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ABSTRACT

A finitely presented semigroup RSGn is constructed for n ≥ 2. The centre of RSGn

encodes uniquely up to rigid ambient isotopy in 3-space all nonoriented spatial graphs
with vertices of degree ≤ n. This encoding is obtained by using three-page embeddings
of graphs into the three-page book T ×I, where T is the cone on three points, and I is the
unit segment. The notion of the three-page complexity for spatial graphs is introduced
via three-page embeddings. This complexity satisfies the properties of finiteness and
additivity under natural operations.

Keywords: Spatial graph; ambient isotopy; isotopy classification; universal semigroup;
three-page embedding; three-page complexity.
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1. Introduction

1.1. Statement of the problem and results

The method of three-page embeddings is developed for spatial graphs, i.e. finite
graphs embedded into 3-space. More precisely, the classification problem up to
rigid ambient isotopy is reduced to a word problem in finitely presented semigroups.
The key idea is to construct suitable three-page embeddings for neighborhoods of
vertices in a spatial graph. This construction allows us to reduce the number of
generators and defining relations in the universal semigroups for spatial graphs.

1.2. Motivation of the present research

The notion of a spatial graph is motivated both theoretically and practically.
Firstly, the classification problem of spatial graphs up to ambient isotopy in R3

is a special case of the general topological classification of the embeddings into Rm.
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The theory of spatial graphs is a natural extension of the classical knot theory to
more complicated one-dimensional objects. The isotopy classification problem of
spatial graphs was intensively studied in [6, 7]. Many invariants of ordinary links,
inlcuding the Alexander polynomial, Jones polynomial and Vassiliev finite-type
invariants can be generalized to graphs [11, 15]. The complexity theory for spatial
graphs was motivated by Matveev’s complexity of 3-dimensional manifolds, which
satisfies the properties of finiteness and additivity under connected sum [12].

Secondly, spatial graphs are useful mathematical models for long protein
molecules in molecular biology. For instance, it is of importance whether the shape
of a molecule is symmetric under reflection [14].

1.3. Review of the previous results

An embedding of a link in a structure resembling an open book with finitely many
pages was probably for the first time considered by Brunn in 1898 [1]. More exactly,
Brunn proved that each link is isotopic to a link that can be projected to the plane
with only one singular point. Later studies of such embeddings gave a new link
invariant, the arc index [3]. It turned out that each link can be embedded into the
book with three pages Y = T × I, where T is the cone on 3 points and I ≈ [0, 1].

In 1999 Dynnikov encoded all nonoriented links in R3 by three-page diagrams
and reduced the isotopy classification to a word problem in a finitely presented semi-
group [4, 5]. To be more precise these diagrams will be called three-page embeddings,
see the formal definition in Sec. 3.1. Formally, Dynnikov constructed the semigroup
DS such that its centre encodes all nonoriented links up to ambient isotopy in R3.
Vershinin and the author have extended the three-page approach to spatial 3-graphs
(graphs with vertices of degree only 3) [8] and to singular knots (links with finitely
many double intersections in general position) [10].

1.4. Basic definitions

A finite 1-dimensional CW-complex G is called a finite graph. Every 0-dimensional
(respectively, 1-dimensional) cell of G is said to be a vertex (respectively, an edge)
of the graph G. Since hanging edges having an endpoint of degree 1 cannot be
knotted, they are excluded. All graphs are considered up to homeomorphism.

Definition 1.1 (k-vertices of a graph, n-graphs and J-graphs).

(a) A vertex A ∈ G is called a k-vertex (i.e. A has degree k), if the graph G has
exactly k edges attached to A.

(b) Fix an integer n ≥ 2. If a graph G has k-vertices for k = 2, . . . , n only, then G

is said to be an n-graph.
(c) Let J = {j1, . . . , jk} be any set of integers jl ≥ 3. If a graph G has k-vertices,

where either k = 2 or k ∈ J , then G will be called a J-graph.
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We consider only nonoriented graphs, possibly disconnected. Self-loops and mul-
tiple edges are allowed. For instance, a 2-graph is the disjoint union of circles.

Definition 1.2 (a spatial graph, rigid and non-rigid isotopies). Let G be a
nonoriented finite graph. We work in the PL-category, i.e. the images of the edges
of G under an embedding in R3 are finite polygonal lines.

(a) A spatial (or knotted) graph is a subset G ⊂ R3, homeomorphic to G. We also
assume that a neighborhood of any vertex of G lies in a plane.

(b) An ambient PL-isotopy between spatial graphs G, H ⊂ R3 is a continuous
family of PL-homeomorphisms φt : R3 → R3, t ∈ [0, 1], such that φ0 = id,
φ1(G) = H .

(c) If in addition, at each moment t ∈ [0, 1] of the isotopy φt, a neighborhood of
every vertex of the graph φt(G) lies in a plane depending on t, then φt is called
a rigid isotopy. Otherwise φt is said to be a non-rigid isotopy.

For example, singular knots are spatial {4}-graphs considered up to rigid isotopy
[10]. See a singular knot and a 3-graph in Figs. 11, 12, respectively (Sec. 3). For
spatial 3-graphs, any non-rigid isotopy can be transformed into a rigid one. We may
keep three arcs at each 3-vertex of a graph in a (non-constant) plane. For spatial
n-graphs with n > 3, a non-rigid isotopy can permute edges at any vertex. Except
subsection 5.4 spatial n-graphs are considered up to rigid isotopy only.

Definition 1.3 (the encoding alphabet An). For each n ≥ 2, let us consider
the following encoding alphabet :

An = {ai, bi, ci, di, xm,i | i ∈ Z3, 3 ≤ m ≤ n}.
The index i always belongs to the group Z3 = {0, 1, 2}. In particular, for n = 2, we
get the Dynnikov alphabet from [4]:

A2 = {a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2}.
The alphabet An contains exactly 3(n + 2) letters.

Definition 1.4 (the universal semigroups RSGn and NSGn).

(a) Let RSGn be the semigroup generated by the letters of An and rela-
tions (1.1)–(1.10). Everywhere the integer parameters m, p, q will satisfy the
inequalities

3 ≤ m ≤ n, 2 ≤ p ≤ n + 1
2

, 2 ≤ q ≤ n

2
.

d0d1d2 = 1; (1.1)

bidi = dibi = 1; (1.2)

ai = ai+1di−1, bi = ai−1ci+1, ci = bi−1ci+1, di = ai+1ci−1; (1.3)

x2p−1,i−1 = dp−1
i−1 (x2p−1,idi+1)b

p−2
i−1 , x2q,i−1 = dq−2

i−1 (bi+1x2q,idi+1)b
q−2
i−1 ; (1.4)
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x2p−1,id
p−1
i = ai(x2p−1,id

p−1
i )ci, bp−1

i x2p−1,ibi = ai(b
p−1
i x2p−1,ibi)ci; (1.5)

dix2q,id
q−1
i = ai(dix2q,id

q−1
i )ci, bq−1

i x2q,ibi = ai(b
q−1
i x2q,ibi)ci; (1.6)

(dici)w = w(dici), where w ∈ {ci+1, bidi+1di, xm,i+1}; (1.7)

uv = vu, where
u ∈ {aibi, bi−1didi−1bi, x2p−1,ibi, dix2q,ibi},
v ∈ {ai+1, bi+1, ci+1, bidi+1di, xm,i+1};

(1.8)

(x2p−1,ibi)Dp,i = Dp−1,i(x2p−1,ibi), where Dk,i = dk
i dk

i+1d
k
i−1(k ≥ 1); (1.9)

(dix2q,ibi)Dq,i = Dq,i(dix2q,ibi). (1.10)

(b) Let us introduce the semigroup NSGn generated by the letters of An and
relations (1.1)–(1.8), (1.9′) xm,ibi(d2

i d
2
i+1d

2
i−1) = xm,ibi, 3 ≤ m ≤ n, i ∈ Z3.

