 → +∞
for any fixed 𝑛. Indeed, a cluster 𝐶 (Λ(𝑏), 0;𝛼) is 𝑛-dimensional only for 𝛼 ≥ 𝑏, so the
group Sym(Λ(𝑏), 0;𝛼) stabilises at 𝛼 = 𝑏, hence 𝛼(𝑆) = 𝑏 + 𝛽(Λ(𝑏)) = 2𝑏 is the
minimum stable radius. The covering radius 𝑅(Λ(𝑏)) is half of the longest diagonal
of the rectangular cell 𝑈. If 𝑏 → +∞ and all other sizes of 𝑈 remain fixed, the ratio
(2𝑅(Λ(𝑏)) + 𝛽(Λ(𝑏)))/𝛼(𝑆) tends to 1 for any fixed 𝑛.

(c) Lemma 11.3.3(c) was motivated by [6, Theorem 1.3], which implies the upper bound
𝛽(𝑆) + 2𝑚(𝑛2 + 1) log2 (2 + 𝑅(𝑆)/𝑟 (𝑆)) > 𝛼(𝑆) for 𝑚-regular point sets. Let Λ ⊂ R2

be a lattice whose unit cell is a rhombus with sides 1. Then 𝑚 = 1, 𝑛 = 2, 𝑟 (Λ) = 0.5,
𝛽(Λ) = 1, and 𝛼(Λ) = 2. If Λ deforms from a square lattice to a hexagonal lattice,
the covering radius 𝑅(Λ) varies in the range [ 1√

3
, 1√

2
]. The past bound above gives the

estimate 1+2(22 +1) log2 (2+ 2√
3
) ≈ 17.6 > 𝛼(Λ) = 2. For any lattice Λ in this family,

the symmetry group Sym(Λ, 0) = Sym(Λ, 0; 1) stabilises at 𝛼0 = 1.

Lemma 11.3.3(c) for 𝛼0 = 1 gives 𝐿 = log2 (2) − log2 (2) = 0, so the upper bound
𝛼0 + (𝐿 + 𝑚)𝛽(𝑆) ≥ 𝛼(𝑆) is tight: 2 ≥ 𝛼(Λ). In practice, if 𝐿 is large because some
local clusters 𝐶 (𝑆; 𝑝;𝛼0) have too many symmetries, one can increase the radius 𝛼0 to
reduce 𝐿 for a better bound of 𝛼(𝑆). _

Definition 11.3.5 reminds of the isoset, which was initially introduced in [1, Defini-
tion 9]. We also cover the case of rigid motion and prove Completeness Theorem 11.3.7
in the appendix in more detail than in [1, Theorem 9].

Definition 11.3.5 (isoset 𝐼 (𝑆;𝛼) at a radius 𝛼 ≥ 0). Let a periodic point set 𝑆 ⊂ R𝑛

have a motif 𝑀 of 𝑚 points. Split all points 𝑝 ∈ 𝑀 into 𝛼-equivalence classes. Each
𝛼-equivalence class of (say) 𝑘 points in 𝑀 can be associated with the isometry class
𝜎 = [𝐶 (𝑆, 𝑝;𝛼)] of an 𝛼-cluster centreed at some 𝑝 ∈ 𝑀 . The weight of 𝜎 is 𝑤 = 𝑘/𝑚.
Then the isoset 𝐼 (𝑆;𝛼) is the unordered set of all isometry classes (𝜎;𝑤) with weights
𝑤 for all points 𝑝 in the motif 𝑀 . If we replace isometry with rigid motion, we get the
oriented isoset 𝐼𝑜 (𝑆;𝛼). ▲

All points 𝑝 of a lattice Λ ⊂ R𝑛 from one 𝛼-equivalence class for any radius
𝛼 ≥ 0 because all 𝛼-clusters 𝐶 (Λ, 𝑝;𝛼) are isometrically equivalent to each other by



11.3 A complete isoset of periodic point sets under rigid motion in R𝑛 215

translations. Hence the isoset 𝐼 (Λ;𝛼) is one isometry class of weight 1 for 𝛼 ≥ 0, see
examples in Fig. 11.7. All isometry classes 𝜎 in 𝐼 (𝑆;𝛼) are in a 1-1 correspondence
with all 𝛼-equivalence classes in the 𝛼-partition 𝑃(𝑆;𝛼) from Definition 11.2.4.

Hence, the isoset 𝐼 (𝑆;𝛼) without weights can be viewed as a set of points in the
isotree IT(𝑆) at the radius 𝛼. The size of the isoset 𝐼 (𝑆;𝛼) equals the number |𝑃(𝑆;𝛼) |
of 𝛼-equivalence classes in the 𝛼-partition. Formally, 𝐼 (𝑆;𝛼) depends on 𝛼 because
𝛼-clusters grow in 𝛼. To distinguish any 𝑆, 𝑄 ⊂ R𝑛 under isometry, we will compare
their isosets at a maximum stable radius of 𝑆, 𝑄.

Example 11.3.6 (isosets of simple lattices). (a) Any lattice Λ ⊂ R𝑛 is 1-regular by
Definition 11.2.1 and can be assumed to contain the origin 0 of R𝑛. Then the isoset
𝐼 (Λ;𝛼) consists of a single isometry class of a cluster 𝐶 (Λ, 0;𝛼). So the isotree IT(Λ)
is a linear path, which is horizontally drawn for the hexagonal and square lattices Λ6,Λ4
in Fig. 11.6. If bothΛ6,Λ4 have a minimum inter-point distance 1, then the bridge length
from Definition 11.2.3 is 𝛽 = 1.

Fig. 11.6 The isotree of any lattice Λ is [0, +∞) is a line R parametrised by the radius 𝛼. Top: the
isotree of the hexagonal lattice Λ6. Bottom: the isotree of the square lattice Λ4.

(b) For the hexagonal lattice Λ6 ⊂ R2, 𝐶 (Λ6, (0, 0);𝛼) includes points 𝑝 ≠ (0, 0) only
for 𝛼 ≥ 1. The cluster𝐶 (Λ6, (0, 0); 1) = {(0, 0), (±1, 0), (± 1

2 ,±
√

3
2 )} appears in the 2nd

step of Fig. 11.6 (left). The symmetry group Sym(Λ6, (0, 0);𝛼) becomes the dihedral
group 𝐷6 (all symmetries of a regular hexagon) for 𝛼 ≥ 1. Hence any 𝛼 ≥ 𝛽 + 1 = 2
is stable. The isoset 𝐼 (Λ6; 1) is the isometry class of the cluster 𝐶 (Λ6, (0, 0); 1) of six
vertices of the regular hexagon and its centre.
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(c) For the square lattice Λ4 ⊂ R2,𝐶 (Λ4, (0, 0);𝛼) has points 𝑝 ≠ (0, 0) only for 𝛼 ≥ 1.
𝐶 (Λ4, (0, 0); 2) = {(0, 0), (±1, 0), (0,±1), (±

√
2,±

√
2), (±2, 0), (0,±2)} includes the

origin (0, 0) with its 12 neighbors in the 4th step of Fig. 11.6 (right). The group
Sym(Λ4, (0, 0);𝛼) becomes the dihedral group 𝐷4 (all symmetries of a square) for
𝛼 ≥ 1. So any 𝛼 ≥ 𝛽 + 1 = 2 is stable. The isoset 𝐼 (Λ4; 1) is the isometry class of
𝐶 (Λ4, (0, 0); 1) of four vertices of the square and its centre. _

An equality 𝜎 = 𝜉 between isometry classes of clusters means that some (hence
any) clusters 𝐶 (𝑆, 𝑝;𝛼) and 𝐶 (𝑄, 𝑞;𝛼) representing 𝜎, 𝜉, respectively, are related by
𝑓 ∈ O(R𝑛; 𝑝, 𝑞), which will be algorithmically tested in Corollary 11.5.3.

Theorem 11.3.7 (isometry classification of periodic point sets, [3, Theorem 3.10]).
For any periodic point sets 𝑆, 𝑄 ⊂ R𝑛, let 𝛼 be a common stable radius satisfying
Definition 11.3.1 for an upper bound 𝛽 ≥ 𝛽(𝑆), 𝛽(𝑄). Then 𝑆, 𝑄 are isometric (related
by rigid motion, respectively) if and only if there is a bijection 𝜑 : 𝐼 (𝑆;𝛼) → 𝐼 (𝑄;𝛼)
(between oriented isosets, respectively) that preserves all their weights. ■

Theorem 11.3.7 was inspired by the seminal result in [6, Theorem 1.3] saying
that, for a multi-regular point set 𝑋 , “the only Delone sets 𝑌 all of whose 𝜌-stars are
isometric to 𝜌-stars of 𝑋 are sets globally isometric to 𝑋”. After renaming 𝜌-stars as
𝛼-clusters, we collected their isometry classes (with weights) into the isoset to rephrase
[6, Theorem 1.3] as a classification of all periodic point sets by isosets.

The 𝛼-equivalence and isoset in Definition 11.3.5 can be refined by labels such as
chemical elements, which keeps Theorem 11.3.7 valid for labelled points.

When comparing sets from a finite database, it suffices to build their isosets only up
to a common upper bound of a stable radius 𝛼 in Lemma 11.3.3(c).

11.4 Continuous metrics on isometry classes of periodic sets in R𝒏

This section proves the continuity of the isoset 𝐼 (𝑆;𝛼) in Theorem 11.4.5 by using the
Earth Mover’s Distance (EMD) from Definition 11.4.3.

For a point 𝑝 ∈ R𝑛 and a radius 𝜀, the closed ball 𝐵̄(𝑝; 𝜀) = {𝑞 ∈ R𝑛 | |q − p| ≤ 𝜀}
has as its the boundary (𝑛 − 1)-dimensional sphere 𝜕𝐵̄(𝑝; 𝜀) ⊂ R𝑛. The 𝜀-offset of any
set 𝐶 ⊂ R𝑛 is the Minkowski sum 𝐶 + 𝐵̄(0; 𝜀) = {p + q | 𝑝 ∈ 𝐶, 𝑞 ∈ 𝐵̄(0; 𝜀)}.

Then the directed Hausdorff distance from Example 1.3.3(b) 𝑑𝐻 (𝐶, 𝐷) is the mini-
mum radius 𝜀 ≥ 0 such that 𝐶 ⊆ 𝐷 + 𝐵̄(0; 𝜀). Definition 11.4.1 introduces the crucial
new metric, which will be explicitly computed in Lemma 11.5.5.

