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All 2-dimensional links in 4-space live inside
a universal 3-dimensional polyhedron

C KEARTON

V KURLIN

The hexabasic book is the cone of the 1-dimensional skeletonof the union of two
tetrahedra glued along a common face. The universal 3-dimensional polyhedron
UP is the product of a segment and the hexabasic book. We show that any closed
2-dimensional surface in 4-space is isotopic to a surface inUP. The proof is based
on a representation of surfaces in 4-space by marked graphs,links with double
intersections in 3-space. We construct a finitely presentedsemigroupwhose central
elements uniquely encode all isotopy classes of 2-dimensional surfaces.

57Q45; 57Q35, 57Q37

1 Introduction

1.1 Brief summary

This is a research on the interface between geometric topology, singularity theory and
semigroups. A 2-link is a closed 2-dimensional surface in 4-dimensional spaceR4. We
study 2-links up to isotopy that is a smooth deformation of the ambient 4-dimensional
space. We prove that any 2-link is isotopic to a surface embedded into the universal
3-dimensional polyhedron UP. We also reduce the isotopy classification of 2-links in
4-space to a word problem in a finitely presented semigroup.

1.2 The universal polyhedron containing 2-dimensional links

First we define the universal 3-dimensional polyhedron UP.

Definition 1.1 The thetagraph TG consists of 3 edges connecting 2 vertices. The
circled theta graph CT is TG∪ S1, where the circleS1 meets each edge of TG in
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1002 C Kearton and V Kurlin

one point, see Fig.1. Then CT is the 1-dimensional skeleton of two tetrahedra glued
along a common face. Thehexabasic bookHB is the cone of CT. Being embedded in
3-space, the book HB divides a neighbourhood of the central vertex into 6 parts. The
universal3-dimensional polyhedron is UP= HB × [−1;1].

HB

CTTG

Figure 1: The theta graph TG, circled theta graph CT, book HB

We will work in the smooth category, i.e. all diffeomorphisms areC∞ -smooth. We
will make necessary comments on similar constructions in the PL case.

Definition 1.2 An embeddingis a diffeomorphism onto its image. A2-link is a
closed (possibly disconnected or non-orientable) smooth surface S embedded into
R

4. An isotopybetween 2-linksS and S′ is a smooth family of diffeomorphisms
Fu : R

4 → R
4, u ∈ [0;1], such thatF0 = idR4 , F1(S) = S′ .

Fix the 4th coordinatet in 4-spaceR3 × R. Then a 2-link inR
3 × R can be studied

in terms of itscross-sections St = S∩ (R3 × {t}), see Fox and Milnor [7]. Any 2-link
can be isotopically deformed to a surfaceS⊂ R

3 × [−1;1] such that the projection
pr : S→ [−1;1] has distinct non-degenerate critical values. A general cross-section
St is a classical link inR3×{t}, while a cross-section containing a saddle is a link with
a double point. Whent passes through a saddle, the cross-sectionSt = S∩ (R3 ×{t})
changes by the Morse modification in the left picture of Fig.2.

t=0 t=0t>0 t>0t>0t<0 t<0

Figure 2: Resolving a singular point and a band inR
3

A PL analogue of the smooth approach is to decompose a 2-linkS⊂ R
3× [−1;1] into

handles located in different sectionsR
3×{tj}. The 1-handles ofSwill be represented
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2-links live in a universal 3-polyhedron 1003

by bands that have a distinguished core and are attached to a classical link in 3-space.
Any attached band can be retracted to a singular point markedby a bridge encoding
the core of the band. The cross-sections ofS below and above every 1-handle locally
look like the right picture of Fig.2.

1.3 Main results

The hexabasic book HB is closely related to the3-page bookTB, the cone of the
thetagraph TG consisting of 3 edges connecting 2 vertices, see Fig. 7. Thebinding
segment of TB is the cone of the 2 vertices of TG. From another point of view, the
3-page book TB can be considered asR × T , whereT is the triod consisting of 3
edges connecting the central vertexO to other 3 vertices, here the binding axis� is
R × O. The hexabasic book HB is obtained from TB by adding 3 half-disks whose 6
boundary radii are attached to the 3 edges of{0} × T , see Fig.1.

Theorem 1.3 Any 2-dimensional linkS⊂ R
4 is isotopic to a surface embedded into

the universal 3-dimensional polyhedronUP= HB × [−1;1].

The key idea of Theorem1.3is to put a given surfaceS in general position and consider
its cross-sectionsSt through saddles of pr :S→ [−1;1], see Claim2.3. Such a cross-
sectionSt is a link with exactly one singular point, soSt can be embedded into the
3-page book TB using the technique of 3-page embeddings developed by Kurlin and
Vershinin [12, 13], see Proposition3.2. Both resolutions of the singular point ofSt can
be realised in TB, i.e. the embedding extends to a regular neighbourhood ofSt in S.
It remains to embed the complement of the regular neighbourhoods of all saddles into
HB × [−1;1] realising any isotopy of classical links in HB, see Lemma3.4.

We will develop a 1-dimensional calculus for 2-links as follows. Any 2-link S in
general position inR3 × [−1;1] can be represented by a banded linkBL whose bands
are associated to the saddles of pr :S → [−1;1], see Proposition2.6(i). Retracting
each band to a point, we get a marked graph whose singular points are marked by
bridges encoding the cores of bands. There is a complete set of moves on marked
graphs generating any isotopy of 2-links in 4-space, see Proposition4.1. Any marked
graph can be embedded into the 3-page book TB and can be encoded by a word in the
alphabet of 15 letters. The moves on marked graphs are translated into relations on
words, which leads to the universal semigroup SL of 2-links in 4-space.