(c) For any set J = {j1, . . . , jk} of integers jl ≥ 3, denote by RSGJ the semigroup
generated by the letters {ai, bi, ci, di, xm,i | i ∈ Z3, m ∈ J} and those rela-
tions (1.1)–(1.10) that contain only these letters. Let the semigroup NSGJ be
generated by the same letters and relations (1.1)–(1.8), (1.9′) for m ∈ J .

The semigroups RSGn and NSGn are monoids, the empty word ∅ is the identity
element. The generators bi and di are mutually inverse by (1.2). The generators ai

and ci have no inverses in RSGn and NSGn. A geometric interpretation for the
letters of An and relations (1.1)–(1.10) will be given in Sec. 2. One of the relations
in (1.2) is superfluous: it can be obtained from (1.1) and the other relations in (1.2).
Then the total number of relations (1.1)–(1.10) is 3(n2 + 7n − 2).

The semigroups RSG2 = NSG2 generated by 12 letters ai, bi, ci, di (i ∈ Z3)
and 48 defining relations (1.1)–(1.3), (1.7)–(1.8), that contain only the letters of A2,
coincide with the Dynnikov semigroup DS from [5]. The semigroups RSG3

∼= NSG3

and RSG{4} 	∼= NSG{4} are generated by 15 letters and 84 relations. Denote by |J |
the number of elements of a set J = {j1, . . . , jk}, jl ≥ 3. The semigroups RSGJ

and NSGJ are generated by 3(4 + |J |) letters and 3(16 + 11|J |+ |J |2) relations.

Definition 1.5 (the automorphisms ρn, εn and mirror image of a graph).

(a) Consider the following map on the letters of An: ρ(ai) = ci, ρ(bi) = di,

ρ(ci) = ai, ρ(di) = bi, ρ(x2p−1,i) = x2p−1,ibici, ρ(x2q,i) = x2q,i.

By the formula ρ(uv) = ρ(v)ρ(u) the map ρ extends to

the involutive automorphismsρn : RSGn → RSGn and εn : NSGn → NSGn.

Similarly, define the morphisms ρJ : RSGJ → RSGJ and εJ : NSGJ →
NSGJ .

(b) The mirror image of a spatial graph G ⊂ R3 is the spatial graph Ḡ ⊂ R3

reflection symmetric to G.

In Corollaries 1.9 and 1.11 below we shall consider the problem to decide whether
a spatial graph G is isotopic to its mirror image Ḡ.
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1.5. Main results

By Theorems 1.6 and 1.7 the isotopy classification of nonoriented spatial graphs
reduces to a pure algebraic word problem in finitely presented semigroups.

Theorem 1.6.

(a) A spatial n-graph G is encoded by an element wG ∈ RSGn.

(b) Two spatial n-graphs G, H ⊂ R3 are rigidly isotopic in R3 if and only if the
corresponding elements of the semigroup RSGn are equal: wG = wH .

(c) An element w ∈ RSGn encodes a spatial n-graph if and only if the element
w is central, i.e. w commutes with any element of RSGn. Moreover, there is
an algorithm to decide whether a given element w ∈ RSGn is central. The
algorithm is linear in the length of the word w.

Theorem 1.6 means that the centre of RSGn encodes uniquely all spatial n-
graphs up to rigid isotopy in R3. Proposition 5.4 in Sec. 5.2 shows that the whole
semigroup RSGn describes a wider class of rigid three-page tangles.

Theorem 1.7. The centre of the semigroup NSGn encodes all spatial n-graphs up
to non-rigid isotopy in R3. There is an algorithm to decide whether a given element
v ∈ NSGn is central. The algorithm is linear in the length of the word v.

Theorem 1.8. Let {G} be the set of all nonoriented spatial graphs considered up
to homeomorphism f : S3 → S3, which can reverse the orientation of S3. There
exists a complexity function tp : {G} → N with the following properties:

(a) for any k ∈ N, there is a finite number of spatial graphs G with tp(G) = k;
(b) there are well-defined operations on spatial graphs: the disjoint union G 
H, a

vertex sum G ∗ H, an edge sum G ∨ H such that

tp(G
H) = tp(G∗H) = tp(G)+tp(H)+2 and tp(G∨H) = tp(G)+tp(H)+3.

Theorem 1.8 was motivated by Matveev’s complexity for 3-manifolds [12].
Theorems 1.6 and 1.7 imply several algebraic and geometric corollaries.

Corollary 1.9.

(a) Let a spatial graph G be encoded by wG ∈ RSGn. The graph G is rigidly isotopic
to its mirror image if and only if ρn(wG) = wG in RSGn.

(b) Let a spatial n-graph G ⊂ R3 be encoded by vG ∈ NSGn. The graph G is non-
rigidly isotopic to its mirror image Ḡ if and only if εn(vG) = vG in NSGn.

An element w of a semigroup S is invertible, if w has left and right inverses.

Corollary 1.10.

(a) When 2 ≤ k < n the natural inclusion RSGk → RSGn is a monomorphism of
semigroups. The group of the invertible elements of RSGn coincides with the
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Dynnikov group DG ⊂ RSG2, generated by 2 letters:

DG = 〈x, y | [
[x, y], x2yx−2

]
=

[
[x, y], y2xy−2

]
=

[
[x, y], [x−1, y−1]

]
= 1〉,

where [x, y] = xyx−1y−1.

(b) When 2 ≤ k < n the natural inclusion NSGk → NSGn is a monomorphism of
semigroups. The group of the invertible elements of NSGn coincides with DG.

The commutator subgroup of DG is the braid group B∞ on infinitely many
strings [5]. The method of three-page embeddings can be applied to J-graphs.

Corollary 1.11.

(a) The centre of the semigroup RSGJ (respectively, NSGJ) encodes all spatial J-
graphs up to rigid (respectively, non-rigid) isotopy in R3. There is an algorithm
to decide whether a given element w ∈ RSGJ (respectively, v ∈ NSGJ) is
central. The algorithm is linear in the length of the given word.

(b) Let a spatial graph G be encoded by wG ∈ RSGJ (respectively, by vG ∈ NSGJ ).
The graph G is rigidly (respectively, non-rigidly) isotopic to its mirror image
if and only if ρJ(wG) = wG in RSGn (respectively, εJ(vG) = vG in NSGJ).