Definition 11.4.1 (boundary tolerant metric BT on isometry classes of clusters). For a
radius 𝛼 and periodic point sets 𝑆, 𝑄 ⊂ R𝑛, let clusters𝐶 (𝑆, 𝑝;𝛼), 𝐶 (𝑄, 𝑞;𝛼) represent
isometry classes 𝜎 ∈ 𝐼 (𝑆;𝛼), 𝜉 ∈ 𝐼 (𝑄;𝛼), respectively. The boundary tolerant metric
BT(𝜎, 𝜉) is defined as the minimum 𝜀 ≥ 0 such that
(11.4.1a) 𝐶 (𝑄, 𝑞;𝛼 − 𝜀) ⊆ 𝑓 (𝐶 (𝑆, 𝑝;𝛼)) + 𝐵̄(0; 𝜀) for some 𝑓 ∈ O(R𝑛; 𝑝, 𝑞), and
(11.4.1b) 𝐶 (𝑆, 𝑝;𝛼 − 𝜀) ⊆ 𝑔(𝐶 (𝑄, 𝑞;𝛼)) + 𝐵̄(0; 𝜀) for some 𝑔 ∈ O(R𝑛; 𝑞, 𝑝). ▲
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In Definition 11.4.1, if one cluster consists of only its centre, e.g. 𝐶 (𝑆, 𝑝;𝛼) = {𝑝},
then the boundary tolerant metric is BT = max{|s−q| | 𝑠 ∈ 𝐶 (𝑄, 𝑞;𝛼)}. [3, Lemma 4.2]
proves that BT is independent of cluster representatives and satisfies all metric axioms
from Definition 1.3.1(a).

Example 11.4.2 (square lattice vs hexagonal). The isoset 𝐼 (Λ;𝛼) of any lattice Λ ⊂ R𝑛

containing the origin 0 consists of a single isometry class [𝐶 (Λ, 0;𝛼)], see Exam-
ple 11.3.6. For the square (hexagonal) lattice with minimum inter-point distance 1 in
Fig. 11.7, the cluster 𝐶 (Λ, 0;𝛼) consists of only 0 for 𝛼 < 1 and includes four (six)
nearest neighbors of 0 for 𝛼 ≥ 1. Hence Sym(Λ, 0;𝛼) stabilises as the symmetry group
of the square (regular hexagon) for 𝛼 ≥ 1. The lattices have the minimum stable radius
𝛼(Λ) = 2 and 𝛽(Λ) = 1 by Example 11.3.4(c).

Fig. 11.7 Example 11.4.2 computes the metric BT from Definition 11.4.1 for the isometry classes of the
2-clusters in the square and hexagonal lattices Λ4,Λ6. 1st: the 2-cluster𝐶 (Λ6, 0; 2) with its boundary
circle𝜕𝐵̄(0; 2); 2nd: the 2-cluster𝐶 (Λ4, 0; 2) with its boundary circle𝜕𝐵̄(0; 2); 3rd: for 𝜀 =

√
2−1 ≈

0.41, the cluster𝐶 (Λ4, 0; 2) is covered by the yellow 𝜀-offset of𝐶 (Λ6, 0; 2)∪𝜕𝐵̄(0; 2) rotated through
15◦ clockwise. 4th: 𝐶 (Λ6, 0; 2) is covered by the blue 𝜀-offset of 𝐶 (Λ4, 0; 2) ∪ 𝜕𝐵̄(0; 2) rotated
through 15◦ anticlockwise, so BT =

√
2 − 1.

Fig. 11.7 shows the stable 2-clusters 𝐶 (Λ4, 0; 2) and 𝐶 (Λ6, 0; 2) of the square (Λ4)
and hexagonal (Λ6) lattices. Without rotations, the 1st picture of Fig. 11.7 shows the

directed Hausdorff distance 𝑑𝐻 =

√︃
(1 −

√
3

2 )2 + ( 1
2 )2 =

√︁
2 −

√
3 ≈ 0.52 between

clusters with the added boundary circle 𝜕𝐵(0; 2). Due to high symmetry, it suffices to
consider rotations of the square vertex (1, 1) for angles 𝛾 ∈ [45◦, 60◦] because all other
ranges can be isometrically mapped to this range for another vertex of the square.

We find the squared distances 𝑠1 (𝛾) and 𝑠2 (𝛾) from the vertex (
√

2 cos 𝛾,
√

2 sin 𝛾)
rotated from (1, 1) at 𝛾 = 45◦ through the angle 𝛾 − 45◦ to its closest neighbors ( 1

2 ,
√

3
2 )

and ( 3
2 ,

√
3

2 ) in 𝐶 (Λ6, 0; 2).

𝑠1 (𝛾) =
���(√2 cos 𝛾,

√
2 sin 𝛾) −

(
1
2 ,

√
3

2

)���2 =(√
2 cos 𝛾 − 1

2

)2
+

(√
2 sin 𝛾 −

√
3

2

)2
=

3 −
√

2 cos 𝛾 −
√

6 sin 𝛾,
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𝑑𝑠1
𝑑𝛾

=
√

2 sin 𝛾 −
√

6 cos 𝛾 = 0, tan 𝛾 =
√

3, 𝛾 = 60◦, 𝑠1 = (
√

2 − 1)2

is minimal for the points in the line 𝑦 =
√

3𝑥 at distances 1,
√

2 from 0.

𝑠2 (𝛾) =
���(√2 cos 𝛾,

√
2 sin 𝛾) −

(
3
2 ,

√
3

2

)���2 =(√
2 cos 𝛾 − 3

2

)2
+

(√
2 sin 𝛾 −

√
3

2

)2
=

5 − 3
√

2 cos 𝛾 −
√

6 sin 𝛾,

𝑑𝑠2
𝑑𝛾

= 3
√

2 sin 𝛾 −
√

6 cos 𝛾 = 0, 𝛾 = 30◦, 𝑠2 = (
√

3 −
√

2)2

is minimal for the points in the line 𝑦 = 𝑥√
3

at distances
√

2,
√

3 from 0.

It might look that the second minimum is smaller. However, for the angle 𝛾 = 30◦,
another vertex (−1, 1) rotated through 𝛾 − 45◦ = −15◦ has distance

√
2− 1 to its closest

neighbor (− 1
2 ,

√
3

2 ) ∈ 𝐶 (Λ6, 0; 2). For any angle 𝛾 ∈ [45◦, 60◦], the second function
has the minimum 𝑠2 (45◦) = 2 −

√
3 = 𝑑2

𝐻
in the 1st picture of Fig. 11.7.

Hence, the vertex (1, 1) has the minimum distance
√

2−1 ≈ 0.41 <
√︁

2 −
√

3 ≈ 0.52
in the 3rd picture of Fig. 11.7. All other points of the square cluster𝐶 (Λ4, 0; 2) are even
closer to their neighbors in 𝐶 (Λ6, 0; 2). For example, the point (1, 0) rotated by 15◦ has
the distance to (1, 0) equal to

√︁
(cos 15◦ − 1)2 + sin2 15◦ ≈ 0.26.

The final picture in Fig. 11.7 confirms that all points of the hexagonal cluster
𝐶 (Λ6, 0; 2) are covered by the (

√
2 − 1)-offset of 𝐶 (Λ4, 0; 2) and the boundary circle.

So BT =
√

2 − 1 ≈ 0.41. _

Non-isometric periodic sets 𝑆, 𝑄 can have isosets of different numbers of isometry
classes. The distance between these weighted distributions of different sizes can be
measured by the Earth Mover’s Distance below.

Definition 11.4.3 (Earth Mover’s Distance on isosets). Let periodic point sets 𝑆, 𝑄 ⊂
R𝑛 have a common stable radius 𝛼 and isosets 𝐼 (𝑆;𝛼) = {(𝜎𝑖 , 𝑤𝑖)} and 𝐼 (𝑄;𝛼) =

{(𝜉 𝑗 , 𝑣 𝑗 )}, where 𝑖 = 1, . . . , 𝑚(𝑆) and 𝑗 = 1, . . . , 𝑚(𝑄). The Earth Mover’s Distance
is

EMD(𝐼 (𝑆;𝛼), 𝐼 (𝑄;𝛼)) =
𝑚(𝑆)∑︁
𝑖=1

𝑚(𝑄)∑︁
𝑗=1

𝑓𝑖 𝑗BT(𝜎𝑖 , 𝜉 𝑗 )

minimised over flows 𝑓𝑖 𝑗 ∈ [0, 1] subject to the conditions
𝑚(𝑄)∑
𝑗=1

𝑓𝑖 𝑗 ≤ 𝑤𝑖 for 𝑖 =

1, . . . , 𝑚(𝑆),
𝑚(𝑆)∑
𝑖=1

𝑓𝑖 𝑗 ≤ 𝑣 𝑗 for 𝑗 = 1, . . . , 𝑚(𝑄), and
𝑚(𝑆)∑
𝑖=1

𝑚(𝑄)∑
𝑗=1

𝑓𝑖 𝑗 = 1. ▲
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Example 11.4.4 (EMD for lattices with BD = +∞). [13, Example 2.1] showed that the
lattices 𝑆 = Z and 𝑄 = (1 + 𝛿)Z have the bottleneck distance BD(𝑆, 𝑄) = +∞ for any
𝛿 > 0. We show that 𝑆, 𝑄 have Earth Mover’s Distance EMD = 2𝛿 at their common
stable radius 𝛼 = 2 + 2𝛿. The bridge lengths are 𝛽(𝑆) = 1 and 𝛽(𝑄) = 1 + 𝛿. The
𝛼-cluster 𝐶 (𝑆, 0;𝛼) contains non-zero points for 𝛼 ≥ 1, e.g. 𝐶 (𝑆, 0; 1) = {0,±1}.

The symmetry group Sym(𝑆, 0;𝛼) = Z2 includes a non-trivial reflection with respect
to 0 for all 𝛼 ≥ 1, so the stable radius of 𝑆 is any 𝛼 ≥ 𝛽 + 1 = 2. Similarly, 𝑄 has
𝛽(𝑄) = 1+𝛿 and stable radii 𝛼 ≥ 2(1+𝛿). The Earth Mover’s Distance between 𝐼 (𝑆;𝛼)
and 𝐼 (𝑄;𝛼) at the common stable radius 𝛼 = 2 + 2𝛿 equals the metric BT between the
only 𝛼-clusters 𝐶 (𝑆, 0;𝛼) = {0,±1,±2} and 𝐶 (𝑄, 0;𝛼) = {0,±(1 + 𝛿),±2(1 + 𝛿)}.