Introduce the universal semigroup SL generated by the letters ai ;bi ; ci ;di ; xi subject to
relations (1–1)-(1–8), wherei ∈ Z3 = {0;1;2}, e.g. 0− 1= 2 (mod 3).
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d0d1d2 = 1; bidi = 1= dibi(1–1)

ai = ai+1di−1; bi = ai−1ci+1; ci = bi−1ci+1; di = ai+1ci−1(1–2)

uv= vu;u ∈ {aibi ;dici ;bi−1didi−1bi ;dixibi}; v ∈ {ai+1;bi+1; ci+1;bidi+1di ; xi+1}

(1–3)

xi−1 = bi+1xidi+1; bixibi = ai(bixibi)ci ; dixidi = ai(dixidi)ci(1–4)

(dixibi)d
2
i d2

i+1d2
i−1 = d2

i d2
i+1d2

i−1(dixibi)(1–5)

aixi = ai ; aibixidici = 1(1–6)

dixibicixi = bixidicixi(1–7)

widi+1d2
i di−1ai+1bi+1xibidi+1b2

i bi+1d2
i = wibi−1biaibi+1ai+1d2

i ci−1bixibi ; wherewi = aibixibici

(1–8)

One of the 6 relationsbidi = 1 = dibi is superfluous and can be deduced from the
remaining relations in (1–1). Moreover, the commutativity ofdici with ai+1;bi+1

follows from the other relations in (1–3), see more details in Kurlin [12]. So the
semigroup SL is generated by not more than 15 letters and 96 relations.

Theorem 1.4 Any 2-link S⊂ R
4 is encoded by an elementwS ∈ SL in such a way

that 2-links S;S′ are isotopic if and only if their encoding elementswS and wS′ are
equal inSL. An elementw ∈ SL encodes a 2-link if and only ifw is central inSL.

Outline. In section2 one represents 2-links in 4-space by banded links and marked
graphs in 3-space. Theorems1.3and1.4 are proved in sections3 and4, respectively.
Banded links are more convenient for deriving a complete setof moves generating any
isotopy of 2-links. Marked graphs will be used to prove our main results on embedding
and encoding 2-links up to isotopy.

1.4 Acknowledgements

The authors thank S Carter, F Tari and the anonymous referee for useful suggestions.

2 Representing 2-links by banded links and marked graphs

2.1 Critical level embeddings of 2-links in 4-space

Here we describe the PL approach where a 2-link is isotopically deformed to a nice
embedding with handles at different levels. The smooth version of crucial Claim2.3(ii)
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2-links live in a universal 3-polyhedron 1005

is a standard statement on general position proved in section 5.

Definition 2.1 A handle of dimension n and indexk is Dk × Dn−k . A handle
decompositionof a manifoldMn is a sequence of submanifoldsM0 ⊂ M1 ⊂ · · · ⊂

Ml = M , whereM0 is a disjoint union ofn-dimensional disks, eachMi+1 is obtained
from Mi by adding a handle of some indexki . One can writeMi+1 = Mi ∪'i (Dki ×

Dn−ki ), where'i : @Dki × Dn−ki → @Mi is an embedding. If before and after each
handle addition one inserts acollar, the product of the attaching area and a segment,
then one gets acollared handledecomposition, see Kearton and Lickorish [11, p. 416].

2-handle: t=1

a collar of 1 cylinder

a collar of 1 cylinder

a collar of 2 cylinders

0-handle: t=-1

1-handle: t=1/2

1-handle: t=-1/2 BL

BL

BL

+

_

Figure 3: A critical level embedded torus and its banded linkBL ⊂ R
3

A 2-link with a collared handle decomposition can be nicely embedded inR4. The left
picture of Fig.3 shows a similar embedding, where the standard 2-torus inR

3 has the
collared handle decomposition consisting of 4 handles and 3collars:

1) the lowest handle is a 0-handle (a disk) at the levelt = −1;

2) the 2 intermediate handles are 1-handles (bands) at the levels t = ±1=2;

3) the highest handle is a 2-handle (a disk) at the levelt = +1.

Definition 2.2 A critical level PL embedding is a PL embedding of a 2-linkS ⊂

R
3 × [−1;1] with a collared handle decomposition satisfying (i), (ii), see Kearton and

Lickorish [11, p. 417]:
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(i) the handles are in different sectionsR
3 × {tj}, where−1 < t1 < · · · < tn < 1;

(ii) each collar between adjacent handles ofS is embedded as the direct product
A× [tj ; tj+1] ⊂ R

3 × [tj ; tj+1], whereA ⊂ R
3 is the attaching area of the handles.

A smooth embeddingS⊂ R
3 × [−1;1] is called a smoothcritical level embedding if

the projection pr :S→ [−1;1] has all its critical points in different sectionsR3×{tj}.
This is a general position assumption.

Claim 2.3 (i) (Kearton and Lickorish [11, Theorem 1, p. 420])
Any 2-dimensional PL link in 4-space is isotopic to the imageof a critical level PL
embeddingS⊂ R

3 × [−1;1].

(ii) Any smooth 2-link is smoothly isotopic to a surfaceS⊂ R
3 × [−1;1] such that all

critical points ofpr : S→ [−1;1] are non-degenerate and have distinct values.

We will use the smooth version of Claim2.3(ii), which will be deduced from the
transversality theorem of Thom in section5. Claim 2.3(i) is worth keeping in mind
when one associates a banded link to a 2-link in Proposition2.6(i).

2.2 Representing 2-links in 4-space by banded links in 3-space

We define banded links, links with bands, which will represent 2-links in 4-space.