(c) For any subset K ⊂ J, the natural inclusions RSGK → RSGJ and NSGK →
NSGJ are monomorphisms of semigroups. The groups of the invertible ele-
ments of the semigroups RSGJ and NSGJ coincide with the Dynnikov
group DG.

The following corollary extends Brunn’s result on embeddings of links [1].

Corollary 1.12. Any spatial J-graph G ⊂ R3 is non-rigidly isotopic to a spatial
graph that can be projected to R2 with only one singular point.

It is well-known that not any finite graph can be topologically embedded into R2.
What minimal space contains all finite graphs? Theorem 1.6(a) implies

Corollary 1.13. Any finite graph (possibly with hanging edges) can be topologically
embedded into T × I, where T is the cone on three points, I ≈ [0, 1].

1.6. Outline of the paper

In Sec. 2, the generators and relations (1.1)–(1.10) of the semigroup RSGn are
described in a clear geometric way. Section 2.4 contains a scheme for the proof of
Theorem 1.6. In Sec. 3, the proofs for Theorem 1.6(a) and Corollary 1.13 are given.
Theorems 1.6(b), 1.6(c), 1.7 and Corollaries 1.9–1.12 are proved in Sec. 5.

The hard part of Theorem 1.6(b) is a particular case of Proposition 5.4 proved
in Sec. 5.2. In Sec. 6, we deduce Lemma 5.5 used in the proof of Proposition 5.4.
Section 7 discusses various approaches to the classification of spatial graphs via
three-page embeddings. Theorem 1.8 is proved in Sec. 7.3.
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Fig. 1. The Reidemeister moves for spatial graphs in R3.

2. Geometric Interpretation of Semigroups RSGn and NSGn

2.1. Reidemeister moves for spatial graphs

We start with an analogue of classical Reidemeister theorem for spatial graphs.

Theorem 2.1 [6]. Any spatial graph can be represented by its plane diagram up to
generalized Reidemeister moves R1–R5 in Fig. 1. In the case of non-rigid isotopy,
the move R5′ is taken instead of R5.

Subdivisions of edges and edge breaks are omitted. In Fig. 1 dots between two
arcs denote finitely many arcs. Reidemeister moves are local, but two-dimensional.
Theorem 1.6(b) states that moves (1.1)–(1.10) on words in An also generate any
rigid isotopy of graphs. Moves (1.1)–(1.10) are local and 1-dimensional.

2.2. Geometric interpretation of the alphabet An

The alphabet An was introduced in Definition 1.3. Here the letters of An will be
associated to particular geometric patterns of three-page embeddings.

Definition 2.2 (the three-page book Y, the axis α, the pages Pi).

(a) The three-page book is the product Y = T × I, where T is the cone on three
points and I ≈ [0, 1] is the oriented segment.

(b) The interval I − ∂I is homeomorphic to the line R and is said to be the axis α.
The set Y − ∂Y is the union P0 ∪ P1 ∪ P2 of three half-planes with common
oriented boundary ∂P0 = ∂P1 = ∂P2 = α. The half-planes Pi are called the
pages of Y.

In Figs. 2 and 3, every letter of An encodes a local embedding into the book Y.
In these figures, the page P0 lies above the axis α, the pages P1, P2 are below α,
and P2 is below P1, i.e. the arcs in P2 are shown in dashed lines.
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Fig. 2. The Dynnikov letters of the alphabet A2.

Fig. 3. The letters for vertices of degrees 3, 4, 5, 6.
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In Fig. 2, every letter with the index i ∈ Z3 = {0, 1, 2} denotes an embedding
of two arcs into the bowed disk Pi−1 ∪ Pi+1. In Fig. 3, each letter xm,i encodes an
embedding of a neighborhood of an m-vertex into the same disk Pi−1 ∪ Pi+1.

More exactly, one of the arcs at each (2p− 1)-vertex A1 lies in Pi−1 and points
toward to the positive direction of the axis α. The other arcs at A1 lies in Pi+1.
Exactly p− 1 of these arcs point toward to the positive direction of α, and another
ones point toward to the negative direction of α.

Similarly, two arcs at every 2q-vertex A2 lie in Pi−1, one of them points toward
to the positive direction of α, and the other one points toward to the negative
direction of α. Also the other 2q − 2 arcs at A2 lie in Pi+1, exactly q − 1 of them
point toward to the positive direction of α, and the other ones point toward to the
negative direction of α.

The disk Pi−1 ∪Pi+1 does not lie in a plane. Without loss of generality one can
assume that during a rigid isotopy a neighborhood of every vertex lies in such a
bowed disk. Attaching one local picture of Fig. 2 or 3 to another according to the
direction of α, we get a three-page embedding representing a given word w in An.
The words a0c0, a1c1, a2c2 encode the unknot, i.e. a circle embedded into R2.

2.3. Local isotopy moves in the three-page approach

Relations (1.1)–(1.10) can be performed by rigid isotopies denoted by ∼. During
rigid isotopies in Figs. 4–10 neighborhoods of vertices are in bowed disks.

2.4. Scheme for the proof of Theorem 1.6

The formal definition of a three-page embedding of a spatial graph is given in
Sec. 3.1. In Sec. 3.2, a three-page embedding G ⊂ Y of a spatial graph G ⊂ R3 will
be construsted from a plane diagram of G.

Fig. 4. Relations (1)–(2) between invertible elements.

Fig. 5. Relations (3) are trivial moves at intersection points.
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Fig. 6. Relations (4p) and (9) are twistings of arcs at a (2p − 1)-vertex.

Fig. 7. Relations (4q) and (10) are twistings of arcs at a 2q-vertex.

Fig. 8. Relations (5) are rotatings of arcs at a (2p − 1)-vertex.

Fig. 9. Relations (6) are rotatings of arcs at a 2q-vertex.

Fig. 10. These elements commute with a0, b0, c0, b2d0d2, xm,0 in (1.7)–(1.8).

Theorem 1.6(a) will be proved in Sec. 3.3, where the constructed three-page
embedding G ⊂ Y is encoded by a word in the alphabet An.

The hard part of Theorem 1.6(b) is that any rigid isotopy of spatial n-graphs
decomposes into elementary moves (1.1)–(1.10). For the proof of Theorem 1.6(b),
the notions of graph tangles and three-page tangles are introduced in Sec. 4. The
semigroup RGTn of all rigid graph tangles will be described by generators and
defining relations (4.1)–(4.13), see Lemma 4.4 in Sec. 4.2.
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Every three-page embedding of a graph can be transformed to an almost bal-
anced tangle, which is a particular three-page tangle. The semigroup RBTn of
almost balanced tangles is turned out to be isomorphic to RGTn, see Lemma 5.3
in Sec. 5.1. The isomorphism ϕ : RGTn → RBTn maps relations (4.1)–(4.13) to
relations ϕ(4.1)–ϕ(4.13) between words in the alphabet An.

Any three-page embedding of a graph can be represented by a graph tangle
of RGTn. By Lemma 4.4 any isotopy between three-page embeddings of graphs
decomposes into moves (4.1)–(4.13) between graph tangles, and hence into simple
isotopies ϕ(4.1)–ϕ(4.13) between almost balanced tangles.