By Definition 11.4.1 we look for a minimum 𝜀 > 0 such that the cluster𝐶 (𝑆, 0;𝛼−𝜀)
is covered by 𝜀-offsets of ±(1 + 𝛿),±2(1 + 𝛿) and vice versa. If 𝜀 < 2𝛿, the points
±2 ∈ 𝐶 (𝑆, 0;𝛼 − 𝜀) cannot be 𝜀-close to ±(1 + 𝛿),±1(+𝛿), but 𝜀 = 2𝛿 is large
enough. The cluster 𝐶 (𝑄, 0;𝛼 − 2𝛿) = {0,±(1 + 𝛿)} is covered by the 2𝛿-offset of
𝐶 (𝑆, 0;𝛼) = {0,±1,±2}, so EMD(𝐼 (𝑆;𝛼), 𝐼 (𝑄;𝛼)) = 2𝛿. _

For rigid motion instead of general isometry, Definition 11.4.1 of a boundary tolerant
metric BT is updated to BT𝑜 by considering only orientation-preserving isometries from
SO(R𝑛; 𝑝, 𝑞), which also makes the continuity below valid for oriented isosets 𝐼𝑜 (𝑆;𝛼)
under EMD using BT𝑜 instead of BT in Definition 11.4.3.
Theorem 11.4.5 (continuity of isosets under perturbations, [3, Theorem 4.9]). Let
periodic point sets 𝑆, 𝑄 ⊂ R𝑛 have a bottleneck distance BD(𝑆, 𝑄) < 𝑟 (𝑄), where
𝑟 (𝑄) is the packing radius in Definition 9.2.3(a). Then the isosets 𝐼 (𝑆;𝛼), 𝐼 (𝑄;𝛼) are
close in the Earth Mover’s Distance: EMD(𝐼 (𝑆;𝛼), 𝐼 (𝑄;𝛼)) ≤ 2BD(𝑆, 𝑄) for 𝛼 ≥ 0.
■

Corollary 11.4.6(a) justifies that the EMD satisfies all metric axioms for periodic
point sets that have a stable radius 𝛼. Corollary 11.4.6(b) avoids this dependence on 𝛼
and scales any periodic point set 𝑆 to the minimum stable radius 𝛼(𝑆) = 1.
Corollary 11.4.6 (metric on periodic point sets, [3, Corollary 4.10]). (a) For 𝛼 > 0,
EMD(𝐼 (𝑆;𝛼), 𝐼 (𝑄;𝛼)) is a metric on the space of isometry classes of all periodic point
sets with a stable radius 𝛼 in R𝑛.
(b) For a periodic point set 𝑆 ⊂ R𝑛, let 𝑆/𝑟 (𝑆) ⊂ R𝑛 denote 𝑆 after uniformly dividing
all vectors by the packing radius 𝑟 (𝑆). Then

|𝑟 (𝑆) − 𝑟 (𝑄) | + EMD
(
𝐼 (𝑆/𝑟 (𝑆); 1), 𝐼 (𝑄/𝑟 (𝑄); 1)

)
is a metric on all periodic point sets. ■

11.5 Algorithms to compute isosets and their approximate metrics

This section describes time complexities for computing the complete invariant isoset
(Theorem 11.5.2), comparing isosets (Corollary 11.5.3), approximating the boundary
tolerant metric BT and Earth Mover’s Distance on isosets (Corollary 11.5.9).
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All time estimates will use the geometric complexity GC(𝑆) defined below.

Definition 11.5.1 (geometric complexity GC). Let a periodic point set 𝑆 ⊂ R𝑛 have
an asymmetric unit of 𝑚 points in a cell 𝑈 of volume vol[𝑈]. Let 𝐿 be the symmetry
characteristic for 𝛼0 = 2𝑅(𝑆) in Lemma 11.3.3(c), where 𝑅(𝑆) is the covering radius.

The geometric complexity is GC(𝑆) = (10(𝐿 + 𝑚 + 2)𝑅(𝑆)/𝑛)𝑛
2vol[𝑈] . ▲

Let 𝑉𝑛 =
𝜋𝑛/2

Γ( 𝑛2 + 1) be the volume of the unit ball in R𝑛, where the Gamma function

Γ is defined as Γ(𝑘) = (𝑘 − 1)! and Γ( 𝑘2 + 1) =
√
𝜋(𝑘 − 1

2 ) (𝑘 −
3
2 ) · · ·

1
2 for any integer

𝑘 ≥ 1. Set 𝜈(𝑈, 𝛼, 𝑛) = (𝛼 + 𝑑)𝑛𝑉𝑛
vol[𝑈] , where 𝑑 = sup

𝑝,𝑞∈𝑈
|p − q| is a longest diagonal of

𝑈.

The main input size of a periodic set is the number 𝑚 of motif points because the
length of a standard Crystallographic Information File (CIF) is linear in 𝑚.

For a fixed dimension 𝑛, the big 𝑂 notation 𝑂 (𝑚𝑛) in all complexities means a
function 𝑡 (𝑚) such that 𝑡 (𝑚) ≤ 𝐶𝑚𝑛 for a fixed constant 𝐶 independent of 𝑚. We will
include all other parameters depending on a periodic point set 𝑆.

Theorem 11.5.2 (time of an isoset, [3, Theorem 5.3]). For any periodic point set 𝑆 ⊂ R𝑛

given by a motif 𝑀 of 𝑚 points in a unit cell 𝑈, the isoset 𝐼 (𝑆;𝛼) at a stable radius 𝛼
can be found in time 𝑂 (𝑚2𝑘 ⌈𝑛/3⌉ log 𝑘), where 𝑘 = 𝜈𝑚 for 𝜈 ≤ GC(𝑆). ■

Corollary 11.5.3 (comparing isosets, [3, Corollary 5.4]). There is an algorithm to
check if any periodic point sets 𝑆, 𝑄 ⊂ R𝑛 with motifs of at most 𝑚 points are isometric
in total time 𝑂 (𝑚2𝑘 ⌈𝑛/3⌉ log 𝑘), where 𝑘 = 𝜈𝑚 for 𝜈 ≤ max{GC(𝑆),GC(𝑄)}. ■

Definition 11.5.4 (directed distances 𝑑𝑅 and 𝑑𝑀 ). (a) For any sets 𝐶, 𝐷 ⊂ R𝑛, the
directed rotationally invariant distance 𝑑𝑅 (𝐶, 𝐷) = min

𝑓 ∈O(R𝑛 )
𝑑𝐻 (𝐶, 𝑓 (𝐷)) is minimised

over all maps 𝑓 ∈ O(R𝑛; 0), which fix the origin 0 ∈ R𝑛.
(b) For any finite sets𝐶, 𝐷 ⊂ R𝑛, order all points 𝑝1 . . . , 𝑝𝑘 ∈ 𝐶 by increasing distance
to the origin 0. The radius of𝐶 is 𝑅(𝐶) = max

𝑝∈𝐶
|𝑝 |. Define the directed max-min distance

as 𝑑𝑀 (𝐶, 𝐷) = max
𝑖=1,...,𝑘

min{ 𝛼 − |𝑝𝑖 |, 𝑑𝑅 ({𝑝1, . . . , 𝑝𝑖}, 𝐷) }. ▲

If 𝐶′ ⊂ 𝐶, then 𝑑𝑅 (𝐶′, 𝐷) ≤ 𝑑𝑅 (𝐶, 𝐷). Let 𝐶, 𝐷 ⊂ 𝐵̄(0;𝛼) be finite sets including
the origin 0. If 𝐶 = {0}, then 𝑑𝑅 (𝐶, 𝐷) = 0 because 𝐶 ⊂ 𝐷, but 𝑑𝑅 (𝐷,𝐶) = 𝑅(𝐷) is
the radius of 𝐷 because 𝐷 ⊂ {0} + 𝐵̄(0; 𝜀) only for 𝜀 ≥ 𝑅(𝐷).

Definition 11.5.4, Lemma 11.5.5 and hence all further results work for rigid motion
by restricting all maps to the special orthogonal group SO(R𝑛; 0).

Lemma 11.5.5 (max-min formula for 𝑑𝑅, [3, Lemma 5.6]). For any finite sets 𝐶, 𝐷 ⊂
R𝑛, if 𝛼 ≥ 𝑅(𝐶), then 𝑑𝑅 (𝐶 ∪ 𝜕𝐵̄(0;𝛼), 𝐷 ∪ 𝜕𝐵̄(0;𝛼)) equals 𝑑𝑀 (𝐶, 𝐷). ■

Example 11.5.6 (max-min formula). Consider the subcluster 𝐶 ⊂ 𝐶 (Λ4, 0; 2) of the
points 𝑝1 = (1, 0), 𝑝2 = (1, 1), 𝑝3 = (1,−1), 𝑝4 = (2, 0) from the square lattice Λ4 in
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Fig. 11.7. Let 𝛼 = 2 and 𝐷 = 𝐶 (Λ6, 0; 2) be the 2-cluster of the hexagonal lattice Λ6.
Then 𝑑𝑅 (𝑝1, 𝐷) = 0 because 𝑝1 coincides with (1, 0) ∈ 𝐷. Then 𝑑𝑅 ({𝑝1, 𝑝2}, 𝐷) =√

2 − 1, because the cloud 𝐷 after the clockwise rotation through 15◦ has the points
(cos 15◦,− sin 15◦) and ( 1√

2
, 1√

2
) at distances

√︁
(cos 15◦ − 1)2 + sin2 15◦ ≈ 0.26,

√
2 −

1 ≈ 0.41 to 𝑝1, 𝑝2, respectively. Then 𝑑𝑅 ({𝑝1, 𝑝2, 𝑝3}, 𝐷) =
√

2 − 1 because the same
rotated image of 𝐷 has (

√︃
3
2 ,−

√︃
3
2 ) at the distance

√
3 −

√
2 ≈ 0.32 to 𝑝3.

For 𝑖 = 1, min{𝛼 − |𝑝1 |, 𝑑𝑅 (𝑝1, 𝐷)} = min{2 − 1, 0} = 0. For 𝑖 = 2, 3,

min{𝛼 − |𝑝2 |, 𝑑𝑅 ({𝑝1, 𝑝2}, 𝐷)} =

min{𝛼 − |𝑝3 |, 𝑑𝑅 ({𝑝1, 𝑝2, 𝑝3}, 𝐷)} =

min{2 −
√

2,
√

2 − 1} =
√

2 − 1.

For 𝑖 = 4, min{𝛼 − |𝑝4 |, 𝑑𝑅 (𝐶, 𝐷)} = 0 since 𝛼 = 2 = |𝑝4 |.

The maximum value is
√

2 − 1, so Example 11.4.2 fits Lemma 11.5.5. _

Lemma 11.5.7 extends [8, section 2.3] from 𝑛 = 3 to any dimension 𝑛 > 1.