Definition 2.4 A bandedlink is a collection of circles and bands inR3 such that

(i) the circles and bands are non-oriented and non-self-intersecting;

(ii) the circles and bands are disjoint except for each band having a pair of opposite
sidesattachedto disjoint arcs in the circles, the other sides are calledfree.

In every band we mark itscore, an arc connecting its attached opposite sides, see
Fig. 3. Banded links are considered up to isotopy ofR

3. The bands of a banded link
will represent 1-handles of a 2-link. In every bandB of a banded linkBL consider
the opposite free sides not connected by the core ofB. ReplaceB by its free sides,
the resulting usual non-oriented link inR3 is called thepositiveresolutionBL+ of the
banded linkBL, see the right picture of Fig.3. Similarly define thenegativeresolution
BL− replacing every bandB by the opposite attached sides connected by the core of
B. A banded linkBL is admissible, if both resolutionsBL± are trivial links.
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If a PL 2-link S⊂ R
3 × [−1;1] has all its 1-handles in the zero sectionR

3 ×{t = 0},
then the cross-sectionS0 = S∩ (R3 × {t = 0}) is a banded link. We will use much
weaker assumptions and construct a banded link for any critical level embedding.
Proposition2.6leads to a calculus for 2-links in Proposition4.1and provides a function
from the set of 2-links to the set of admissible banded links.

Definition 2.5 Given a 2-dimensional surfaceS, consider the space of all smooth
functionsf : S→ R

4 with the Whitney topology, see Definition5.2. The space CS of
all 2-links S⊂ R

4 has the induced topology. Points in CS will be classified using the
projection pr : S→ R to the 4th coordinatet . A 2-link S∈ CS is called

• genericif all critical points of pr are non-degenerate and have distinct values;

• anA+1 A+1 -singularity if S fails to be generic because of 2 non-degenerate extrema of
pr : S→ R that have the same value;

• anA+1 A−

1 -singularity if S fails to be generic because of a non-degenerate saddle and
extremum of pr :S→ R that have the same value;

• an A−

1 A−

1 -singularity if S fails to be generic because of 2 non-degenerate saddles of
pr : S→ R that have the same value;

• an A2-singularity if S fails to be generic because of a singularity of pr :S → R

having the form pr(x; y) = x2 − y3 in local coordinatesx; y.

The sign in the notation above is the sign of the determinant prxxpryy − pr2xy of the
Jacobi matrix of 2nd order derivatives at a critical point. Denote by�++;�+−;�−−

and�2 the subspacesof the corresponding singularities in the space CS. Introduce
thesingular subspace� = �++ ∪ �+− ∪ �−− ∪ �2. An isotopy of 2-links can be
considered as a path in CS. In Proposition2.6 we consider paths nicely meeting the
singular subspace�.

Proposition 2.6 (i) To any a critical level embeddingS⊂ R
3 × [−1;1] we associate

a banded linkBL well-defined up to the slide/swim moves in Fig.4.

(ii) If 2-links S;S′ are isotopic through generic 2-links, then the associated banded
links BL;BL′ are related by the slide/swim moves in Fig.4.

(iii) If 2-links S;S′ are isotopic through generic 2-links and one ofA+1 A+1 ;A+1 A−

1 ;A−

1 A−

1 -
singularities, thenBL;BL′ are related by the slide/swim moves in Fig.4.

(iv) If 2-links S;S′ are isotopic through generic 2-links and exactly oneA2-singularity,
thenBL;BL′ are related by the cap/cup and slide/swim moves in Fig.4.
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cup cap

slide

swim

Figure 4: Cup/cap moves and slide/swim moves of banded links

Proof (i) The lowest critical point of a generic 2-linkS with respect to pr :S →

[−1;1] at t = t1 is a minimum, so the cross-sectionSt1+" is a trivial knot for some" > 0. The sectionSt1+" is a prototype of a future banded linkBL, which will
be located in a fixed copy ofR3. The key idea in constructingBL is to watch the
current cross-sectionSt = S∩ (R3 × {t}) simultaneously adding bands and trivial
knots corresponding to new saddles and minima, respectively. The left column of
Fig. 5 contains cross-sectionsSt for different values oft . The right column shows
successive stages of constructingBL whose final form is the top right.

While t is increasing, we isotopically deform the current banded link BL ⊂ R
3

following St = S∩ (R3 × {t}), see Fig.5. The existing bands ofBL can be deformed
to avoid intersections with the rest ofBL. For each new minimum ofS in R × {tj},
add a trivial knot fromStj+" to the current banded linkBL ⊂ R

3.

For each new saddle ofS, attach a small bandB to BL. The bandB has 2 opposite
sides attached to branches of the previous linkBL. While t passes the critical value,
the attached sides ofB are retracted to a point and are replaced by the free sides ofB.
The bandB can not meet the attached sides of other bands ofBL since these sides are
not included into the current cross-section ofS. So there are only 2 cases when the
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t=0.5+e

t=1-e

t=1

t=-1

t=e-1

S
t

S
t

S
t

S
t

S
t

S
t

BL
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Figure 5: Cross-sections and a banded link of the spun 2-knotof the trefoil
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new link with bands does not satisfy Definition2.4.

(a) One (or two) of the attached sides ofB may meet a free side of another bandB′ of
BL, see the upper picture of Fig.6. Then slideB along the free side ofB′ in any of the
two directions so that in the end the attached side ofB does not meetB′ .

(b) The bandB intersects the interior of another bandB′ of BL, see the lower picture
of Fig. 6. ThenB swims through any of the attached sides ofB′ , so B;B′ fall apart.
The bandB can not swim through the free sides ofB′ as they belong to the current
cross-section ofS. For each new 2-handle (a maximum), we keep the corresponding
trivial knot of BL, although it disappears fromSt = S∩ (R3 × {t}).