So, it remains to deduce relations ϕ(4.1)–ϕ(4.13) of RBTn from relations (1.1)–
(1.10) of RSGn. This is Lemma 5.5, which will be checked in Sec. 6. Theorem 1.6
(c) is proved in Sec. 5.3 by using knot-like three-page tangles.

3. Three-Page Embeddings of Spatial Graphs

3.1. The definition of a three-page embedding

Let G be a finite graph, A ∈ G be its point. Any small segment γ ⊂ G with endpoint
A ∈ G is an arc of G. There are exactly k arcs at each k-vertex of G.

Definition 3.1 (a three-page embedding of a spatial graph). Suppose that
a spatial graph G ⊂ R3 is contained in the three-page book Y ⊂ R3. The embedding
G ⊂ Y is called a three-page embedding, if

(a) all vertices of the graph G lie in the axis α, see Fig. 11;
(b) the intersection G ∩ α = A1 ∪ · · · ∪ Ak is a non-empty finite set of points;
(c) the arcs at each 2-vertex Al ∈ G ∩ α lie in different pages Pi, Pj (i 	= j);
(d) balance: neighborhoods of vertices in G look like pictures of Fig. 3.

Since the arcs lying in a page Pi are not intersected, then by isotopy inside Y

we may secure the following condition, which will be always assumed:

(e) monotonicity: for each i ∈ Z3, the restriction of the orthogonal projection
Y → α to each connected component of the intersection G ∩ Pi is a monotonic
function.

3.2. Construction of a three-page embedding from a plane diagram

Let D be a plane diagram of a spatial graph G ⊂ R3. Formally, D ⊂ R2 is a plane
graph with vertices of two types: ones correspond to initial vertices of G and the
others represent usual crossings in a planar projection of the spatial graph G.

Definition 3.2 (bridges, upper and lower arcs of a plane diagram). Let
us choose following bridges and arcs in a plane diagram D.

(a) For each crossing of the plane diagram D, let us mark a small arc (a regular
bridge) in the overcrossing arc. See the left pictures of Figs. 11 and 12.
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Fig. 11. The spatial graph G is encoded by the word wG = a0a1b2d1x4,1d2c1c2.

Fig. 12. The spatial graph G is encoded by wG = a1x3,1d2a1b2b0c1d0x3,1d2b2c1.

(b) For every 2q-vertex B ∈ G, let us call two neighboring arcs at B upper arcs and
call the other 2q − 2 arcs at B lower arcs. Mark a small segment (a singular
bridge LB) containing B such that the upper arcs are separated from the lower
arcs by the bridge LB in a neighborhood of B. See the left picture of Fig. 11.

(c) For every (2p− 1)-vertex C ∈ G, let us call one arc at C an upper arc and call
the other 2p − 2 arcs at C lower arcs. Then mark a small segment (a singular
bridge LC) containing C such that the upper arc is separated from the lower
arcs by the bridge LC in a neighborhood of C. See the left picture of Fig. 12.

In the plane of D choose a non-self-intersecting oriented path α with the fol-
lowing properties.

(i) The ends of the path α lie far from the diagram D.
(ii) The path α goes through each bridge only once.
(iii) The path α intersects transversally the diagram D outside the bridges.
(iv) For every vertex A ∈ G, the upper arcs at A lie to the left of α. The lower arcs

at A lie to the right of α. See the left pictures of Figs. 11 and 12.
(v) For every 2q-vertex B ∈ G, an upper arc and exactly q − 1 lower arcs at B

meet the oriented path α to the left of B. Similarly, another upper arc and the
other q − 1 lower arcs at B meet α to the right of B. See the left picture of
Fig. 11.

(vi) The upper arc and p − 1 lower arcs at each (2p − 1)-vertex C meet α to the
right of C. The other p − 1 arcs at C meet α to the left of C. See Fig. 12.

Such a path α can be found as follows. Let us consider the bridges of D, i.e.
finitely many arcs in the plane of D. Draw an arbitrary path α through the bridges
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according to conditions (i), (ii) and (iv). Condition (iii) will hold, if the path α is
made to be in general position with respect to the diagram D.

Assume that condition (vi) does not hold for a (2p− 1)-vertex C. For instance,
let the upper arc γ at C meet α to the left of C. Slightly perturb the path α to the
right of C by a move similar to R2 in Fig. 1 in such a way that the upper arc meets
α to the right of C, see the left puicture of Fig. 12. We deal with condition (v)
similarly. Deform D in such a way that α becomes a line segment and

(vii) the restriction of the orthogonal projection R2 → α ≈ R to each connected
component of D − α is a monotone function.

Denote by P0 (respectively, P2) the upper part (respectively, the lower part) of
R2 −α, see the right pictures of Figs. 11 and 12. Let us attach the third page P1 at
the axis α and push out the regular bridges into P1 in such a way that each regular
bridge becomes a trivial arc (two line segments).

Conditions (a)–(c) of Definition 3.1 hold by the construction. Conditions (iv)–
(vii) of this subsection imply condition (d).

3.3. Encoding of a three-page embeddings

Here we encode a three-page embedding and simultaneously prove Theorem 1.6(a).

Proof of Theorem 1.6(a). Take a plane diagram D of a given spatial graph G.
Starting with D construct a three-page embedding G ⊂ Y as in Sec. 3.2.

An arbitrary three-page embedding is uniquely determined by its small part
near the axis α. Indeed, in order to reconstruct the whole embedding it suffices to
join all opposite-directed arcs in each page starting with innermost arcs.

Due to conditions (c)–(e) of Definition 3.1, only the patterns in Figs. 2 and 3
may occur in a three-page embedding near the axis α. Denote by Wn the set of all
words in the alphabet An including the empty word ∅. For the three-page embedding
G ⊂ Y, let us write one by one the letters of An corresponding to the intersection
points of G ∩ α. One gets a word wG ∈ Wn, see Figs. 11 and 12.

Finally, consider the word wG as an element of RSGn. Note that one can rotate
any three-page embedding around the axis α. Then each spatial graph G is repre-
sented by at least three words obtained from wG by the index map i �→ i + 1.

Proof of Corollary 1.13. Draw a given graph G (possibly with hanging edges)
in R2 in such a way that its edges are intersected in double points only. Near each
double point push exactly one arc out of R2. For the obtained spatial graph G ⊂ R3,
let us construct a three-page embedding G ⊂ Y as in Sec. 3.2.

3.4. Balanced words in the alphabet An

The encoding procedure from Sec. 3.2 cannot give all words of Wn.
Briefly, a word w ∈ Wn is called balanced, if it encodes a three-page embedding

of a spatial graph. There exists the following geometric criterion for a balanced
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word: “in each page Pi all the arcs have to be joined to one another”. Arcs in
an unbalanced three-page embedding can recede to infinity without meeting one
another. One can restate this criterion algebraically in terms of the alphabet An.

Definition 3.3 (balanced bracket expressions).

(a) An expression containing left and right round brackets is a bracket expression.
(b) A bracket expression β is called balanced, if (by reading β from left to right) in

each place the number of the left brackets is not less than the number of the
right ones, and their total numbers are equal.