Lemma 11.5.7 (approximating 𝑑𝑅, [3, Lemma 5.8]). Let a cloud 𝐶 ⊂ R𝑛 consist of
𝑘 = |𝐶 | points ordered by distances |𝑝1 | ≤ · · · ≤ |𝑝𝑘 | from the origin and ⟨𝐶⟩ denote
the number of different vectors p/|p| for 𝑝 ∈ 𝐶. For each 𝑗 = 1, . . . , 𝑘 , consider
the subcloud 𝐶 𝑗 = {𝑝1, . . . , 𝑝 𝑗 }. For any cloud 𝐷 ⊂ R𝑛 of |𝐷 | points, all distances
𝑑 𝑗 = 𝑑𝑅 (𝐶 𝑗 , 𝐷) from Definition 11.5.4 for 𝑗 = 1, . . . , 𝑘 can be approximated by some
𝑑′
𝑗

in time 𝑂 ( |𝐶 |⟨𝐶⟩𝑛−1 |𝐷 |) so that 𝑑 𝑗 ≤ 𝑑′𝑗 ≤ 𝜔𝑑 𝑗 , 𝜔 = 1 + 1
2𝑛(𝑛 − 1). ■

The proof of Lemma 11.5.7 uses only orientation-preserving isometries from
SO(R𝑛, 0). Hence the upper bounds from Lemma 11.5.7, Theorem 11.5.8, and Corol-
lary 11.5.9 work for both cases of rigid motion and general isometry in R𝑛.

Theorem 11.5.8 (approximating BT, [3, Theorem 5.9]). Let periodic point sets 𝑆, 𝑄 ⊂
R𝑛 have isometry classes𝜎, 𝜉 represented by clusters𝐶, 𝐷 of a radius 𝛼, respectively. In
the notations of Lemma 11.5.7, BT(𝜎, 𝜉) from Definition 11.4.1 can be approximated
with the factor 𝜔 = 1 + 1

2𝑛(𝑛 − 1) in time 𝑂 ( |𝐶 | (⟨𝐶⟩𝑛−1 + ⟨𝐷⟩𝑛−1) |𝐷 |). ■

Corollary 11.5.9 (approximating EMD on isosets, [3, Corollary 5.10]). Let 𝑆, 𝑄 ⊂ R𝑛

be periodic point sets whose motifs have at most 𝑚 points 𝑝 and 𝜒 different vectors
p/|p|. For any 𝛼 > 0, the metric EMD(𝐼 (𝑆;𝛼), 𝐼 (𝑄;𝛼)) can be approximated with the
factor 𝜔 = 1 + 1

2𝑛(𝑛 − 1) in time 𝑂 (𝜈2𝑚4𝜒𝑛−1), where 𝜈 ≤ max{GC(𝑆),GC(𝑄)}. ■

Counting directions p/|𝑝 | as points (𝜒 ≤ 𝑚), for dimension 𝑛 = 3, the rough bounds
for the isoset and its approximate EMD′ in Theorem 11.5.2 and Corollary 11.5.9
are 𝑂 (𝑚3 log𝑚) and 𝑂 (𝑚6), respectively. Algorithms 1-2 in the appendix describe
pseudocodes for Lemma 11.5.7, Theorem 11.5.8, and Corollary 11.5.9.
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11.6 Comparisons of isosets with past invariants and experiments

This section justifies that the isoset can be efficiently used with the faster PDD due to a
lower bound in Theorem 11.6.1.

Theorem 11.6.1 (lower bound for EMD, [3, Theorem 6.5]). Let 𝑆, 𝑄 ⊂ R𝑛 be periodic
sets with a common stable radius 𝛼. Let 𝜀 = EMD(𝐼 (𝑆;𝛼), 𝐼 (𝑄;𝛼)) and 𝑘 be the
maximum number of points of 𝑆, 𝑄 in their (𝛼 − 𝜀)-clusters. If 𝜀 is less than the
half-distance between any points of 𝑆, 𝑄, then EMD(PDD(𝑆; 𝑘), PDD(𝑄; 𝑘)) ≤ 𝜀. ■

Hence, PDD(𝑆; 𝑘) can be used for a fast filtering of distant crystals so that the isoset
is computed only for near-duplicates that are hard to distinguish.

In 1930, future Nobel laureate Linus Pauling noticed the ambiguity of crystal struc-
tures obtained by diffraction [11]. Such homometric crystals with identical diffraction
patterns were only manually distinguished until now because even the generically com-
plete PDDs coincide for the Pauling periodic sets 𝑃(±𝑢) for all 𝑢 ∈ (0, 0.25), see the
real overlaid crystals for 𝑢 = 0.03 in Fig. 11.8 (left).

Fig. 11.8 Left: a comparison of Pauling’s homometric crystals 𝑃 (±𝑢) for 𝑢 = 0.03 [11], by COM-
PACK [4] aligning subsets of 48 atoms and outputs RMSD, which fails the triangle inequality. The
atoms from different 𝑃 (±0.03) are shown in green and grey. Right: the pairs of 𝑃 (±𝑢) have EMD′ > 0
for all 𝑢 ∈ (0, 0.25) and 𝛼 > 0.4 (running time 50 ms for 𝑢 = 0.03 and 𝛼 = 0.5).

The strongest past invariant PDD is based on distances and cannot distinguish mirror
images. In the CSD, we found four pairs that have identical PDDs but are mirror images
shown in Fig. 11.8 (right), distinguished by isosets with 𝛼 ≥ 1.5Å in Fig. 11.10 (left).
For WODLOS vs XAWGAE and 𝛼 = 2, the total time including isosets and EMD is
about 4.3 seconds. All experiments were run on CPU AMD Ryzen 5 5600X, 32GB
RAM.

The limitations of the EMD metric on isosets in Definition 11.4.3 are a slower running
time than for AMD, PDD and the approximate (not exact) algorithm in Corollary 11.5.9,
which are outweighed by the following crucial advantages.
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Fig. 11.9 Four pairs of mirror images in the CSD are indistinguishable by all past invariants but have
approximate EMD′ > 0 for all radii 𝛼 > 1.5Å in Fig. 11.10 (left).

First, all past invariants could not distinguish infinitely many periodic sets (including
all mirror images) under rigid motion, e.g. the real crystals in Fig. 11.8. The new
continuous EMD fully solved Problem 11.1.1, which remained open since 1965 [9].

Second, because the proved error factor in the practical dimension 𝑛 = 3 is close to
4, any near-duplicate crystals that differ by atomic deviations of up to 𝜀 have an exact
distance EMD ≤ 2𝜀 by main Theorem 11.4.5 and hence an approximate distance up to
about 8𝜀 by Corollary 11.5.9.

Any crystals that can be matched under rigid motion are recognisable since our
approximation of EMD = 0 is also 0. Any approximate value 𝛿 of EMD for real crystals
𝑆, 𝑄 implies that all atoms of 𝑆 should be perturbed by at least 𝛿/8 on average for a
complete match with 𝑄.

Future work can use the EMD to continuously quantify changes in material properties
under perturbations of atoms and extend Problem 11.1.1 to metrics on finite or periodic
sets of points under affine and projective transformations.

In conclusion, sections 11.3 and 11.4 prepared the complexity results in section 11.5:
algorithms for computing and comparing isosets (Theorems 11.5.2, Corollary 11.5.3),
and approximating the new boundary tolerant metric BT (Theorem 11.5.8), and EMD
on isosets (Corollary 11.5.9). The proofs expressed polynomial bounds in terms of the
motif size 𝑚 = |𝑆 | of a periodic set 𝑆 because the input size of a Crystallographic
Information File is linear in 𝑚, e.g. any lattice has 𝑚 = 1.

The factors depending on the dimension and geometric complexity GC(𝑆) are in-
evitable due to the curse of dimensionality and the infinite nature of crystals. In practice,
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Fig. 11.10 The isosets distinguish all four pairs of mirror images given by their codes in the CSD.
Top: approximate EMD′ for different radii 𝛼. Bottom: running times on a modst desktop.

crystal symmetries reduce a motif to a smaller asymmetric part, which usually has fewer
than 20 atoms, even for large molecules in the CSD. The lower bound via faster PDD
invariants in Theorem 11.6.1 justifies applying the algorithm of Corollary 11.5.9 only
for a final confirmation of near-duplicates. So the isosets finalised the hierarchy of the
faster but incomplete invariants.

The main novelty is the boundary-tolerant metric in Definition 11.4.1 that makes
the complete invariant isoset Lipschitz continuous (Theorem 11.4.5) without extra
parameters that are needed to smooth past descriptors, such as powder diffraction
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patterns and atomic environments with fixed cut-off radii. Since the isoset is the only
Lipschitz continuous invariant whose completeness under isometry was proved for all
periodic point sets in R𝑛, the isoset was used to confirm near-duplicates in the CSD
(Table 11.6) and GNoME (Table 11.6).
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Table 11.1 The first pair consists of rigidly different mirror images from Fig. 11.10 (right). All others
are geometric near-duplicates from (surprisingly) different families in the CSD, confirmed by tiny
values of the EMD metric on isosets. The distance units are in attometers: 1 am = 10−8Å = 10−18

meter. The run times in milliseconds (ms) depend on the cluster size (maximum number of atoms in
𝛼-clusters) according to Theorem 11.5.2 and Corollary 11.5.9.

CSD id1 CSD id2 EMD, am isosets time, ms EMD time, ms cluster size

WODLOS XAWGAE 85856.22 129.619 1204.58 7

TAFQIA VAVQIS 952.96 1690.949 321603.86 20

FIJKIU IPEQUR 728.43 407.579 77455.47 16

JIZMIR01 JIZNAK 496.08 40.454 634.73 5

HIYVUG01 MASPIF 334.62 35.518 543.45 7

KIVXEW10 KIWCEC 125.03 22.456 32.32 5

XAYZOP ZEMDAZ 89.47 301.217 1697.26 4

KIVXEW10 KIWCEC28 83.07 21.701 32.49 5

AFIBOH NENCUF 31.67 126.582 1160.58 5

KIVXEW07 KIWCEC09 31.11 22.287 36.95 5

KIVXEW07 KIWCEC11 31.11 22.434 36.75 5

KIVXEW11 KIWCEC26 26.11 21.646 32.33 5

SERKIL SERKOR 23.78 2444.885 18485.57 6

ADESAG REWPOB 5.81 54.675 5689.27 15

GEQRAX IFOQOL 0.05 265.4 2090.42 6

BUKYEN UYOCES 0.03 398.129 15739.11 11

GOHYOT VIHCEY 0.01 100.031 940.16 5

JUMCUP QAHBOT 0.01 179.367 4234.6 5

CALMOV CALNAI 0.01 128.437 3913.32 4

NABKOT ZIVSEF 0.01 75.401 796.14 5

LIBGAE VESJUY 0.01 41.535 403.87 3

AMEVEV OLERON 0 70.172 558.78 4

SIHFIZ TEZBUV 0 207.984 1761.39 5

XATCAA ZAQMEN 0 60.254 394.74 4

PIDREA XIZNOL 0 94.135 243.46 5
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Table 11.2 After excluding 3248 exact numerical duplicates from [2, Table 1], the next 25 pairs of
closest near-duplicates in the GNoME database are confirmed by tiny values of EMD on isosets, see
the first pair in Fig. 11.11. The distance units are attometers: 1 am = 10−8Å = 10−18 meter. The run
times are in milliseconds (ms). The cluster size is the maximum number of atoms in 𝛼-clusters.