After we have passed all critical values of pr :S → R, the associated banded link
BL ⊂ R

3 has been constructed.

B

B

B'

B'

Figure 6: A band slides or swims to remove an intersection

(ii) The construction above is not affected by an isotopy ofSkeeping the order of critical
points of pr : S→ [−1;1]. Indeed all cross-sectionsSt are replaced by isotopic links,
so the resulting banded link is isotopic to the original one provided that we remove
intersections of bands in Fig.6 in the same way.

(iii) The given isotopy ofS is a smooth path passing through one ofA+1 A+1 ;A+1 A−

1 ;A−

1 A−

1 -
singularities in the space CS of 2-links. ForA+1 A+1 or A+1 A−

1 , an extremum and another
singularity swap their heights, so we add a new trivial knot (passing a minimum) or
keep an existing trivial knot (passing a maximum) that does not affect the other sin-
gularity. For anA−

1 A−

1 -singularity, two saddles ofS swap their heights, so we add
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2 bands toBL in the reverse order. Consider the critical moment when bothsaddles
are in the same sectionR3 × {tj}. If the associated bands do not intersect each other,
then the new banded link is isotopic to the original one. In (i) we listed the only cases
(a), (b) when one band may intersect another, which led to themoves in Fig.6 so the
banded links are equivalent through the slide/swim moves.

(iv) If an isotopy of S passes through anA2-singularity, then around this moment a
non-degenerate saddle and extremum appear in a 2-link, see Claim 4.2(iv). In the case
of a minimum, one adds a trivial knot to the current banded link BL and a band attached
to the trivial knot and to an existing branch ofBL as shown in the cup move of Fig.4.
In the case of a maximum, one adds a band attached by both sidesto a branch of the
current banded linkBL as shown in the cap move of Fig.4. Recall that we keep the
trivial knot whent passes a maximum. The leftmost and rightmost columns of Fig.4
show projections of 2-links toR3 around singular moments. The 4th axis ofR

3 × R

projects to the vertical axis ofR3.

Conversely, any admissible banded link will give rise to a 2-link in 4-space, see
Lemma2.8. One can describe all moves of banded links generating any isotopy of
2-links in 4-space. Banded links were calledknots with bandsin Swenton [14].

2.3 Representing 2-links in 4-space by marked graphs in 3-space

Theorem1.4 is easier to prove representing 2-links by marked graphs, which are
singular links with bridges at singular points.

Definition 2.7 After deformation retracting each band of a banded linkBL to a point,
we get asingular link (see Kurlin and Vershinin [13]), a collection of closed curves
with finitely many double transversal intersections, see Fig. 2, 5. The core of each
retracted band defines a bridge at the singular point, a straight arc in a small plane
neighbourhood of each singular point. We consider the resulting markedgraphMG up
to isotopy inR

3 keeping a neighbourhood of each singular point in a (moving)plane.

In the smooth approach, the zero sectionS∩ (R3 × {0}) containing all saddles of
pr : S→ [−1;1] is a marked graph whose bridges show how to resolve the singular
points for t > 0 (along bridges) andt < 0 (across bridges), see Fig.2, 3. An abstract
marked graphMG, i.e. a singular link with bridges, can be converted into a banded link
BL replacing each bridge by a small rectangle whose core coincides with the bridge.
So there is a 1-1 correspondence between banded links and marked graphs. Lemma2.8
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provides a unique function from the set of admissible bandedlinks to the set of 2-links,
which is the inverse of the function from Proposition2.6.

Lemma 2.8 Any admissible banded linkBL ⊂ R
3 gives rise to a 2-linkS⊂ R

4 that
can be represented byBL as in Proposition2.6(i).

Proof Take the marked graphMG ⊂ R
3 associated to the given banded link. Isotopi-

cally deformMG in such a way that neighbourhoods of all singular points ofMG are
contained in a single hyperplane ofR

3 × {0}.

Resolving the singular points along the bridges fort > 0 and across the bridges for
t < 0, extend the embeddingMG ⊂ R

3×{0} to a surfaceS′ ⊂ R
3× [−"; "] for some" > 0, such that the boundary@S′ consists of trivial links inR

3 × {±"}.

Since both sectionsS′±" = S′ ∩ (R3 × {t = ±"}) are unlinks, one can find isotopies'±
t : R

3 → R
3, t ∈ [";1−"], such that each'±

1−"(S′±") is a collection of small disjoint
circles in a plane. The isotopies'±

t define the embedding of a 2-linkS without small
disks intoR

3 × [" − 1;1− "], one disk for each component of@S. Attaching a disc
to each boundary circle gives a closed surfaceS⊂ R

3 × [−1;1].

The zero sectionS∩ (R3 × {0}) is the original marked graphMG. A small isotopy
deformation makesS generic. The construction of Proposition2.6(i) gives a banded
link equivalent toMG as all bands may be chosen small and non-intersecting.

3 Three-page embeddings of marked graphs

3.1 Any marked graph can be embedded into the 3-page book

Recall that the 3-page book is TB= R×T , whereT is the triod consisting of 3 edges
E0;E1;E2 joining the vertexO to the other 3 vertices. The line� = R × O is said to
be thebindingaxis,Pi = R × Ei are called thepages, i = 0;1;2.

Definition 3.1 An embedding of a marked graphG into the 3-page book TB is called
a3-pageembedding, if conditions (i)-(v) hold:

(i) the intersectionG∩ � of G and the binding axis� is a finite set of points;

(ii) the arcs at every point ofG∩ � lie in 2 pagesPi;Pj , i 6= j , see Fig.7;
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Figure 7: The encoding letters for 3-page embeddings of marked graphs

(iii) all singular points ofG lie in �, a neighbourhood of each singular point lies
in a broken plane consisting of two pages and looks locally like a cross×;

(iv) the bridge at each singular point lies in the binding axis �;

(v) every connected component ofG∩ Pi is projected monotonically to�.