Definition 3.4 (balanced words in the alphabet An).

(a) Let us consider the following substitution

ai, bi, ci, di, xm,i → ∅, ai±1, bi−1, di+1, x2p−1,i−1 → (; bi+1, ci±1, di−1 →);

x2q,i+1 →)(; x2q,i−1 →)q−1(q−1; x2p−1,i+1 →)p−1(p−1, where (j= j brackets (.

As usual, we have i ∈ Z3, 3 ≤ m ≤ n, 2 ≤ p ≤ n+1
2 and 2 ≤ q ≤ n

2 . Denote by
βi(w) the resulting expression after the above substitution into a word w ∈ Wn.

(b) A word w is called i-balanced, if the bracket expression βi(w) is balanced.
(c) A word w is said to be balanced, if it is i-balanced for each i ∈ Z3.

So, a word w is balanced if and only if all three bracket expressions βi(w) are
balanced. For example, the word w in Fig. 11 is balanced and provides

β0(w) = ((()())), β1(w) = ()(), β2(w) = (())().

Denote by Wn,i the set of all i-balanced words in An. Definition 3.4 implies
that there is an algorithm to decide whether a word w is balanced. The algorithm
computes the differences of the left and right brackets by reading βi(w) from left
to right and has a linear complexity in the length of w.

The intersection Wn,0 ∩ Wn,1 ∩ Wn,2 is the set of all balanced words in An.
Lemma 5.7 will show that this set encodes the centres of RSGn and NSGn.

4. Graph Tangles and Three-Page Tangles

4.1. Graph tangles

The category of tangles without vertices was studied by Turaev [16]. Let us take
two horizontal half-lines given by coordinates: (r, 0, 0) and (r, 0, 1), r ∈ R+. For all
k ∈ N, let us mark the points (k, 0, 0), (k, 0, 1) on these half-lines.

Definition 4.1 (rigid graph tangles). Let Γ be a nonoriented disconnected
infinite graph with vertices of degree ≤ n. A graph tangle is a subset of the
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3-dimensional layer {0 ≤ z ≤ 1}, homeomorphic to Γ, such that the following
conditions hold (see Fig. 13)

(a) the set of the 1-vertices of Γ coincides with the set of the marked points
{(k, 0, 0), (k, 0, 1) | k ∈ N};

(b) the connected components of Γ lying sufficiently far from the origin 0 ∈ R3 are
the line segments joining points (k, 0, 0) and (j, 0, 1) such that the difference
k − j is constant for all large j;

(c) a neighborhood of each vertex A ∈ Γ lies in a plane or in a bowed disk.

If an isotopy of graph tangles inside {0 < z < 1} keeps condition (c), then the
corresponding isotopy classes of graph tangles are rigid graph tangles.

Graph tangles are represented by their plane diagrams similarly to spatial
graphs. The product Γ1 × Γ2 of two graph tangles is the graph tangle obtained
by attaching the top half-line of Γ2 to the bottom half-line of Γ1 and then by
contracting the new layer {0 ≤ z ≤ 2} to the initial one.

The rigid isotopy classes of graph tangles form a semigroup RGTn. The unit
graph tangle 1 ∈ RGTn consists of the vertical line segments joining the points
(k, 0, 0) and (k, 0, 1), k ∈ N. Let us consider the rigid graph tangles in Fig. 13:

Tn = {ξk, ηk, σk, σ−1
k , λm,k | k ≥ 1, 3 ≤ m ≤ n}.

For any k ∈ N, the tangle ηkξk is the unknot added to the unit 1 ∈ RGTn.

4.2. The semigroup RGTn of rigid graph tangles

We work in the PL-category, i.e. graph tangles consist of finite polygonal lines.

Definition 4.2. (the graph Γxz, the extremal points and peculiarities
of Γxz).

(a) Denote by Γxz the image of a graph tangle Γ ⊂ {0 ≤ z ≤ 1} under the
projection to the xz-plane, see Fig. 13.

(b) The extremal points of Γxz are the images under the xz-projection of local
maxima and minima of the z-coordinate on the interiors of the edges of Γ.

(c) The images on the xz-plane of the vertices of Γ (except the 1-vertices), the
crossings and extremal points of Γxz are called the peculiarities of Γxz.

Fig. 13. The generators for the graph tangles.
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Each tangle in Fig. 13 has exactly one peculiarity. The tangles ξk and ηk have
an extremal point, σk and σ−1

k have a crossing, λm,k contains an m-vertex.

Definition 4.3 (graphs Γxz in general position). Let us say that a graph Γxz

is in general position on the xz-plane, if the following conditions hold (see Fig. 13):

(a) the graph Γxz has finitely many peculiarities;
(b) each crossing is not an extremal point;
(c) for every (2p − 1)-vertex C ∈ Γxz, exactly p − 1 arcs at endpoint C go up, i.e.

these p − 1 arcs point toward to the negative direction of the z-axis, the other
p arcs at endpoint C go down;

(d) for each 2q-vertex B ∈ Γxz, exactly q arcs at endpoint B go up, the other q

arcs at enpoint B go down;
(e) no two peculiarities lie in a horizontal line parallel to the x-axis.

Lemma 4.4 extends Turaev’s results [16] to graph tangles.

Lemma 4.4. The semigroup RGTn is generated by the letters of Tn and defining
relations (4.1)–(4.13), where k ≥ 1, 3 ≤ m ≤ n, 2 ≤ p ≤ n+1

2 , 2 ≤ q ≤ n
2 .

ξkξl = ξl+2ξk, ξkηl = ηl+2ξk, ξkσl = σl+2ξk, ξkλm,l = λm,l+2ξk s(l ≥ k); (4.1)

ηkξl = ξl−2ηk, ηkηl =ηl−2ηk, ηkσl = σl−2ηk, ηkλm,l = λm,l−2ηk (l ≥ k+2); (4.2)

σkξl = ξlσk, σkηl = ηlσk, σkσl = σlσk, σkλm,l = λm,lσk (l ≥ k + 2); (4.3)

λ2p−1,kξl = ξl−1λ2p−1,k, λ2p−1,kσl = σl−1λ2p−1,k,

λ2p−1,kηl = ηl−1λ2p−1,k, λ2p−1,kλm,l = λm,l−1λ2p−1,k (l ≥ k + p),

λ2q,kξl = ξlλ2q,k, λ2q,kσl = σlλ2q,k,

λ2q,kηl = ηlλ2q,k, λ2q,kλm,l = λm,lλ2q,k (l ≥ k + q);


(4.4)

ηk+1ξk = 1 = ηkξk+1; (4.5)

ηk+2σk+1ξk = σ−1
k = ηkσk+1ξk+2; (4.6)

ηk+p−1λ2p−1,k+1ξk = λ2p−1,k = ηkλ2p−1,k+1ξk+p; (4.7)

ηk+qλ2q,k+1ξk = λ2q,k = ηkλ2q,k+1ξk+q ; (4.8)

ηkσk = ηk, σkξk = ξk; (4.9)

σkσ−1
k = 1 = σ−1

k σk; (4.10)

σkσk+1σk = σk+1σkσk+1; (4.11)

λ2p−1,k+1Σk,p = Σk,p−1λ2p−1,k, λ2p−1,kΣ̄k,p = Σ̄k,p−1λ2p−1,k+1,

λ2q,k+1Σk,q = Σk,qλ2q,k, λ2q,kΣ̄k,q = Σ̄k,qλ2q,k+1,

where Σk,l = σkσk+1 · · ·σk+l−1, Σ̄k,l = σk+l−1 · · ·σk+1σk (l ≥ 1);

 (4.12)
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λ2p−1,kΣ′
k,p−1 = Σ′

k,p−2λ2p−1,k, λ2q,kΣ′
k,q−1 = Σ′

k,q−1λ2q,k, where

Σ′
k,0 = 1, Σ′

k,l = σ−1
k+l−1(σ

−1
k+l−2σ

−1
k+l−1) · · · (σ−1

k σ−1
k+1 · · ·σ−1

k+l−1), l ≥ 1.