GNoME id1 GNoME id2 EMD, am isosets time, ms EMD time, ms cluster size

1547d30046 ddc216e80c 1 1.659 434.362 14

b4065a4798 e78d3559e6 1.7 3.034 13.271 6

98ab164895 df1252bc44 2 1.002 419.142 14

0de9d25713 b1733941a7 2.7 1.971 49.816 6

0e79f7c053 6cf951ac6f 3 1.035 429.487 14

07ece241f0 45cacc8d45 3.2 0.618 14.374 6

a58dc74a92 c16bf63220 4.1 2.532 641.086 14

5023e3a4b8 8f7ffb4d4a 4.6 2.776 10.02 6

3198d1a3ea 35f67abe6d 5 1.031 403.398 14

6826b81efb 76ee112799 5 0.985 407.618 14

6826b81efb e9be17f0ee 5 1.008 404.306 14

2cff5f2fa0 f470a5f6fa 5.3 0.635 169.911 17

2ce912f039 9de239ee0c 5.5 0.632 3.456 2

c9f5a7a51b fd9f40e0e1 6 1.14 195.261 10

18078e002b aca2a892a5 6 1.028 421.009 14

18078e002b b9722429b1 6 1.18 445.453 14

18078e002b b702e73db3 6 1.035 414.325 14

34b4204eee adee17535b 6 1.017 396.855 14

506b8b5646 60d266db80 6 1.174 413.254 14

506b8b5646 ec7b789cb3 6 1.174 403.014 14

780741962f a19688f106 6.5 1.804 870.629 15

780741962f c6af1fc763 6.5 2.731 921.496 15

780741962f c64c3e245c 6.5 1.792 829.979 15

b06353561c b6d2341d32 6.6 2.387 259.359 12

ebb33e044c ebc9a4db61 6.8 1.232 450.351 14
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Fig. 11.11 The GNoME crystals 1547d30046 and ddc216e80c in the first row of Table A.2 are
compared as texts by https://text-compare.com. All differences are highlighted in blue.

Fig. 11.12 shows the most striking pair of exact duplicates in the GNoME is
cdc06a1a2a and 0e2d8f26d6, whose CIFs are identical symbol by symbol in addition
to two pairs of atoms at the same positions (Na1=Na2 and Na3=Na4).

Fig. 11.12 Different entries cdc06a1a2a and 0e2d8f26d6 in the GNoME database are not only identical
symbol by symbol but also contain two pairs of atoms (Na1=Na2 and Na3=Na4) at the same positions.
Left: a screenshot from the CIF. Right: Mercury visualisation can show only one atom in each pair of
coinciding atoms, e.g. only Na1 and not Na2 from the CIF.
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Chapter 12
A history of developing the most significant results
and open problems

Abstract This chapter concludes with the most important theorems from previous
chapters and a brief history of Geometric Data Science in a chronological order. The
developed hierarchies of Lipschitz continuous invariants from the ultra-fast to complete
ones (under rigid motion in Euclidean space R𝑛) allowed us to distinguish all non-
duplicate objects in major databases of molecules and crystals. Experimental validation
justified new concepts of geometric structures, such as a crystal structure defined as an
equivalence class of periodic sets of only atomic centres without chemical elements,
under rigid motion in R3. The resulting Crystal Isometry Principle uniquely identifies
any real periodic material in the continuous moduli space of all periodic point sets. The
book finishes by highlighting open problems and future work.

12.1 The most important results of Geometric Data Science by 2025

This section briefly summarises the most significant results from Chapters 1-11.

Chapter 1 motivated and then formalised the three practical questions
(1) Same or different? (2) If different, by how much? (3) Where do all real objects live?
in Geo-Mapping Problem 1.4.5 for all types of geometric data, which can be studied
under practically important equivalence relations, such as rigid motion in Euclidean
space R𝑛. If all conditions of Problem 1.4.5 are satisfied, the resulting moduli spaces of
data objects can be explored by geocodes, similar to geographic coordinates on Earth.

Chapter 2 described the Backbone Rigid Invariant (BRI) in Definition 2.3.3. Theo-
rems 2.3.4, 2.3.7, 2.3.9 proved that the BRI is a geocode (a geographic-style invariant)
on the moduli space of non-degenerate protein backbones in R3. Within a few hours
on a modest desktop computer, this invariant detected thousands of exact duplicate
backbones and many more near-duplicate chains in the Protein Data Bank (PDB).

Chapter 3 presented in Theorem 3.4.4 complete polynomial-time invariants for finite
clouds of unordered points under rigid motion in R𝑛. These invariants were outper-
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formed by faster invariants in later chapters, but influenced the latest developments
towards a full solution of Geo-Mapping Problem 1.4.5 for unordered points in R𝑛.
Chapter 4 extended earlier invariants of finite clouds of unordered points (incomplete
under isometry in R𝑛) to the stronger and continuous Pointwise Distance Distribution
(PDD) in Definition 4.5.1. In addition to being generically complete under isometry in
any R𝑛, the PDD was proved to be fully complete in Theorem 4.6.1 for any 4 unordered
points under isometry in R𝑛. It seems the first faster-than-brute-force extension of the
side-side-side theorem, known in Euclidean geometry for 2000+ years.
Chapter 5 generalised the PDD to a stronger Simplexwise Distance Distribution (SDD)
in Definition 5.1.3 for an arbitrary metric space. Theorems 5.3.3 and 5.3.4 proved the
Lipschitz continuity and polynomial-time computability of the SDD, which is simple
enough to distinguish all (infinitely many) known pairs of non-isometric clouds in R3

with the same PDD through manual computations in Examples 5.2.1, 5.2.2, and 5.2.3.
Chapter 6 improved the SDD to the faster Simplexwide Centred Distribution (SCD) in
Definition 6.2.1 for clouds of unordered points in R𝑛. Theorems 6.2.3, 6.4.4, and 6.4.5
for guaranteed completeness, Lipschitz continuity, and polynomial-time computability
of the SCD for any 𝑛-dimensional cloud of unordered points under rigid motion in R𝑛.
The key ingredient was the concept of the strength of a simplex in Definition 6.3.1.
Chapter 7 initiated a continuous approach to point sets that are periodic in one direction
in a high-dimensional space R × R𝑛−1. Theorem 7.2.8 improved the distance matrix
to a Lipschitz continuous invariant that is complete under rigid motion, distinguishing
all mirror images in R𝑛. Theorem 7.4.3 developed a complete invariant with Lipschitz
continuous and polynomial-time metrics for 1-periodic point sets in R × R𝑛−1.
Chapter 8 fully solved Geo-Mapping Problem 1.4.5 (restated as Problem 8.2.2) for all 2-
dimensional lattices under four equivalences inR2 in Theorem 8.4.2 and Corollary 8.4.5.
The case of rigid motion remained discontinuous since the time of Lagrange [15], who
classified 2D lattices in terms of quadratic forms, not distinguishing mirror images.
Chapter 9 studied density functions, which are Lipschitz continuous isometry invariants
of arbitrary periodic point sets in R𝑛. Theorem 9.2.1 proved the generic completeness
of density functions under isometry in R3. Theorems 9.5.3, 9.5.6, and 9.5.9 analytically
described density functions for periodic sequences of intervals in R.
Chapter 10 extended the Pointwise Distance Distribution (PDD) to infinite point sets
that are periodic in 𝑙 directions. Theorems 10.3.4 and 10.4.5 proved Lipschitz continuity
and generic completeness of the PDD for periodic point sets under isometry in any R𝑛.
Chapter 11 developed the isoset invariant for any periodic point sets in R𝑛. Theo-
rem 11.3.7 finalised the full completeness of the isoset under isometry and rigid motion
in R𝑛. Definition 11.4.3 introduced the Earth Mover’s Distance (EMD) on isosets.
Theorem 11.4.5 and Corollary 11.5.9 proved Lipschitz continuity and approximate
polynomial-time algorithms for the EMD on isosets in R𝑛, for a fixed dimension 𝑛.

In fact, all results in this book were developed in almost an opposite chronological
order, starting with isosets from chapter 11 in early 2020 and finishing with protein
invariants from chapter 2 in late 2024, which will be explained in sections 12.4-12.5.
The next section defines new concepts of geometric structures motivated by applications.
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12.2 New definitions of geometric structures and verified principles

Mathematics allows other sciences to progress by developing new concepts that for-
malise practical questions. It was essential to state the challenges of ambiguity and
discontinuity of cell-based representations of periodic crystals in terms of complete in-
variants with Lipschitz continuous metrics. The resulting invariants (from the simplest
and ultra-fast to slower but complete ones) opened ‘black boxes’ of databases, which
keep their data in ambiguous photograph-style forms. For example, crystals are usually
stored as Crystallographic Information Files (CIFs), while molecular geometries are
represented by xyz files listing atomic positions in arbitrary coordinate systems.

The approach through continuous invariants revealed thousands of exact geometric
duplicates and many more near-duplicates in the PDB, CSD, ICSD, and other databases.
Some duplicates should have been found by dataset curators by direct comparisons
of digital representations. For instance, Olga counted in [4, Table 1] thousands of
symbol-by-symbol duplicate CIFs in the GNoME dataset [1]. Experimental validation
on available data justified the new concept of a periodic (crystal) structure below.

Definition 12.2.1 ([4, Definition 6]). The crystal structure of a real periodic crystal
𝑆 ⊂ R3 is an equivalence class of all periodic sets of atoms that can be exactly matched
with 𝑆 atom by atom under rigid motion in R3. In general, a periodic structure is an
equivalence class of periodic sets of unlabelled points in R𝑛 under rigid motion. ▲

The words crystal structure imply that an underlying object is a real (not simulated)
crystal of atoms labelled by chemical elements and charges. In particular, distances
between atoms in R3 cannot be arbitrary. The more general concept of a periodic
structures applies to any periodic sets of points in R𝑛 without physical restrictions.

In both cases, if points are shifted by the same vector within a fixed unit cell, all
fractional coordinates change, but the new periodic set can be exactly matched with
the original one by translation, so the periodic (crystal) structure remains the same.
A a cell-based representation can more dramatically change under a rotation or a
cell transformation without affecting the underlying rigid structure. Definition 12.2.1
emphasises the importance of exact matching. Indeed, ignoring noise up to any tiny
threshold 𝜀 > 0 leads to the sorites paradox [28] and a trivial classification of all objects
within a continuous space due to the transitivity axiom in Definition 1.2.1.

