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Dynnikov Three-Page Diagrams of Spatial 3-Valent Graphs

V. A. Kurlin UDC 515.162.8

Recently, Dynnikov suggested a new way of encoding nonoriented links by three-page dia-
grams [1], and this permitted him to obtain an algebraic classification of the isotopy classes of
nonoriented links (see [2]). We generalize this approach to 3-valent graphs. A finite graph is said
to be 3-valent if exactly three edges meet at any vertex. We consider only 3-valent nonoriented
graphs, which can be disconnected and have loops and multi-edges. By a spatial graph we mean
an embedding of a graph in R

3 under which the edges become finite polygonal lines. We study
the spatial graphs up to an ambient isotopy, where an ambient isotopy between two graphs is a
continuous family of homeomorphisms φt : R

3 → R
3 , t ∈ [0, 1], such that φ0 = id and φ1 sends one

of these graphs to the other. Isotopy invariants of spatial graphs were studied in [3, 4]. For other
equivalence relations (including concordance, homotopy, and homology), see [5].

The notion of spatial graph is motivated both theoretically and practically. First, the problem
to classify the spatial graphs up to isotopy is a special case of the general topological problem of
classifying the embeddings in Euclidean space. We simultaneously obtain a natural extension of
the classical knot theory to more complex one-dimensional objects. Many invariants of ordinary
links, including the Alexander polynomials and Vassiliev invariants, can be generalized to graphs
[6, 7]. As well as the ordinary links, the spatial graphs can readily be represented by plane diagrams
determined up to the following Reidemeister moves:
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Second, spatial graphs are useful mathematical models for long protein molecules in organic
chemistry and molecular biology. As is known, a twisted α-spiral is a stable primary structure
of a DNA molecule consisting of several hundred atoms [8]. The stability is caused by hydrogen
connections. Adding these connections to the molecule as virtual edges, we obtain a 3-valent graph
in R

3 . One of the main problems in modern biology is to predict the real shape of a molecule in
dependence on its atomic composition [9]. In particular, it is of interest to find out what spatial
graphs can be obtained for a given molecule. Diverse chemical properties are determined precisely
by the spatial structure of the molecule. For instance, it is of importance whether or not a molecule
can take the shape reflection symmetric to the original shape [10]. The principal difficulty is that
any biological system is open to any action of external forces. Some ferments can change the
topological type of a molecule. However, this process can be controlled, which helps to synthesize
certain compounds [11].

The discussion below follows [12]. Consider the semigroup Stg with the set of generators A =
{ai, bi, ci, di, ei, fi, gi, hi; i ∈ Z3} and the following 90 defining relations (i = 1, 2, 3; one of relations
(4) can be omitted by using (3)):

(1) ai = ai+1di−1 , bi = ai−1ci+1 , ci = bi−1ci+1 , di = ai+1ci−1 ,
(2) ei = digi = gi−1bi+1 = ai+1hi−1 , fi = hibi = di+1hi−1 = gi−1ci+1 ,
(3) d1d2d3 = 1,
(4) bidi = dibi = 1,

M. V. Lomonosov Moscow State University, Department of Mechanics and Mathematics. Translated from
Funktsional′nyi Analiz i Ego Prilozheniya, Vol. 35, No. 3, pp. 84–88, July–September, 2001. Original article sub-
mitted June 22, 2000.



231

(5) (di−1ci−1)x = x(di−1ci−1), where x ∈ {ci, ei, bi−1didi−1},
(6) uv = vu, where u ∈ {ai−1bi−1, ei−1bi−1 , bi+1di−1di+1bi−1}, v ∈ {ai, bi, ci, ei, bi−1didi−1}.
Theorem 1. Any spatial graph can be encoded by an element of the semigroup Stg.
Theorem 2. Spatial graphs are isotopic if and only if the elements representing them coincide

in Stg.
Theorem 3. An element of Stg encodes a spatial graph if and only if this element is central,

i.e., commutes with any element of this semigroup.
The proof of Theorem 3 is similar to that of Lemma 3 in [2]. Let P1 , P2 , P3 be three half-planes

in R
3 whose boundaries coincide: ∂P1 = ∂P2 = ∂P3 = α (see the right-hand part of the figure

below). Set Y = P1 ∪P2 ∪P3 . Let us choose an orientation on the axis α. By a three-page diagram
(a 3-diagram) of a spatial graph Γ we mean an embedding of the graph Γ in Y such that

(a) all 3-valent vertices of Γ belong to α;
(b) (transversality with respect to α) the intersection Γ ∩ α = A1 ∪ · · · ∪ Am is finite;
(c) two arcs abutting upon a vertex of degree two belong to different half-planes;
(d) two of three arcs abutting upon a 3-valent vertex belong to one half-plane and the third

arc belongs to another;
(e) (monotonicity) the restriction of the orthogonal projection R

3 → α ≈ R to any arch (a
connected component of the intersection Γ ∩ Pi) is a monotone function for any i = 1, 2, 3.

Proof of Theorem 1. A 3-diagram is said to be special if any arch in the half-plane P2 is
either of length 2, i.e., joins a vertex Ai with the vertex Ai+2 , or of length 1, in which case it
contains a 3-valent vertex. For a plane diagram of a graph we will construct a special three-page
diagram determining the same spatial graph. Let us mark a small segment (an intermediate bridge)
of the upper arc for any crossing of our plane diagram D and two small outgoing arcs (a primary
bridge) for any 3-valent vertex.