}
(4.13)

Proof. Let Γ ⊂ {0 ≤ z ≤ 1} be a graph tangle. The graph Γxz can be moved to
general position on the xz-plane by a slight deformation. Then the xz-plane splits
by horizontal lines into strips each of that contains exactly one peculiarity of Γxz.

Consider the peculiarities of Γxz in succession from top to bottom one by one.
Write the corresponding generators in Fig. 13 from left to right. We get a word uΓ

in the alphabet Tn. The generators ξk, ηk represent extremal points; σk, σ−1
k denote

overcrossings and undercrossings; the letter λm,k corresponds to an m-vertex.
It suffices to prove that any rigid isotopy of graph tangles decomposes into

elementary isotopies (4.1)–(4.13). By [6, Theorem 2.1] and consideration relating
to the general position an arbitrary rigid isotopy of graph tangles decomposes into
the following moves:

(i) an isotopy in the class of diagrams in general position;
(ii) an isotopy interchanging the vertical positons of two peculiarities;
(iii) creation or annihilation of a pair of neighbouring extremal points;
(iv) an isotopy of a crossing or of a vertex near an extremal point;
(v) Reidemeister moves R1 − R5 in Fig. 1.

The type (i) isotopies preserve the constructed word uΓ in Tn.

The type (ii) isotopies are described by relations (4.1) − (4.4).
The type (iii) isotopies correspond to relations (4.5).

In [16, proof of Lemma 3.4], it was shown that all isotopies of a crossing near
an extremal point decompose geometrically into relations (4.6). Similarly, one can
check that relations (4.7)–(4.8) are sufficient to realize the type (iv) isotopies.

Reidemeister moves R1–R5 correspond to relations (4.9)–(4.13), respectively.

4.3. Three-page tangles

Let us consider three half-lines that have a common endpoint in the horizontal
plane {z = 0}. For example, let

Y = {x ≥ 0, y = z = 0} ∪ {y ≥ 0, x = z = 0} ∪ {x ≤ 0, y = z = 0} ⊂ {z = 0}.
Mark the integer points on the half-lines:

{(j, 0, 0), (0, k, 0), (−l, 0, 0) | j, k, l ∈ N}.
Let I ⊂ R3 be the line segment joining (0, 0, 0) and (0, 0, 1). Put (see Fig. 14):

P0 = {x > 0, y = z = 0} × I, P1 = {y > 0, x = z = 0} × I,

P2 = {x > 0, y = z = 0} × I.

Then Y × I is the three-page book with the pages Pi, see Definition 2.2.
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Fig. 14. The three-page tangles associated to the graph tangles from T6.

Definition 4.5 (rigid three-page tangles). Let Γ be a nonoriented discon-
nected infinite graph with vertices of degree ≤ n. A graph tangle is a subset Y × I,
homeomorphic to Γ, such that

(a) the set of the 1-vertices of Γ coincides with the set of the marked points

{(j, 0, 0), (j, 0, 1), (0, k, 0), (0, k, 1), (−l, 0, 0), (−l, 0, 1) | j, k, l ∈ N};

(b) all vertices of degree ≥ 3 lie in the segment I, see Fig. 14;
(c) finiteness : the intersection Γ ∩ I = A1 ∪ · · · ∪ Am is a finite set of points;
(d) the arcs at each 2-vertex Aj ∈ Γ ∩ I lie in different pages Pi, Pj (i 	= j);
(e) balance: neighborhoods of vertices Aj ∈ Γ ∩ α look like patterns in Fig. 3;
(f) monotonicitiy: for any i ∈ Z3, the restriction of the orthogonal projection

Y × I → I to each connected component of Γ ∩ Pi is a monotone function;
(g) for each i ∈ Z3, all connected components of Γ lying in the page Pi sufficiently

far from the origin 0 ∈ R3 are parallel line segments.

If three-page tangles are considered up to rigid (respectively, non-rigid) isotopy
in the layer {0 < z < 1}, then they are called rigid (respectively, non-rigid).

The reader may compare Definition 4.5 with Definitions 2.2 and 4.1.
The rigid isotopy classes of three-page tangles with vertices of degree ≤ n form

a semigroup. Proposition 5.4 will show that this semigroup is isomorphic to RSGn.
Any three-page tangle Γ ⊂ {0 ≤ z ≤ 1} can be encoded by a word wΓ in the
alphabet An (see Figs. 2 and 3) in the same way as in Sec. 2.3.
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5. Proof of Main Results

Theorems 1.6(b) and 1.6(c) will be proved in Secs. 5.2 and 5.3, respectively. Corol-
laries 1.9(a) and 1.10(a) will be checked at the end of Sec. 5.3. Section 5.4 is devoted
to the proofs of Corollaries 1.9(b), 1.10(b), 1.11 and 1.12.

5.1. The semigroup RBTn of almost balanced tangles

We are going to select almost balanced tangles among three-page tangles. The
semigroup RBTn of rigid almost balanced tangles will turn out to be isomorphic
to the semigroup RGTn of rigid graph tangles.

Definition 5.1 (almost balanced tangles up to rigid isotopy).

(a) A three-page tangle Γ ⊂ Y × I is called almost balanced, if the corresponding
word wΓ in An is simultaneously 1-balanced and 2-balanced. Equivalently, one
can assume that the marked points lying in P1, P2 are joined in an almost
balanced tangle by vertical line segments parallel to the z-axis.

(b) An isotopy of a tangle inside the layer {0 < z < 1} is said to be rigid, if
a neighborhood of each vertex lies in a plane or in a bowed disk. Denote by
RBTn the semigroup of the rigid isotopy classes of almost balanced tangles.

Any graph tangle in the sense of Definition 4.1 can be embedded into Y × I

in such a way that its 1-vertices lie in the half-lines {x ≥ 0, y = z = 0} and
{x ≥ 0, y = 0, z = 1}. Then we may add two infinite families of vertical line
segments in P1, P2 and get an almost balanced tangle.

Since graph tangles and three-page tangles are defined up to rigid isotopy in the
layer {0 < z < 1}, then there is a non-canonical homomorphism RGTn → RBTn.