Fig. 12.1 (left) shows Feynman’s table distinguishing 7 cubic crystals by their single
geometric invariant 𝑑 that is the smallest interatomic distance. The much stronger
invariants AMD, PDD, and isosets distinguished all non-duplicate periodic crystals
in major materials databases. Some of the found duplicates had different chemical
compositions. In the first striking example, the pair of the CSD entries HIFCAB and
JEPLIA has all numbers in their CIFs identical, but one atom (Mn) is replaced with
a different one (Cd), see Fig. 12.2. Since these elements have very different atomic
masses 25 and 48, these coincidences of all coordinates seem physically impossible.

Indeed, any atomic replacement should change inter-atomic interactions and hence
distances to neighbours, which is immediately detected by the PDD invariant. Our col-
leagues at the Cambridge Crystallographic Data Centre, who curate the CSD, checked
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Fig. 12.1 Left: Feynman’s first lecture “Atoms in motion” [24] showed that 7 cubic crystals differ by
the smallest interatomic distance 𝑑, which was the Eureka moment for Vitaliy in May 2021 to realise
that all real periodic crystals can be distinguished as periodic sets of atomic centres without chemical
elements. Right: our experiments on the world’s largest databases of real materials [52] confirmed the
physical intuition, now stated as the Crystal Isometry Principle: any real periodic material (under fixed
ambient conditions) is uniquely determined by a precise enough atomic geometry within a common
continuous space of all periodic structures, independent of their chemistry and symmetries.

that the raw diffraction data (structure factors) were also identical in this case. Several
more pairs of duplicates are under investigation by five journals for data integrity.

The much more important consequence of the ability to distinguish all periodic
crystals by geometry is the Crystal Isometry Principle (CRISP) in Fig. 12.1 (right).

A mathematical version of CRISP says that all real periodic crystals (independent of
their chemistry and symmetries) live in a common moduli space CRIS(R3), which is
called the Crystal Rigid Space, see its 2D projections in Fig. 10.11 and [51]. Since the
first invariants AMD, PDD were developed for isometry, not for rigid motion, the initial
name was the Crystal Isometry Space [50], which is now denoted by CIMS(R3).

Of course, not any periodic set of points can be realised by a periodic crystal. For
instance, distances between neighbouring atoms are usually in small ranges, especially
for fixed elements. In the geographic analogy, not every location on Earth is suitable
for humans to live. However, the knowledge of a full geographic map certainly helped
to find all hospitable places and not to waste time on exploring many hostile regions.

Chemistry has substantially benefited from the periodic table, as a map of all known
chemical elements, though it was initially half-empty [37]. Indeed, Mendeleev’s geocode
consisting of the period and group number provided a complete invariant and guided
the search for new elements. More than 150 years after Mendeleev’s breakthrough in
1869, coordination chemistry [7] can progress from studying isolated shapes of local
atomic environments to continuous maps parametrised by complete invariants [54].

12.3 Geometric approaches in crystallography until 2019

This section describes a personal perspective on past developments that led by 2020 to
new problems in periodic geometry and a later expansion to Geometric Data Science.
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Fig. 12.2 The entries HIFCAB and JEPLIA in the CSD were reported to the CCDC in September 2021,
but their public pages still have no references to each other and no acknowledgement of the underlying
research [53]. The textual comparisons of the cell parameters (top images) and fractional coordinates
(bottom images) are based on the CIFs that were downloaded from the CSD on 23 December 2025.

In early 2017, Vitaliy Kurlin joined the Materials Innovation Factory whose director
Prof Andy Cooper FRS posed the practical challenge in (almost exactly) the following

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=HIFCAB&DatabaseToSearch=Published
https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=JEPLIA&DatabaseToSearch=Published
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Fig. 12.3 This book exemplified how mathematics can advance physical sciences through rigorous def-
initions and theorem-based principles verified on all available experimental data, as in Fig. 12.1 (right).

words: “continuously quantify the similarity between crystal structures”. That is how
we started with the periodic case of crystals, which turned out to be the hardest so far.

Crystallography emerged from empirical studies of natural minerals. The geometry
of lattices goes back to Lagrange in 1771 [15], whose theory of quadratic forms can be
interpreted as a reduction of lattice bases. Reduced bases of lattices inR3 were explicitly
described by Selling in 1874 [46, p.171-173] via 6 parameters, which are equivalent to
scalar products v𝑖 · v 𝑗 for 𝑖, 𝑗 ∈ {0, 1, 2, 3}, where v1, v2, v3 from a lattice basis, and
v0 = −(v1+v2+v3). This quadruple of vectors was called Selling’s star (or a hedgehog)
by Delone [9] and later a superbase by Conway and Sloane [14], and finally led to a
complete isometry invariant of 3D lattices [32] whose continuity is being finalised.

In parallel, discrete classifications by symmetry groups were completed for 3D
lattices by Bravais in 1850 [10] and for 3D periodic crystals in 1891 by Fedorov [23] and
Schoenflies [45]. In 1908, Voronoi [49] classified all 5 types of local neighbourhoods of
points in 3D lattices, which are now called Voronoi domains. Though the combinatorial
structure 4 non-generic Voronoi domains discontinuously changes under almost any
perturbation of a lattice basis, their geometric characteristics, such as volume, change
continuously, At this point in history, crystallography had a chance to move towards a
continuous approach, but Voronoi unfortunately died at the age of 40 in 1908.

After that, X-ray applications brought to crystallography many more people who
chose simpler unit cells (parallelepipeds), where atoms have easy fractional coordinates,
instead of more continuous Voronoi domains. In 1928, Niggli proposed a reduced cell
[39], which gradually became a canonical choice despite its discontinuity might have
been clear to mathematicians already in the 19th century. In the 1920s, a small number
of known crystals was easy to recognise and classify by manual measurements.

As a result, crystallography continued in the discrete direction by adding more
sophisticated features such as group-subgroup relations, see more details in [6, chapter
1.1]. In 1934, another hope for continuous crystallography was born due to B.N.Delone
[9], who studied the 6 geometric parameters 𝑝𝑖 𝑗 = −v𝑖 · v 𝑗 based on Selling’s star.
However, the cell-based approach was hard to abandon, so Voronoi domains were
thoroughly described by using canonical parameters of unit cells [16, p.154-155].
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In 1959, a distance metric between lattices was defined via a minimisation over
infinitely many affine transformations in [13, section V.3.2]. Then the triangle axiom
of a metric holds due to compositions of affine maps within an infinite group. If the
minimisation is reduced to finitely many transformations of lattice bases, the triangle
axiom and continuity were not checked and are likely to fail in boundary cases.

Feynman’s lectures on physics in 1961-1964 [24] started with the most important
chapter “Atoms in motion”, which highlighted the key challenge right in the title.

It may be a coincidence, but experimentalists finally reported discontinuous cells in
1965 [35, p.80]. Ironically, the Cambridge Structural Database (CSD) started in the same
year by representing crystals in unit cells, without realising long-term consequences of
discontinuity, which had been known both theoretically and experimentally.

In 1976, Delone and his school revived a geometric approach [17] by initiating a
local theory of solids via atomic environments and by modelling amorphous materials
through infinite atomic sets that are now called Delone sets. The major result of the
local theory in the periodic case was a characterisation of any periodic point set among
all Delone sets in terms of sufficiently large 𝛼-clusters in 1998 by Dolbilin, Lagarias,
and Senechal [18], which we translated into the isoset invariant in early 2020 [2].

By 2016, several books [21, 56] thoroughly summarised an algebraic approach to
lattices via group actions, but the continuous metric problem remained unaddressed.

Remembering our initial discussions in 2016-2017, chemists said that there was no
noise in simulated data, which actually meant “negligible” relative to real experimental
noise. As soon as the first CIF was opened in a text editor, noise in simulated crystals
was clear at first glance, because Vitaliy saw nearly round numbers in outputs of many
iterative algorithms when he optimised superpixel meshes for 2D images [26, 25, 33].

Mathematicians often start solving hard problems with partial cases, so we thought
that periodic lattices were studied for a long time and should be simple enough.

To our surprise, we were stuck on the simplest case of 2D lattices until 2019, because
the discontinuity problem was “swept under the carpet” of symmetries for centuries.

In 1992, the important paper by Conway and Sloane claimed that Delone parameters
𝑝𝑖 𝑗 “vary continuously with the lattice” [14, item 1 on page 55] without any proof,
which we are still finalising. About 2.5 years were spent on correcting significant
misunderstandings in papers of well-known mathematicians, see details in [32].

Numerous discussions with chemists helped create the inter-disciplinary seminar
MIF++ (https://kurlin.org/MIFplusplus.php), whose original name was MIF+CS (Ma-
terials Innovation Factory plus Computer Science), but we quickly included other sub-
jects areas, such as Mathematics and Engineering. Though the seminar started in person,
all activities moved online in March 2020, so we continue the MIF++ in a hybrid form.

By the summer of 2019, the discontinuity problem was finally “crystallised” and PhD
student Marco Mosca implemented the first approximate algorithm for a continuous
metric between any 3D lattices based on Voronoi domains. In August 2019, Marco and
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Vitaliy came to the European Crystallographic Meeting (ECM), which was conveniently
preceded by the satellite on Mathematical Crystallography, also in Vienna.

By this time we had known that the discontinuity is much more common for general
periodic point sets than for lattices because any extended cell becomes primitive under
almost any noise. Without knowing yet the history above, we hoped that mathematical
crystallographers had already worked on this problem and were keen to learn more.

At the satellite of ECM 2019, right after Marco Mosca started to talk about dis-
continuity of lattice bases, chemist Martin U. Schmidt jumped to the board and drew
an extended cell (parallelogram) with a single perturbed atom. We had known about
the discontinuity of the underlying lattice for periodic point sets, so our first work [38]
focused only on lattices to avoid this more general case. However, we understood that
some chemists are aware that cell-based representations of crystals are discontinuous,
so our images in Fig. 10.1 (left) are simplified versions of Martin’s drawing.

As usual at conferences, the most valuable discussions happen during breaks, so
we asked several mathematical crystallographers how they compare nearly identical
crystals that substantially differ by unit cells. It was an eye-opening experience when we
were passionately told that crystals of different symmetries are different and hence are
not compared. This moment showed that the research field is completely open, because
some chemists saw the challenge [8] but had no tools to rigorously state the problem
[43], while most mathematical crystallographers focused on discrete symmetries and
missed the “gold mine” of unexplored continuous invariants of periodic crystals.

The discussions at the ECM satellite in August 2019 motivated us to rigorously state
the problem of continuously comparing crystals independent of their symmetries.