The arcs in the pageP2 are dashed in Fig.7, 8. All classical and singular links can be
embedded into TB in the sense of Definition3.1, see Fig.8.

The pictures in each vertical column of Fig.7 are obtained from each other by rotation
around�. The rotation corresponds to the shifti 7→ i+1 of indices,i ∈ Z3 = {0;1;2}.
A 3-page embedding can be encoded by a word in the alphabet of 15 letters describing
the local behaviour ofG near the intersection pointsG∩�, see Fig.7. The 3-page em-
bedding in Fig.8 is encoded bywG = a0a1(b2b0b1)2d0a1d1(x1b1)2c1d1b0(d1d0d2)2c1c0.
So a 3-page embedding of the marked graphGS of a 2-link S is a 1-dimensional rep-
resentation ofS⊂ R

4.

We give a proof of the embedding result from Kurlin and Vershinin [13], because this
construction plays an important role in further considerations.

Proposition 3.2 (Kurlin and Vershinin [13]) Any marked graphG ⊂ R
3 is isotopic

to a 3-page embeddingG ⊂ TB in the sense of Definition3.1.
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a

P

P

P

P

P
11

0

2

TB

Figure 8: A 3-page embedding of the marked graph from Fig. 9

Proof Consider a plane diagramD of G ⊂ R
3 in general position with finitely

many double crossings. At each crossing in the diagramD mark a small overcrossing
arc. Recall that, at each singular point ofG, there is a marked bridge transversally
intersecting both branches ofG passing through the singular point.

In the plane containing the diagramD, draw a continuous path� such that

(1) the path� passes through each marked arc and bridge exactly once;

(2) � transversally intersects the rest ofD, the endpoints of� are away fromD.

a

Figure 9: How to construct a 3-page embedding of a marked graph

Isotopically deform the plane containingD in such a way that� becomes a straight
line containing all marked arcs and bridges ofD. Denote the upper half-plane and
lower half-plane ofR2 − � by P0 andP2, respectively. Notice that a neighbourhood
of each singular point looks like a cross× with a centre in the axis�, see Fig.9.
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Attach the third half-planeP1 to � and push all marked arcs intoP1, see Fig.8. If
both (say) upper arcs at some singular pointv ∈ G go to points on one side of the point
v ∈ �, then make an additional couple of crossings in the intersection � ∩ D like in
Reidemeister move II, see Fig.13. For instance, in the embeddinga2b2x2 both upper
arcs go to the right, see the lower right picture of Fig.15, more details are in Kurlin
and Vershinin [13]. Then the intersectionG∩ Pi is a finite collection of disjoint arcs,
which can be made monotonic with respect to the projection TB→ �, i = 0;1;2.

3.2 Any isotopy of links can be realised in the hexabasic book

The following lemma is a key stone of the 3–page approach to knot theory and was
originally proved by I Dynnikov [3, 4].

Lemma 3.3 (Kurlin [12]) Any isotopy of 3-page embeddings of classical links is
decomposed into finitely moves in Fig.10 and theirs images underi 7→ i + 1, i ∈ Z3.

The algebraic form of the moves in Fig.10 is below, i ∈ Z3 = {0;1;2}, see Kurlin
[12]:

d0d1d2 = 1; bidi = 1= dibi(3–1)

ai = ai+1di−1; bi = ai−1ci+1; ci = bi−1ci+1; di = ai+1ci−1(3–2)

uv= vu; whereu ∈ {aibi ;dici ;bi−1didi−1bi}; v ∈ {ai+1;bi+1; ci+1;bidi+1di}(3–3)

Lemma3.4 is the crucial step in Theorem1.3.

Lemma 3.4 The moves in Fig.10 are realised in the hexabasic bookHB.

Proof All the moves in Fig.10, apart from the commutativity ofai ;bi ; ci ;bi−1didi−1

with bi+1di−1di+1bi−1 , can be realised in the 3-page book TB. For instance, the
relationb2d2 = 1 is realised by compressing the slice between the 2 intersection points
and removing the resulting point from�. The other relations are realised in HB, see a
geometric realisation of (b1d2d1b2)a0 = a0(b1d2d1b2) in Fig. 11.
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d d

d

d db

b

b d bc

0 1

1 1

2 22

2

2 2 2

2 20 0 0 0

2

1

a a

a b dd

a

ba  c

c c dc

0 2

2 1 12

2

02

1 0 10

(i): relations between invertible generators

(ii): relations between generators at intersection points

(iii): these elements commute with a  , b  , c  , b  d  d

Figure 10: Finitely many moves generating any isotopy of classical links

d db b
2 22 2

b bd d
1 11 1

a a
0 0

Figure 11: Realising a commutative relation in the hexabasic book HB
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3.3 Any 2-link is isotopic to a surface in the universal polyhedron

Here we finish the proof of Theorem1.3.

Proof of Theorem 1.3 By Claim 2.3 any 2-link in 4-space is isotopic to a surface
S⊂ R

3×[−1;1] having all maxima, minima and saddles in different sectionsR
3×{tj}

for some−1 < t1 < · · · < tn < 1. In Step 1 we embed each cross-sectionStj into the
3-page book. In Step 2 we extend this embedding to a regular neighbourhood ofStj .
In Step 3 we embed the complement of the neighbourhoods into HB × [−1;1].