Let us choose an arbitrary non-self-intersecting orientable path in the plane of D such that the
ends of the path are outside D and the path passes along each bridge exactly once and intersects
the remaining part of the diagram transversally. Deform the plane of the diagram in such a way
that the path becomes a segment of a straight line α. Next, we attach a half-plane P2 along this
line and push out any bridge to P2 so that any intermediate bridge becomes a single trivial arch
and any primary bridge becomes a pair of arches meeting at a 3-valent vertex:
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Clearly, the entire 3-diagram of a spatial graph can uniquely be recovered from a part of this
diagram in a small neighborhood of the axis α. To this end, it suffices to join the oppositely directed
units, starting from the innermost ones, in each of the half-planes. In the vicinity of α, a 3-diagram
can consist of elements of the following 24 types:
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Let W be the set of all words in this alphabet A including the empty word ∅. For a given
3-diagram Γ, let us successively write out the above types of all vertices on the axis α. We obtain
a word wΓ ∈ W (for the diagram in the figure, one has wΓ = a3e1b3d3a2b3b1c2b3d3h3c3). Note that
in this way one can obtain only the so-called balanced words rather than all words in W . A simple
geometric criterion for a word to be balanced is as follows: all units outgoing from points on the
axis must be joined with one another. This condition can readily be represented algebraically via
the alphabet A. For nonbalanced words, units of the corresponding 3-diagram can come to the
boundary without joining to other units.

Outline of the proof of Theorem 2. All relations (1)–(6) can readily be realized by an
isotopy in R

3 . This isotopy can be carried out in the two-dimensional complex T obtained from
Y by attaching a half-plane P4 to P1 ∪ P2 along a line perpendicular to α. Any 3-diagram can
be reduced to a special one according to the following assertion (its proof is similar to that of
Proposition 2 in [1]).

Lemma 1. For any i ∈ Z3, any balanced word can be decomposed into the subwords ai, bi, ci,
di, ei, bi−1bidi−1, and bi−1didi−1 by means of relations (1)–(6).

It remains to show that relations (1)–(6) are sufficient to realize any isotopy of graphs. Intro-
duce the semigroup Sit of infinite tangles. Take two horizontal positive axes R+ in R

3 one of which
is above the other and denote by V the three-dimensional layer between the horizontal planes con-
taining these axes. Consider a 3-valent graph T with finitely many 3-valent vertices and countably
many isolated segments. By an infinite tangle we mean an embedding of the graph T in the above
layer V such that the end vertices of the graph T coincide with positive integer points on the
axes R+ . Assume that, at a rather large distance from the zero border, all segments of the tangle
are parallel to one another (but can be not vertical). The equivalence relation for such graphs is
an ambient isotopy on V that is the identity mapping on the boundary of the layer. The product
T1T2 of tangles is obtained by attaching the upper axis R+ of T2 to the lower axis R+ of T1 . We
thus obtain the structure of a semigroup on Sit with identity element 1 consisting of the vertical
segments. The next lemma can be proved similarly to the Reidemeister theorem. Geometrically,
relations (7)–(15) correspond to a passage through singularities of codimension one in the space of
all infinite tangles with self-intersections.

Lemma 2. The semigroup Sit can be presented by the generators uk , vk , σ±1
k , λk , and yk ,

❅❅��
k k + 1
� �

� �

uk

��❅❅

k k + 1
� �

� �

vk

�
�

�❅❅

❅❅

k k + 1
� �

� �

σk

��

��❅
❅

❅

k k + 1
� �

� �

σ−1
k

��
❅

❅
❅

k k + 1
� �

� �

λk

�
�

�❅❅

k k + 1
� �

� �

yk

and the defining relations (k + 1 < l)
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ukul = ul+2uk, ukvl = vl+2uk, ukσl = σl+2uk, ukλl = λl+2uk, ukyl = yl+2uk,

vkvl = vl−2vk, vkσl = σl−2vk, vkλl = λl−2vk, vkyl = yl−2vk, λkσl = σl−1λk,

λkλl = λl−1λk, λkyl = yl−1λk, ykσl = σl+1yk, ykyl = yl+1yk, σkσl = σlσk,

(8) vk+1uk = 1 = vkuk+1,

(9) λk = vk+1yk, yk = λkuk+1,

(10) vk+2σk+1uk = σ−1
k = vkσk+1uk+2,

(11) vkσk = vk, σkuk = uk,

(12) σkσ−1
k = 1 = σ−1

k σk,

(13) σkσk+1σk = σk+1σkσk+1,

(14) λkσk+1σk = σkλk+1, σkσk+1yk = yk+1σk, σkλk = λk+1σkσk+1, ykσk = σk+1σkyk+1,

(15) λkσk = λk, σkyk = yk.

One can convert any infinite tangle into a 3-diagram by erecting the axes R+ vertically, at-
taching two half-planes to the lower bound R× 0 thus obtained, and moving the crossings and the
3-valent vertices to the axis R× 0. This defines an embedding of the semigroup Sit of infinite tan-
gles in the semigroup Stg. In particular, the above generators are taken to the so-called elementary
words: uk = dk

3c3bk−1
3 , vk = dk−1

3 a3bk
3 , σk = dk−1

3 b2d3d2bk
3 , λk = dk−1

3 e3bk
3 , and yk = dk

3f3bk−1
3 . Any

balanced word can be decomposed into elementary ones, and this is similar to that in [12], i.e.,
a balanced word defines an infinite tangle. Since any spatial graph is represented by a balanced
word, it follows that an infinite tangle can be assigned to such a graph, and to isotopic spatial
graphs there correspond isotopic infinite tangles. To complete the proof of Theorem 2, it remains
to derive relations (7)–(15) of the semigroup Sit from relations (1)–(6) of the semigroup Stg. The
decomposition into elementary words and the proof of the relations are similar to those in [12].

The author expresses gratitude to his research supervisor professor V. M. Bukhshtaber for
support and to Associate Professor I. A. Dynnikov for attention to the research.
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