12.4 Towards the Crystal Isometry Principle in 2019-2021

Sections 12.4-12.5 trace the milestones of Geometric Data Science in a chronological
order from 2019, which substantially differs from the order of chapters in this book.
This section starts with the historical origins of the Crystal Isometry Principle.

Since the satellite of ECM 2019 on mathematical crystallography invited submissions
for post-proceedings, in September 2019 we finished the paper [38], which stated
the equivalence problem for lattices in terms of isometry invariants and the distance
problem, including the metric axioms and the new continuity condition.

After the continuity problem was understood, we extended the widely used contin-
uous invariant, namely the scalar density of points in a crystal, to functions counting
fractional volumes of 𝑘-fold intersections of balls of variable radii centred at given
atoms. These invariants were first called packing functions and later renamed as density
functions, see Definition 9.2.1. Philip Smith gave a talk “Packing functions are new
isometry invariants of periodic crystals” at our group seminar on 10 January 2020.

Shortly after that, Philip noticed large differences between density functions of
supposedly similar versions of the same T2 polymorph whose structure was determined
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several times under different temperatures. It turned that some authors of [41] confused
a near-duplicate version of T2-𝛽 with a rather different polymorph T2-𝛿. As a result, the
latter structure was accidentally missed in the original deposit of the DEBXIT family in
the CSD and later got another refcode SEMDIA. This example showed that identifying
crystal structures even by their creators was still an art, not yet a science.

By this time, we studied the major past work on geometric approaches to crystals,
including Delone’s local theory [17] and a characterisation of multiregular sets [18]. By
the end of January 2020, we finished the first version of [2] introducing the complete
isoset invariant from last Chapter 11. This draft even discussed an initial distance metric
on isosets, which required more updates and appeared later in [5], so the first paper [2]
on isosets included only a complete invariant under isometry, without continuity.

January 2020 is considered the beginning of Geometric Data Science (in the periodic
case) due to the first versions of isosets and density functions, and the publication of
[38], which formalised the main problems. Since both isosets and density functions are
rather complicated, we started to look for easier isometry invariants in February 2020.

The simple vectorial invariant of average distances to the first 𝑘 atomic neighbours
was called the AMD (Average Minimum Distances), see Definition 10.1.3, though the
word “minimum” could have been replaced with the more appropriate “neighbour” in
this context. The initial version of [53] was ready in the summer of 2020 due to the
thorough implementation by Daniel Widdowson, who was an MSc student at that time.

Though the AMD turned out to be very powerful, it was theoretically incomplete.
Since density functions can be computed only at finitely many radii, we started to look
for an intermediate invariant that is stronger than the AMD, but is still fast in practice.

The Pointwise Distance Distribution was a natural extension of the AMD vector to
a matrix invariant. Since the Earth Mover’s Distance (EMD) was already applied to
isosets that are unordered distributions of isometry classes of 𝛼-clusters around points,
it was straightforward to adapt EMD to PDD, considered as a distribution of unordered
distances. The initial version of the PDD paper [50] was completed by April 2020.

The three new invariants (density functions, isosets, and AMD) with proved theoret-
ical guarantees and implemented software justified the significance of a new continuous
classification of periodic crystals. Moreover, the MIF++ seminar had been running for
1.5 years and naturally “overflew” to a new annual meeting MACSMIN (Mathematics
and Computer Science for Materials Innovation), see https://kurlin.org/macsmin.php.

The first MACSMIN in September 2020 required no physical space, and most par-
ticipants wery already familiar with zoom. At MACSMIN 2020, we introduced the new
area of Periodic Geometry by formalising the isometry classification problem and con-
tinuous metric problem for all periodic sets of points in any R𝑛. Now similar questions
make sense for other objects, such as periodic graphs, surfaces, and tilings.

By May 2021, it was clear that ignoring discontinuity of cell-based representations
has led to unrecognised near-duplicates among simulated and experimental crystals.

https://kurlin.org/macsmin.php
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Around the same time we learned about the paper [44], whose title “Same or different
- that is the question” inspired the whole area of Geometric Data Science.

Since the initial implementation of the PDD was running in minutes on thousands of
crystals, Daniel Widdowson bravely moved to hundreds of thousands of experimental
crystals in the world’s largest database CSD to check if there are any non-isometric
crystals with the same PDD. In parallel, Vitaliy was writing a proof that the PDD is
complete under isometry for all periodic point sets in general position in R𝑛.

Unfortunately, there was no record left on the day when Vitaliy was reading first
Feynman’s lecture on physics, which contains Fig. 1-7 with a table illustrating 7 cubic
crystals and their smallest interatomic distances 𝑑, now re-drawn in Fig. 12.1 (left).

Here is full quote from [24, section 1.3]: “Figure 1-7 is an illustration of the three-
dimensional structure of common salt, sodium chloride”, the only place where Feynman
mentioned Fig.1-7. Other 6 crystals were not discussed and could have been skipped.

However, many thanks to Feynman for including all numerical distances so that
they can be unconsciously compared by a mathematician to conclude that all 7 simple
crystals are geometrically different even if we forget about their chemistry.

This was an Eureka moment to realise that all real crystals can also be distinguished
purely geometrically, and hence their chemistry should be uniquely reconstructable
from a precise enough geometry. At this moment, it was only a conjecture and later
we added that any comparisons should be under the same ambient conditions, such
as temperature and pressure, and only for real crystals, not for simulated or artificially
generated ones, which can have arbitrary geometries. Nonetheless, the conclusion is
simple and reflects our physical intuition: changing a chemical element should affect
its interaction with atomic neighbours and hence perturb the crystal geometry.

This experimental observation was verified first on the CSD in September 2021
and presented at the 2nd MACSMIN on 16 September 2021 as the Crystal Isometry
Principle (CRISP). More exactly, there were two online presentations on this day.

The first presentation at MACSMIN 2021 (https://kurlin.org/macsmin/2021.php)
was titled “The Crystal Isometry Principle justifies a continuous map of periodic crys-
tals”. Here is the original abstract. “More than 150 years ago Mendeleev put all known
chemical elements into the same periodic table despite their differences to better un-
derstand their similarities. The recent advances in the new area of Periodic Geometry
show that replacing any atom by its centre loses no information about a crystal structure,
because all resulting periodic point sets remain non-isometric for all known crystals
in the Cambridge Structural Database. This Crystal Isometry Principle (CRISP) jus-
tifies a map of all known and not yet discovered crystals continuously parameterised
by complete isometry invariants. The IUCr congress included the related introductory
talks: A unique and continuous code of all periodic crystals (16 min) and Introduction
to invariant-based machine learning for periodic crystals (20 min).”

The aforementioned talks at the IUCr congress in August 2021 presented isosets [2]
and the first energy predictions based on continuous AMD invariants [42].

https://youtu.be/DNyPSL2JPa4
https://youtu.be/VcAdNlw0YDQ
https://youtu.be/VcAdNlw0YDQ
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The second 5-min presentation in the afternoon of 16 September 2021 was for the
advisory board of the Leverhulme Research Centre at the MIF, where Richard Catlow
FRS quickly grasped the significance, asked if the CRISP was published, and advised us
to talk to crystallographers. The original slide from both talks in Fig. 12.4 (left) included
a question mark in the title of CRISP, which we cautiously considered a conjecture.

CRISP : the Crystal Isometry Principle
Andy Cooper and Vitaliy Kurlin’s Data Science group
Materials Innovation Factory, University of Liverpool

What is a periodic crystal S?
S is often defined by periodically
translating a motif of atoms along ba-
sis vectors of a unit cell. Infinitely
many pairs (basis, motif) give identi-
cal structures up to rigid motion (com-
positions of translations and rota-
tions) or isometry (with reflections).

Crystal structures are determined in a
rigid form. Hence the most practical
equivalence is rigid motion or isometry.

A new definition of a crystal
A periodic crystal is not a single pe-
riodic structure but an isometry class
of infinitely many periodic point sets
that are all isometric to each other [1]

Crystal=
infinitely many structures

equivalence up to isometry

The weaker equivalence by symme-
try (the same space-group type) gives
219 classes (230 if mirror images are
distinguished), insufficient to distin-
guish 1.1M+ crystals in the Cam-
bridge Structural Database (CSD).

What is a crystal invariant?
An invariant is a property preserved
by equivalence (isometry of crystals),
eg symmetry, primitive cell volume.
Non-invariants (parameters of non-
reduced cells, atomic coordinates)
cannot reliably distinguish crystals as
they can differ for the same crystal.

Can reduced cells help? No!
A reduced (Niggli’s) cell is invariant
but discontinuous under atomic dis-
placement. Under tiny perturbations,
the symmetry breaks down, the prim-
itive cell volume doubles, see above.

Mapping crystals problem

Find a complete invariant I for all
crystals with a continuous metric:

invariance : S ∼= Q are isometric ⇒
I(S) = I(Q), so no false negatives;

completeness : I(S) = I(Q) ⇒ S ∼= Q
are isometric, hence no false positives;

metric : d(S, Q) satisfies the axioms 1)
d(S, Q) = 0 ⇔ S ∼= Q are isometric,
2) d(S, Q) = d(Q, S), 3) 4 inequality
d(S, Q) ≤ d(S, T) + d(T, Q).

continuity : the metric d continuously
changes under perturbations of S;

inverse design : a crystal S can be re-
constructed from an invariant value.

There was no complete and continu-
ous invariant I even for lattices [2].

AMD invariants of crystals
For any pi (one of m motif points) in
a unit cell of a crystal S, let dik be
the distance to its k-th closest neigh-
bour in the infinite S. The Average
Minimum Distance [1] is AMDk =
1
m

m
∑

i=1
dik. The square and hexagonal

lattices have these AMD sequences:

Stronger PDD(S; k): Point-
wise Distance Distribution
For any motif point pi, put its dis-
tances di1 ≤ · · · ≤ dik into a row of
the m × k matrix. If j of m rows are
identical, collapse them into one row
of weight j/m. The matrix PDD(S; k)
is independent of a crystal representa-
tion. Increasing k adds more columns
without changing the initial columns.

PDD: continuous invariants
If atoms are perturbed up to ε, then
PDD(S; k) changes up to 2ε in Earth
Mover’s Distance, which can com-
pare PDD matrices of different sizes.

PDD: generically complete
Under tiny perturbation, any crystal
becomes generic, e.g. no repeated dis-
tances except due to periodicity.
Any such crystal is uniquely recon-
structed from lattice invariants [2]
and PDD(S; k) for a large enough k.
200B+ pairwise comparisons of AMD,
PDD for all 660K+ periodic crystals
(no disorder, full 3D structure) in the
CSD over two days on a modest desk-
top detected five pairs of suspicious
entries with identical geometry and
one atom replacement [1, section 7]:
HIFCAB and JEPLIA (Cd↔Mn),
LALNET and POCPAA (Cd↔ Ni),
AFIBOH and NENCUF (Cd↔ Zn),
COLYEI and POCLOK (Eu↔ Sm),
DTBIPT and DTHBPD10 (Pt↔ Pd).
Five journals are investigating the in-
tegrity of the underlying publications.