Step 1. Choose" > 0 such that the closed"-neighbourhoodsN"(Stj ) of Stj in S are
disjoint and each of them contains exactly one critical point of pr : S → [−1;1],
j = 1; : : : ;n. Then the boundaries@N"(Stj ) are classical links. By Proposition3.2
there is an isotopyf u

j : R
3 × {tj} → R

3 × {tj}, u ∈ [0;1], moving Stj into TB,
i.e. f 0

j = idR3 , f 1
j (Stj ) ⊂ TB × {tj} is a 3-page embedding. Take smooth functions

gj : [tj − "; tj + "] → [0;1] such thatgj(tj) = 1 andgj(tj ± ") = 0. Extendf j
u to

Fu
j : R

3 × [tj − "; tj + "] → R
3 × [tj − "; tj + "]; u ∈ [0;1];

Fu
j (x; t) = (f

ugj (t)
j (x); t); wherex ∈ R

3; t ∈ [tj − "; tj + "]:
Then Fu

j = f u
j for t = tj and Fu

j = id for t = tj ± ". Hence@N"(Stj ) are pointwise
fixed and we may combineFu

j together to form a smooth isotopyFu : R
3× [−1;1] →

R
3 × [−1;1] moving eachStj into TB× {tj}. Denote the resulting surface byS′ .

Step 2. If a singular cross-sectionS′tj has a double intersection, then both positive and
negative resolutions ofS′tj can be embedded into TB. Indeed the positive and negative
resolutions of the singular pointxi are encoded by 1 andciai , respectively, see Fig.12.
Given an encoding wordwj of S′tj ⊂ TB, the positive resolution ofS′tj is encoded by
wj after removing the letterxi representing the double point ofS′tj .

x  : t=0 1: t>0c  a  : t<0

aa

22 2

a

Figure 12: Resolving a singular point in the 3-page book TB
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The argument below with the sign± covers 2 cases when either+ or − is taken in all
formulae. IfS′tj contains a maximum or minimum,S′tj±"=2 can be embedded into TB.

So there are isotopieshu
±j : R

3 × {tj ± "=2} → R
3 × {tj ± "=2}, u ∈ [0;1], moving

eachS′tj±"=2 into TB×{tj ± "=2}. Take smooth functions̃gj : [tj − "; tj + "] → [0;1]

such thatg̃j(tj) = 0= g̃j(tj ± ") and g̃j(tj ± "=2)= 1. Extendhu
±j to

Hu
j : R

3 × [tj − "; tj + "] → R
3 × [tj − "; tj + "]; u ∈ [0;1];

Hu
j (x; t) = (hug̃j (t)

±j (x); t) for x ∈ R
3; t betweentj andtj ± ":

Then Hu
j = hu

±j for t = tj ± "=2 andHu
j = id for t = tj , t = tj ± ". HenceS′tj and@N"(S′tj ) are pointwise fixed and we may combineHu

j together to form a smooth isotopy

Hu : R
3× [−1;1] → R

3× [−1;1] moving eachN"=2(S′tj ) into TB× [tj −"=2; tj+"=2].
Denote the resulting surface byS′′ .

Step 3. The cross-sectionsS′′tj+"=2 and S′′tj+1−"=2 are isotopic classical links,j =
1; : : : ;n− 1. By Lemmas3.3and3.4any isotopy of classical links can be realised in
HB. Then the layersS′′ ∩ (R3 × [tj + "=2; tj+1 − "=2]) can be replaced by an isotopy
of links in HB × [tj + "=2; tj+1 − "=2]. It remains to extend the embedding to the
neighbourhoods of the lowest minimum and highest maximum ofS′′ shrinking their
boundaries in HB. So the final surface is embedded into HB× [−1;1].

4 The universal semigroup of 2-dimensional links

4.1 Local moves of marked graphs generate any isotopy of 2-links

Here we derive a complete set of moves of banded links and marked graphs, that
generate any isotopy of 2-links in 4-space. Marked graphs can be represented by plane
diagrams with small straight arcs denoting bridges over singular points, see Fig.2, 9.
In particular, the cyclic order of edges at each singular point is invariant.

Lemma 4.1 (Kauffman [8, Theorem 1, Figure 3 and Figure 9]) Marked graphs are
isotopic inR

3 if and only if their plane diagrams can be obtained from each other by
finitely many Reidemeister moves in Fig.13, where all symmetric images of the moves
should be considered.

The moves in Fig.13 are local in the sense, that a small disk in the left part of each
move is replaced by another small disk in the right part of themove, while the rest of
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I II III

IV V

Figure 13: Reidemeister moves for rigid isotopy of marked graphs

the diagram remains unchanged. The singular points in movesIV and V of Fig.13can
be equipped with arbitrary corresponding bridges. The proof is a direct application of
the transversality theorem of Thom similarly to a proof of the Reidemeister theorem
for plane diagrams of classical links, see analogous applications of singularity theory
to links and graphs in Fiedler and Kurlin [5, section 2], [6, section 2].

Proposition 4.1 Marked graphs represent isotopic 2-links in 4-space if and only if
they can be obtained from each other by finitely many moves in Fig. 14

VIIIVI VII

Figure 14: Moves of marked graphs generating isotopy of 2-links

Symmetric images of the moves in Fig.14 are skipped as they can be reduced to
the standard moves using an isotopy inR

3. Proposition4.1 was conjectured by
K Yoshikawa in [15]. F Swenton [14] claimed a proof of Proposition4.1 using
banded links and the equivalent moves in Fig.4. M Saito wrote in his review for the
MathSciNet: ‘It is claimed that this set of moves is equivalent to Yoshikawa’s moves.
It might be beneficial of some more detailed accounts, for example, those for the above
claim, are discussed further and presented elsewhere in theliterature’. The authors
were asked by S Carter to fill in these details, so we give a moredetailed proof of
Proposition4.1 for banded links. Recall that the singular subspace� of the space
CS of 2-links was introduced in Definition2.5. The following result will be formally
deduced in5 using the transversality theorem of Thom.
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Claim 4.2 (i) The closure of the subspace� has codimension 1 in the spaceCS.