Definition 5.2 (the isomorphism ϕ : RGTn → RBTn of semigroups).
Let us take the map ϕ : RGTn → RBTn defined on the generators of the semigroup
RGTn as follows (k ∈ N, see Fig. 14):

ϕ(ξk) = dk
2c2b

k−1
2 , ϕ(σk) = dk−1

2 b1d2d1b
k
2 , ϕ(λ2p−1,k) = dk−1

2 x2p−1,2b
k
2 ,

ϕ(ηk) = dk−1
2 a2b

k
2 , ϕ(σ−1

k ) = dk
2b1b2d1b

k−1
2 , ϕ(λ2q,k) = dk

2x2q,2b
k
2 .

}
(5.1)

Lemma 5.3. The map ϕ is a well-defined isomorphism of semigroups.

Proof. Let us show that rigidly isotopic graph tangles go to rigidly isotopic three-
page tangles under the map ϕ. By Definitions 4.5 and 5.1 tangles in the semigroups
RGTn and RBTn are considered up to rigid isotopy in {0 < z < 1}. Therefore, the
map ϕ is a well-defined monomorphism of semigroups.

Let us construct the inverse map ψ : RBTn → RGTn. To each almost balanced
tangle Γ ∈ RBTn associate the graph tangle ψ(Γ) ∈ RGTn given by the diagram
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constructed as follows. According to the property of being almost balanced, we
assume that all line segments of Γ lying in the pages P1, P2 are vertical.

Deleting these vertical line segments from Γ we obtain a graph tangle ψ(Γ) in
the sense of Definition 4.1. The composition ψ ◦ ϕ : RGTn → RGTn is identical on
the generators of RGTn, see Fig. 14. So, ϕ and ψ are mutually inverse.

Denote by ϕ(4.1) − ϕ(4.13) the relations between words in the alphabet An

which are obtained from relations (4.1)–(4.13) of the semigroup RGTn under the
isomorphism ϕ : RGTn → RBTn defined by formulae (5.1).

5.2. The hard part of Theorem 1.6(b)

If two words u, v ∈ Wn represent the same element of the semigroup RSGn, then
call them equivalent and denote by u ∼ v. Theorem 1.6(b) is a particular case of
Proposition 5.4 below. Actually, any spatial graph can be represented by a three-
page tangle encoded by a balanced word. If two balanced three-page tangles are
rigidly isotopic, then the corresponding words are equal by Proposition 5.4.

Proposition 5.4. The semigroup of the rigid isotopy classes of three-page tangles
is isomorphic to the semigroup RSGn.

Proof. As was mentioned at the end of Sec. 4.3, to each three-page tangle one can
associated a word w in the alphabet An and hence an element of RSGn. Conversely,
each element w ∈ RSGn can be completed to form a three-page tangle by adding
three families of parallel line segments on each page Pi, i ∈ Z3.

Indeed, let us draw local three-page embeddings (see Figs. 2 and 3) representing
the letters of the word w. Then extend all arcs until some of them meet one another
and the other arcs come to the boundary of Y × I.

For every page Pi, let us consider the arcs coming to the half-lines Pi ∩ {z = 0}
and Pi ∩ {z = 1}. We may assume that these arcs end the points marked by
1, 2, . . . , ni (say) and 1, 2, . . . , mi, respectively. In the page Pi, consider the points
marked by ni + k and mi + k for all k ∈ N. Join the points marked by ni + k and
mi + k by adding infinitely many parallel line segments lying in the page Pi. We
get a three-page tangle Γ(w) in the sense of Definition 4.5. For example, Fig. 14
shows the three-page tangles corresponding to the following elements of RSGn:

d2c2, a2b2, b1d2d1b2, x3,2b2, d2x4,2b2, x5,2b2, d2x6,2b2.

Relations (1.1)–(1.10) of the semigroup RSGn can be realized easily by rigid
isotopies inside {0 < z < 1}, see Figs. 4–10. It remains to prove that any rigid
isotopy of three-page tangles can be decomposed into the elementary isotopies cor-
responding to (1.1)–(1.10). It suffices to do this for almost balanced tangles.

Actually, take a three-page tangle Γ associated to a word wΓ. Consider the
marked points lying in P1 ∩ {z = 0} and P1 ∩ {z = 1} that are joined in Γ with
points in I. Let n1 and m1 be the maximal indices of the above points lying in
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P1 ∩{z = 0} and P1 ∩ {z = 1}, respectively. Let n2 and m2 be the maximal indices
of the similar marked points lying in P2∩{z = 0} and P2∩{z = 1}, respectively. The
letters a0 and b0 have n1 = n2 = 0, m1 = m2 = 1 and n1 = m2 = 0, m1 = n2 = 1,
respectively. The numbers ni, mi defined here are the same as above.

For all almost balanced tangle, we have n1 = m1 = n2 = m2 = 0. The word
bn2
1 dn1

2 wbm1
2 dm2

1 is 1-balanced and 2-balanced. Due to the invertibility of the gen-
erators bi and di such a transformation send equivalent words to equivalent ones.

By Lemma 5.3 to each almost balanced tangle of RBTn one can associate a
graph tangle in the sense of Definition 4.1. For such tangles, any rigid isotopy is
already decomposed into relations ϕ(4.1)–ϕ(4.13) in Lemma 4.4. Then Proposi-
tion 5.4 follows from Lemma 5.5, which will be checked in Sec. 6.3.

Lemma 5.5. Relations ϕ(4.1)–ϕ(4.13) follow from relations (1.1)–(1.10).

5.3. Remaining results in the rigid case

Due to Proposition 5.4 one can identify each element w ∈ RSGn with the corre-
sponding three-page tangle Γ(w).

Definition 5.6. (the identity three-page tangle, knot-like three-
tangles).

(a) The identity three-page tangle Γ(1) consists of the parallel line segments joining
marked points with same indices in every page Pi.

(b) A three-page tangle is called knot-like, if it contains a spatial graph added to
the identity tangle Γ(1). So, a knot-like tangle is encoded by a balanced word.

Theorem 1.6(c) follows from Lemma 5.7 stating that all balanced words encode
all central elements of RSGn. The algorithm to decide whether an element of RSGn

is balanced (or, equivalently, central) was discussed in Sec. 3.4.

Lemma 5.7. An element w ∈ RSGn encodes a knot-like three-page tangle Γ(w) if
and only if the element w is central in the semigroup RSGn.

Proof. The part only if is geometrically evident: a spatial graph can be moved
by a rigid isotopy to any place in a given tangle. Therefore, a balanced element
commutes with any other element by Proposition 5.4.

For the part if, let w be a central element in RSGn. Suppose that the associated
three-page tangle Γ(w) has an arc receding, in the page P0 (say), to the left bound-
ary of P0. The same arc exists in the tangle Γ(wa1), but not in Γ(a1w), because
the pattern encoded by a1 in Fig. 2 turns this arc from left to right.

Hence, the elements wa1 and a1w can not be equal in RSGn, that is a contra-
diction. Then the word w is 0-balanced, similarly w is 1-balanced and 2-balanced.
So, the word w is balanced and the three-page tangle Γ(w) is knot-like.
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Proof of Corollary 1.9(a). If a spatial graph G is encoded by a word wG,
then its mirror image Ḡ is encoded by ρn(wG). So, Corollary 1.9a follows from
Theorem 1.6(b).