Crystal Isometry Principle
Map: periodic crystals → periodic
point sets is injective modulo isometry.
Any periodic crystal is determined by
geometry of its atomic centres (with-
out chemical labels) because replacing
one atom with a different one should
perturb distances to atom neighbors.

All known and undiscovered crystals
live in the common Crystal Isometry
Space parameterised by invariants.

[1] D.Widdowson et al. Average
Minimum Distances of periodic sets.
MATCH Comm. Math. Computer
Chemistry, v.87(3), p.529-559, 2022.

[2] V.Kurlin. Mathematics of 2D lat-
tices. arxiv:2201.05150.

Fig. 12.4 Left: the slide introducing the Crystal Isometry Principle (CRISP) on 16 September 2021
included original Feynman’s Fig. 1-7 [24]. Right: the first conference poster of CRISP at BCA 2022.

When the Crystal Isometry Principle was externally presented in person after the
covid pandemic in early March 2022, James Cumby proposed a potential counterexam-
ple of KBr and RbCl. These and all other simple cubic crystals, as in Fig. 12.1 (left), are
geometrically determined by a single inter-atomic distance 𝑑 between closest atoms.

Considering KBr and RbCl, if all atoms of K and Br are replaced with heavier atoms
of Rb and lighter atoms of Cl, respectively, the distance between these atoms might
remain exactly the same in theory. Indeed, we checked that the ICSD has several entries
of KBr and RbCl under room temperature and ambient pressure with very similar
shortest distances 2𝑑 between atoms of the same chemical type, see Fig. 12.5.

All values of cube side lengths 2𝑑 in Fig. 12.5 differ at least slightly, but one one
pair (KBr with ICSD id 53826 and RbCl with ICSD id 53829) has the same 2𝑑 = 6.6Å.
However, these crystals were reported in the same paper [40] published in 1922.

Since experimental accuracy was lower 100 years ago than today, we asked our
colleagues in the MIF to re-synthesise these crystals. In December 2022, Marc Lit-
tle confirmed that the modern structure determination gives the shortest inter-atomic
distance 𝑑 = 3.32Å for KBr and 𝑑 = 3.29Å for RbCl. Hence two decimal places in
Angstroms sufficed to distinguish these very close geometric structures. Though there
might be other cases of highly symmetric crystals with close geometries, we expect that
accurate structure determination with modern precision (three decimal places reported
for most experimental structures) will keep validating the Crystal Isometry Principle.



242 12 A history of developing the most significant results and open problems

Fig. 12.5 All simple cubic crystals KBr (top) and RbCl (bottom) in the Inorganic Crystal Structure
Database (ICSD). The cases under room temperature and ambient pressure are shaded.

In the geographic analogy, a complete invariant of a periodic crystal, e.g. the isoset,
is similar to the latitude and longitude coordinates on Earth. If we know the geographic
map precisely enough, say with a precision of 1 metre, these coordinates theoretically
suffice to describe all other properties of any location, e.g. the altitude (height above
the sea level), average temperature, etc. However, if we additionally include the altitude
in the input, predictions of average temperature become much easier. Similarly with
materials, though a precise enough atomic geometry should suffice by the Crystal
Isometry Principle, using chemical elements certainly helps predict other properties.

Going back, in September 2021, we privately reported to the CCDC the first five
pairs of exact duplicates in the CSD, including HIFCAB vs JEPLIA in Fig. 12.2.
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Also in September 2021, we released the papers on complete isometry invariants of
lattices in dimensions 2 and 3 at arxiv:2109.10885 and arxiv:2109.11538, respectively.
Though we correctly guessed that these dimensions deserve separate papers, we could
not anticipate yet that the paper on 2D lattices will be split into three [11, 12, 34], while
a continuous metric on complete invariants of 3D lattices still needs more work [32].

The paper [53], which coined the Crystal Isometry Principle, was accepted by
September 2021 and focused on simpler AMD invariants, but we mentioned the stronger
PDD invariants, which appeared in arxiv:2108.04798 on 10 August 2021 and distin-
guished all non-duplicate crystals in the CSD more reliably. We fixed a time of Eureka’s
moment of the CRISP as May 2021 to commemorate Feynman’s birthday in May.

12.5 Further history of Geometric Data Science in 2022 - 2026

This section discusses how the initial research on periodic crystals expanded to other
data objects, such as finite point sets and molecules, including proteins.

September 2021 was a month of research explosions in our group also because the
PDD was finally understood as an isometry invariant of a finite set of unordered points
in addition to the periodic case. In the hindsight, we could have started in 2017 with
the simpler finite case, especially due to our earlier work on point clouds [30, 31] in
Topological Data Analysis (TDA). Then it became natural to compare the strengths of
the PDD and persistent homology as isometry invariants of unordered clouds.

The 0-dimensional persistence of standard complexes on point clouds was known
to be equivalent to a set of edge-lengths of a Minimum Spanning Tree (MST) and not
distinguishing finite sets even in the line R, but was extended to a stronger invariant
(mergegram) that is Lipschitz continuous and has the same asymptotic time [19, 20].

Since Philip Smith previously computed 1-dimension persistence on many point
clouds [47], he quickly check Vitaliy’s conjectures that persistence cannot distinguish
generic clouds. In November 2021, Philip presented the first results at Oxford and also
mentioned that the PDD is generically complete for finite and periodic point sets.

Since the PDD was clearer easier, faster, and stronger than persistence, we offered
our colleagues the collaborate beyond persistence towards a stronger invariant theory.
In response, they advised us to find more applications of our invariants. Gratefully
motivated by the advice from Oxford, the weaknesses of persistence became theorems
in the paper [48] whose first version (arxiv:2202.00577) appeared in April 2022. The
3rd MACSMIN in September 2022 expanded Periodic Geometry to Geometric Data
Science by stating the classification problem for all finite point clouds under isometry.

Returning to the periodic case and following Richard Catlow’s helpful advice in
September 2021, an abstract on CRISP was submitted to the British Crystallography
Association (BCA) annual meeting, where the CRISP was presented as a poster (-!)
in April 2022 and discussed with Tony Speck, see Fig. 12.4(right). Tony Speck is
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well-known in crystallography for implementing the PLATON software, which vali-
dates CIFs. This software crushed when comparing our favourite simulated crystals
in Fig. 12.6 whose cells differ by a factor of 4, though they can be matched almost
perfectly.

Fig. 12.6 Entries 14 and 15 from the database of 5679 simulated crystals reported in [41] consist
of identical T2 molecules and have very different Crystallographic Information Files (with different
motifs in unit cells of distinct shapes) but can matched almost perfectly under isometry.

The first half of 2022 was occupied by three papers on 2D lattices [11, 12, 34].

After the Crystal Isometry Principle was presented at BCA 2022, Mike Glazer
(Oxford) advised us to check the Protein Data Bank (PDB) for potential duplicates. This
work started in October and quickly led to initial duplicates, which were confirmed Kay
Diederichs already in December 2022, though our papers [3, 55] appeared later.

In the finite case, the PDD invariant was studied earlier under the name of a local
distribution of distances [36]. In 2020, [22] described counter-examples to the com-
pleteness of the PDD for clouds of 5, 6, and 7 points in R3. These examples crucially
helped us extend the PDD to the stronger SDD and SCD invariants. In October 2022, the
SCD was proved to be complete under rigid motion in any R𝑛. It was the first expansion
from isometry to the stronger equivalence of rigid motion. Polynomial-time algorithms
for SDDs, SCDs, and their potential distances were very technical but already routine
due to the previous work on unordered distributions for periodic crystals. The Lips-
chitz continuity was much harder to guarantee because the sign of orientation, which
distinghuishes mirror images, discontinuously changes for degenerate clouds, while the
volume of a simplex (or the convex hull of a cloud) is not Lipschitz continuous.

The first half of November 2022 was devoted to very intense attempts to finish a
paper on SCDs before the submission deadline of CVPR 2023. Vitaliy tried numerous
functions instead of the volume, always found counter-examples, and nearly gave up
on Lipschitz continuity, but a systematic approach prevailed through partial cases.
This time, Heron’s formula 𝑆 =

√︁
𝑝(𝑝 − 𝑎) (𝑝 − 𝑏) (𝑝 − 𝑐) for the area 𝑆 of a triangle
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with sides 𝑎, 𝑏, 𝑐 and half-perimeter 𝑝 =
𝑎 + 𝑏 + 𝑐

2
inspired the new strength 𝜎 =

(𝑝 − 𝑎) (𝑝 − 𝑏) (𝑝 − 𝑐)
𝑝2 and its generalisation to higher dimensions in Definition 6.3.1.

Our pure luck was to get reviewers, who grasped the significance of a complete,
Lipschitz continuous and polynomial-time invariant, possibly without understanding
all details of long proofs. As a result, the paper [54] was likely the most theoretical at
CVPR 2023, similar to the previous results on point clouds [30] at CVPR 2014.

The complete hierarchy of point cloud invariants [54] helped us to geometrically
compare all molecules as clouds of unordered atomic centres, even without covalent
bonds and chemical elements. Large-scale experiments on molecular databases con-
firmed that a precise enough atomic geometry determines any real molecular structure,
now defined as an equivalence class of only atomic centres under rigid motion in R3.

In the partial but important case of proteins, structural biologists often talk about a
shape of a protein [27], though the word “shape” usually refers to an equivalence class
under rigid motion composed with uniform scaling, as in shape theory [29]. However,
the subject name of structural biology requires us to define a protein structure, proposed
here as an equivalence class of (all chains of) a protein under rigid motion in R3.

The book included several conjectures and also postponed for future work some
conditions of Geo-Mapping Problem 1.4.5, such as inverse continuity and Euclidean
embeddabilty for finite clouds of unordered points in R𝑛. We highlight Conjecture 4.5.5
about the completeness of the Pointwise Distance Distribution for any 𝑚 ≥ 5 unordered
points under isometry in R2, which can be accessible even to school children.

Fig. 12.7 Geometric Data Science develops methods of metric and algebraic geometry to enrich
statistics and machine learning for applications in computer vision, chemistry, and structural biology.

In conclusion, Geometric Data Science ‘connected the dots’ in practical challenges,
unified all important requirements, and rigorously converted the fundamental questions
(Same or different? If different, by how much? Where do all objects live?) into a list of
verifiable conditions in Geo-Mapping Problem 1.4.5 as a guide for future developments.
Fig. 12.7 illustrates theoretical sources and applications of Geometric Data Science.
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CSD Cambridge Structural Database
DIM Dihedral Isometry Metric
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