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MOFs won the Nobel Prize in Chemistry!
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Metal-organic frameworks (MOFs)

Metal—organic frameworks (MOFs) are network
solids which consist of metal ions or clusters
connected to organic linkers

Scope to modulate their properties via:
* Metal centres
* Linker
» Defect formation

* Their cage-like structure typically leads to a void MOF-5 (IRMOF-1)
space within the framework known as a ‘pore’ Zn,0(BDC),
Zn centres with

i . _ 1,4-benzenedicarboxylate (BDC) linkers
* This porosity leads to high surface areas

H. Li et al., Nature, 1999, 402, 276-279.



Metal-organic frameworks (MOFs)

Metal—organic frameworks (MOFs) are network
solids which consist of metal ions or clusters
connected to organic linkers

Scope to modulate their properties via:
* Metal centres
* Linker
» Defect formation

Surface area = 7310 m?/g = 1.3 football field

Their cage-like structure typically leads to a void

space within the framework known as a ‘pore’ 1g of MOF can have a greater surface

area than a football field!

This porosity leads to high surface areas
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Metal—organic frameworks (MOFs) *

* Framework is formed by polydentate ligands
(organic linkers) coordinating to metal centres

e Carboxylate linkers are most common, but
various functionalities, such as imidazolates
are possible

* SBUs - small, well-defined clusters of metal
ions that act as repeating nodes in the
structure (0Zn,)0,, cluster

O o)

Benzene-1,4-dicarboxylate BDC
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Reticular chemistry

* Chemical components form nodes and linkers in a network

* The geometrical diversity of metal ion and clusters combines with synthetic diversity of
organic linkers

* Enables ‘controlled” assembly of extended architectures

O. M. Yaghi et al., Nature, 2003, 423, 705-714.



Reticular chemistry
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* Chemical components form nodes and linkers in a network

* The geometrical diversity of metal ion and clusters combines with synthetic diversity of
organic linkers

* Enables ‘controlled” assembly of extended architectures

O. M. Yaghi et al., Nature, 2003, 423, 705-714.
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Crystal engineering: Isoreticular MOFs

* For some families of MOFs it is possible to change the organic linker and maintain the same
framework type

* Relatively strong metal-linker interactions are conserved, but the linker can be swapped

* Modulates the pore size and chemical environment of guests
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Porous isoreticular non-metal organic frameworks
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M. O’Shaughnessy et al., Nature, 2024, 630, 102-108.

Andy Cooper

(VERPOOL



Covalent organic frameworks (COFs)
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Zeolitic imidazolate frameworks (ZIFs)
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Some common MOFs

NU-1000 HKUST-1 ZIF-62 (Zn/Co)
Zirconium-based Copper-based Zinc or cobalt-based
(yellow) (blue) (colourless or purple)
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MOF synthesis

Solvent, linker substituent, pH,
metal ion to linker ratio

N
Processing Time, temperature, pressure,
stirring rate, power
)

Controlled atmosphere, inert
Atmosphere] o,¢ce5 (o prevent oxidation or
decomposition

ompositio

Activation | Washing, drying, de-gassing

M. H. Alzard et al., Clean. Mater., 2025, 16, 100314.
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MOF characterisation

SCXRD & PXRD\
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Tuning MOF properties

* Metal centres
e Structure type — change coordination
e Catalytic properties, e.g., open metal sites

* Organic linker
e Essentially endless possibilities
e Structure type — change denticity
* Maintain structure type — change pore dimensions (IRMOFs)
e Chemical environment in pores — hydrophobicity, catalytic, polarity,
specific chemical functionalities

e Synthesis and post-synthetic modifications  Defect engineering




Water stability in copper MOFs

Trimesic acid

Vv
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Copper paddlewheel

STAM-17-OEt HKUST-1

* Copper paddlewheel dimer units present in both structures.
e Similarities in syntheses and structures allow the comparison of properties.

 HKUST-1 is affected by long-term water instability, is STAM-17-OEt similarly affected?
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Hemilability in copper MOFs
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Structural variations
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Ordered sidechains of flexible MOFs
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[Zn,(L-AlaPyr),] [Zn,(L-AlaPyr)(D-AlaPyr)]

D. Markad et al., Angew. Chem. Int. Ed., 2024, 63, €202411960.
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General applications of MOFs
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Adsorptive applications of MOFs

Linker Functionalization
Strategy

S
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Vehicular fuel storage




Carbon dioxide capture
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J-B. Lin et al., Science, 2021, 374, 1464-1469.




Water harvesting
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Drinking the air

This metal-organic framework (MOF)
captures water during a desert night,

and releases it for drinking the
next day.

Framework
MOF-303

1.

At high humidity
and lower
temperatures,
water molecules
stick to the MOF.
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Toxic gas adsorption

T. Islamoglu et al., Chem. Rev., 2020, 120, 8130-8160.
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The changing state of MOFs
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MOF glasses
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Membrane materials in chemical separations
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Crystalline v non-crystalline
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Total scattering and pair distribution function

T » Total scattering (Bragg + diffuse)
| experiments are similar to normal
j) diffraction experiments.
| » Diffuse scattering provides information

A on the short-range structure of
G(r)=2/nl QIS(Q) - 1)]sin OrdQ R
materials.

10
T
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» Total scattering can even be used for
amorphous solids, liquids and glasses.

* For disordered crystalline materials, it helps characterise the periodic structure and the
deviations from long-range order.

S.J. L Billi Phil. T RS A 2019 377 20180413 &4 UNIVERSITY OF
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Pair distribution function (PDF)

* Total scattering is mathematically related to the PDF via Fourier transform (like the
reciprocal and direct lattices)

246 A

PDF G(r)

* Peak positions give interatomic separations
* Area provides information about coordination number

S. J. L. Billinge, Phil. Trans. R. Soc. A., 2019, 377, 20180413.




Interfaces in MOF crystal-glass composites
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Summary

 MOFs are framework materials made from metal ions or clusters linked by organic ligands,
forming porous 3D networks with exceptionally high surface areas.

* Their structure, pore size, and functionality can be precisely tuned by selecting different
metals and linkers, allowing for tailored chemical and physical properties.

* MOFs have wide-ranging uses, including gas storage, separation, catalysis, drug delivery,
and sensing — driven by their tuneable porosity and reactivity.

v Advantages: large surface areas, tuneability, and versatility.

x Challenges: stability (especially in moisture/heat), scalability, and cost of synthesis.
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Future perspectives: digital discovery
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Digital materials chemistry goes hand in hand with experimental materials chemistry

Al and machine learning is driving MOF commercialisation with interest from several start-

ups and large companies
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Digital exploration of
hybrid glass formers
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Thanks for listening!
Questions?

MOF to a Flame
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