(ii) The complement of the closure� in CS consists of generic 2-links.

(iii) Any isotopy of 2-links can be deformed in such a way thatall intermediate 2-links
are generic apart from finitely many singularities of Definition 2.5.

(iv) If an isotopy passes through anA2-singularity, then a non-degenerate saddle and
extremum collide and disappear as shown in the top picture ofFig. 18.

Claims4.2(i,ii) say that any point of CS can be removed from� by a small perturbation,
i.e. a 2-link can be made generic, which implies Claim2.3(ii). Claim 4.2(iii) says that
the singularities of Definition2.5are the only singularities occuring in any isotopy of
2-links in general position.

Proof of Proposition 4.1 By Claim 4.2(iii) any isotopy of 2-links can be deformed
into a smooth path transversal to the subspace� ⊂ CS. When the path passes
through one of the singularities, the associated banded link changes according to
Proposition2.6(iii),(iv), which led to the moves in Fig.4 as required.

4.2 A 1-dimensional encoding 2-links up to isotopy in 4-space

Here we reduce the isotopy classification of 2-links in 4-space to a word problem in
the finitely presented semigroup SL, the universal semigroup of 2-links. Recall that
moves (1–1)-(1–8) on 3-page embeddings were defined in subsection1.3. Theorem1.4
follows from the following generalisation of Lemma3.3to singular links.

Proposition 4.3 (Kurlin and Vershinin [13]) Consider the semigroupSK generated
by ai ;bi ; ci ;di ; xi , i ∈ Z3, subject to relations (1–1)-(1–5) from subsection1.3. Then
any singular linkG ⊂ R

3 is encoded by an elementwG ∈ SK in such a way that
singular linksG;G′ are isotopic if and only if the elementswG and wG′ are equal in
SK. An elementw ∈ SK encodes a singular link if and only ifw is central inSK.

Proof of Theorem 1.4 Any 2-link can be represented by its marked graphG whose 3-
page embedding is encoded by a word in the lettersai ;bi ; ci ;di ; xi , i ∈ Z3, as described
before Proposition3.2. All encoding elements form the centre of SL as the same result
holds for the universal semigroup SK of singular links, i.e.relations (1–1)-(1–5) imply
that any encoding element commutes with the generators.
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The remaining part of Theorem thm:semigroup states that two3-page embeddings of
marked graphs represent isotopic 2-links in 4-space if and only if they can be related by
algebraic moves (1–1)-(1–8) in subsection1.3. By Lemmas3.3, 3.4and Proposition4.1
it suffices to realise moves VI, VII, VIII in Fig.14 by 3-page embeddings.

In moves VI, VII, VIII a small disk in the left part is replacedby another small disk
in the right part. Similarly to the construction of a 3-page embedding, choose a path� passing through overcrossing arcs and bridges at singular points, see Fig.15, 16,
17. Deform the diagrams in such a way that� becomes a straight line and push all
overcrossing arcs into the half-planeP1, all bridges remain in�.

VI

VI

a

a

a

a

a

a

a

a

Figure 15: Realising moves VI of Fig.14 in terms of 3-page embeddings

In Fig.15moves VI are encoded bya1x1 = a1 anda1b1x1d1c1 = 1 equivalent to (1–6)
for i = 1. We made additional intersections of� with the diagram to decompose the
resulting embedding into local 3-page embeddings from Fig.7.

In Fig. 16move VII is encoded byd1x1b1c1x1 = b1x1d1c1x1 , which is (1–7) for i = 1.
Numbers 1, 2, 3, 4, 5, 6 denote arcs going out of the small disk replaced by move VII,
e.g. the path� starts between arcs 1, 4 and ends between arcs 3, 6.

In Fig. 17 move VIII is encoded by

(a1b1x1b1c1)d2d1(b2d2)d1d0a2b2x1b1d2b1(b2d2)b1b2d2
1 =

(a1b1x1b1c1)b0b1(b2d2)a1b2a2d1(b2d2)d1c0b1x1b1;
which is equivalent to (1–8) for i = 1 after removingb2d2 = 1 by relation (1–1). The
relations for otheri ∈ Z3 were added to make the presentation symmetric.
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VII

a

a a

a

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

Figure 16: Realising move VII of Fig.14 in terms of 3-page embeddings

VIII

a a

a

a

1

1

1

12

2

2

2

3

3

3

3

4

4

4

4

5

5

5

56

6

6

6

7 7

7

7

8 8

8

8

Figure 17: Realising move VIII of Fig.14 in terms of 3-page embeddings

5 Appendix: the multi-jet transversality theorem of Thom

Here we follow Arnold, Varchenko and Gusein-Zade [1, sections I.2, I.8].

Let �; � : M → N be smooth maps between finite dimensional manifolds with Rie-
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mannian metrics�M; �N , respectively.

Definition 5.1 The maps� and� have the tangency oforder k at a pointz∈ M if k
is the maximal integer such that�N(�(w); �(w))=(�M(z;w))k → 0 asw ∈ M tends to
z, e.g. the curve�(w) = wk+1 has the tangency of orderk with �(w) = 0.

The l -tuple k-jet of the map� at (z1; : : : ; zl) ∈ Ml is the equivalence class of smooth
maps� : M → N up to tangency of orderk at the pointsz1; : : : ; zl ∈ M , e.g. the
1-tuple 1-jetj1[1]�(z) of a map� : R → R is determined byz; �(z); �̇(z).

Denote byJk
[l] (M;N) the space of alll -tuple k-jets of smooth maps� : M → N for

all (z1; : : : ; zl) ∈ Ml . Let (x1; : : : ; xm) and (y1; : : : ; yn) be local coordinates inM and
N, respectively. If� is defined locally byyj = �j(x1; : : : ; xm), j = 1; : : : ;n, then the
l -tuple k-jet of � at (z1; : : : ; zl ) is determined byl arrays of the data below

{x1; : : : ; xm}; {y1; : : : ; yn};

{@�j@xi

}

; : : : { @k�j@xi1 : : : xis

} ; i1+ · · ·+ is = k:
The quantities above define local coordinates inJk

[l](M;N). The l -tuple k-jet jk[l]� of a
smooth map� : M → N can be considered as the mapjk[l]� : Ml → Jk

[l] (M;N), namely
(z1; : : : ; zl ) goes to thel -tuple k-jet of � at (z1; : : : ; zl).

The manifoldJk
[l](M;N) is finite dimensional, e.g.J0

[l] (M;N) = (M × N)l ,

dimJ1
[l](M;N) = (m+ n+mn)l; dimJ2

[l](M;N) = (m+ n+mn+ m(m+ 1)
2

n)l:
Definition 5.2 Take an open setW ⊂ Jk

[l](M;N). The set of smooth mapsf : M → N
with l -tuple k-jets from W is open. These sets for all openW ⊂ Jk

[l](M;N) over all
k; l form a basis of theWhitneytopology in C∞(M;N). The space CS of all 2-links
S⊂ R

4 inherits theWhitneytopology fromC∞(S;R4).

So maps are close in the Whitney topology if they are close with all derivatives.

Definition 5.3 Let M be a finite dimensional smooth manifold. A subspace� ⊂ M
is calleda stratified spaceif � is the union of disjoint smooth submanifolds�i (strata)
such that the boundary of each stratum is a finite union of strata of less dimensions.
Let N be a finite dimensional manifold. A smooth map� : M → N is transversalto
a smooth submanifoldU ⊂ N if the spaces�∗(TzM) and T�(z)U generateT�(z)N for
eachz ∈ M . A smooth map is� : M → V transversalto a stratified space� ⊂ V if
the the map� is transversal to each stratum of�.
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Briefly Theorem5.4says that any map can be approximated by ‘a nice map’.

Theorem 5.4 (Multi-jet transversalitytheorem of Thom, see Arnold, Varchenko and
Gusein-Zade [1, section I.2])
Let M;N be compact smooth manifolds,� ⊂ Jk

[l](M;N) be a stratified space. Given a
smooth map� : M → N, there is a smooth map� : M → N such that

• the map� is arbitrarily close to� with respect to the Whitney topology;

• the l -tuple k-jet jk[l]� : Ml → Jk
[l] (M;N) is transversal to� ⊂ Jk

[l] (M;N).

Proof of Claim 4.2 . (i) For any critical point of pr :S → R, fix local coordi-
nates (x; y) ∈ S such that the derivatives prx = pry = 0. The closures of the sub-
spaces�++ ∪ �+− ∪�−− and �̄2 from Definition2.5can be mapped onto the sub-
spaces of the finite-dimensional spacesJ1

[2](S;R) andJ2
[1](S;R) given by the equations

pr(x1; y1) = pr(x2; y2) and prxxpryy − pr2xy = 0, respectively. The resulting subspaces
of jets have codimension 1 as preimages of 0 under smooth functions, e.g. the image
of �̄2 in J2

[1](S;R) is (prxxpryy − pr2xy)
−1(0). Hence the closures�++ ∪ �+− ∪ �−−

and�̄2 have codimension 1 in the space CS of 2-links.

(ii) If a 2-link is not generic, then either some critical points of the projection pr :S→ R

are degenerate or have the same value. The singularities of Definition 2.5are all multi
local codimension 1 singularities of smooth functionsR

2 → R, see Arnold, Varchenko
and Gusein-Zade [1].

(iii) By Theorem5.4 any smooth isotopy of 2-links is a path in CS and can be made
transversal to the singular subspace�̄, which has codimension 1 by (i), hence the new
path will contain only finitely many isolated singularitiesof Definition 2.5.

(iv) The normal form of anA2-singularity of a functionR2 → R is pr(x; y) = x2 − y3,
i.e. the projection pr :S → R has the form above in suitable local coordinates
(x; y) ∈ S. A 2-link S, its cross-sections around the singularity and the graph ofy3

look like the middle pictures of Fig.18. The versal deformation of anA2-singularity is
pr(x; y; ") = x2−y3+"y, see Arnold, Varchenko and Gusein-Zade [1], i.e. any smooth
deformation of pr(x; y) can be expressed asf1(x; y; ") · pr(f2(x; y; "); f3(x; y; "); f4(")),
where f1; f2; f3; f4 are smooth,f1(0;0; 0) 6= 0, f2(x; y; 0) ≡ x, f3(x; y; 0) ≡ y and
f4(0) = 0.

For " < 0, a 2-linkS, its cross-sections around the singularity and the graph ofy3− "y
look like the left pictures of Fig.18. For " > 0, a 2-link S, its cross-sections around
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e=0 e>0e<0

xx x

x  = yx  = y  - ye x  = y  - ye

yy y

yy y

22 233 3

3
3

3 y  - ye
y  - ye

y

Figure 18: Transformation of a 2-link near anA2-singularity

the singularity and the graph ofy3 − "y look like the right pictures of Fig.18. For
instance, 2-links for" > 0 have a non-degenerate saddle atx = 0, y = √"=3 and a
local extremum atx= 0, y= −

√"=3.
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