Proof of Corollary 1.10(a). Any element of the Dynnikov group DG ⊂ DS =
RSG2 ⊂ RSGn is invertible. Conversely, if an element w ∈ RSGn is invertible,
then by Proposition 5.4 the corresponding three-page tangle Γ(w) can not contain
vertices of degree ≥ 3. Indeed, relations (1.1)–(1.10) preserve the number of the
m-vertices of Γ(w) or, equivalently, the number of the letters xm,0, xm,1, xm,2 in w.

Hence, only the letters ai, bi, ci, di may occur in w, i.e. w ∈ RSG2 = DS. But
the group of the invertible elements of DS is the group DG [5], i.e. w ∈ DG.

5.4. Non-rigid spatial graphs and spatial J-graphs

Here the method of three-page embeddings will be extended to non-rigid spatial
graphs and spatial J-graphs.

Proof of Theorem 1.7. The proof is similar to that of Theorem 1.6. Replace (1.9)–
(1.10) by

xm,ibi(d2
i d

2
i+1d

2
i−1) = xm,ibi, where 3 ≤ m ≤ n, i ∈ Z3. (1.9′)

Let us point out key moments. The non-rigid isotopy classes of graph tangles in
{0 ≤ z ≤ 1} form the semigroup NGTn. As in Lemma 4.4 the semigroup NGTn is
generated by the letters of the alphabet Tn, defining relations (4.1)–(4.12) and

λm,kσk = λm,k, where 3 ≤ m ≤ n, k ∈ N. (4.13′)

New relations (4.13′) correspond to Reidemeister move R5′, which switches two arcs
at an m-vertex in Fig. 1. The non-rigid isotopy classes of almost balanced tangles
in {0 ≤ z ≤ 1} form the semigroup NBTn isomorphic to NGTn. The isomorphism
ϕ : NGTn → NBTn is defined also by formulae (5.1).

The non-rigid isotopy classes of three-page tangles in {0 ≤ z ≤ 1} form the
semigroup isomorphic to NSGn, see Proposition 5.4 in Sec. 5.2. Actually, rela-
tions ϕ(4.1)–ϕ(4.12) of NBTn follow from relations (1.1)–(1.8) of NSGn, see the
proof of Lemma 5.5 in Sec. 6.3. New relations ϕ(4.13′) reduce to (1.9′) (the case of
a 2q-vertex is completely similar to the case of a (2p − 1)-vertex):

ϕ(λ2p−1,kσ−1
k )

(5.1)
= (dk−1

2 x2p−1,2b
k
2)(dk

2b1b2d1b
k−1
2 )

(1.2),(1.1)∼
(1.2),(1.1)∼ dk−1

2 x2p−1,2(d2d0)(d0d1)d1b
k−1
2

(1.2)∼ dk−1
2 (x2p−1,2b2)(d2

2d
2
0d

2
1)b

k−1
2

(1.9′)∼ dk−1
2 (x2p−1,2b2)bk−1

2

(5.1)
= ϕ(λ2p−1,k).

Corollaries 1.9(b) and 1.10(b) are verified absolutely analogously to Corollar-
ies 1.9(a) and 1.10(a), respectively. The proof of Corollary 1.11 is contained in the
proofs of the results for n-graphs: the condition 3 ≤ m ≤ n should be replaced by
m ∈ J .
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Proof of Corollary 1.12. Take a three-page embedding G ⊂ Y. Let ki be the
number of the arcs of G ∩ Pi. Split the page Pi into ki pages. Let us move the arcs
of G∩Pi to these new pages in such a way that each page contains exactly one arc.

Consider a plane R2 orthogonal to the axis α. Slightly deform the above arcs
of G in R3 in such a way that their images under the projection R3 → R2 along α

become nonintersecting loops. This is a desired projection.

6. Proof of Lemma 5.5

In Lemma 6.1 new word equivalences are deduced from relations (1.1)–(1.8) of the
semigroup RSGn. Lemmas 6.1, 6.2, 6.5, 6.6 will imply Lemma 6.7 on a decomposi-
tion of an i-balanced word. Relations ϕ(4.1)–ϕ(4.13) reduce to relations (1.1)–(1.10)
by Lemmas 6.7 and 6.8. Section 6.3 finishes the proof of Lemma 5.5 by exploiting
Lemmas 6.8–6.10. All relations in this section will be verified formally, but they
have a clear interpretation as well as relations (1.1)–(1.10) in Figs. 4–10.

6.1. New word equivalences in the semigroup RSGn

Let n ≥ 2 be fixed. The commutativity uv ∼ vu is denoted briefly by u ↔ v.

Lemma 6.1. Relations (1.1)–(1.8) imply the following ones (where i ∈ Z3 and

wi ∈ Bn,i = {ai, bi, ci, di, xm,i, bi−1bidi−1, bi−1didi−1 | 3 ≤ m ≤ n }) :

bi ∼ di+1di−1 or b0 ∼ d1d2, b1 ∼ d2d0, b2 ∼ d0d1; (6.1)

di ∼ bi−1bi+1 or d0 ∼ b2b1, d1 ∼ b0b2, d2 ∼ b1b0; (6.2)

di+1bi−1∼bi−1di+1ti, bi+1di−1∼ tidi−1bi+1, where ti = bi+1di−1di+1bi−1; (6.3)

ai ∼ ai−1bi+1, ci ∼ di+1ci−1; (6.4)

aibi ∼ ai−1di−1, dici ∼ bi−1ci−1; (6.5)

bi ∼ aibici, di ∼ aidici; (6.6)

bp−1
i x2p−1,id

p−1
i ∼ x2p−1,i+1bi+1; (6.7)

dp−1
i x2p−1,i+1bi+1b

p
i ∼ x2p−1,ibi; (6.8)

x2q,i+1 ∼ di−1b
q−2
i x2q,id

q−2
i bi−1; (6.9)

bq−1
i x2q,id

q−1
i ∼ di+1x2q,i+1bi+1; (6.10)

dici ↔ wi+1; (6.11)

bici ↔ wi−1; (6.12)

aibi ↔ wi+1; (6.13)

aidi ↔ wi−1; (6.14)
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ti, t
′
i ↔ wi, where ti = bi+1di−1di+1bi−1, t′i = di−1bi+1bi−1di+1; (6.15)

x2p−1,ibi ↔ wi+1; (6.16)

dix2q,ibi ↔ wi+1; (6.17)

bp−1
i x2p−1,id

p−1
i ↔ wi−1; (6.18)

dp−1
i−1 x2p−1,ibib

p
i−1 ↔ wi; (6.19)

bq−1
i x2q,id

q−1
i ↔ wi−1; (6.20)

di+1bi−1widi−1bi+1 ∼ bi−1di+1wibi+1di−1; (6.21)

b2
i−1aid

2
i−1 ∼ (bi−1aidi−1)d2

i (bi−1bidi−1)bi; (6.22)

b2
i−1bid

2
i−1 ∼ (bi−1bidi−1)d2

i (bi−1bidi−1)bi; (6.23)

b2
i−1cid

2
i−1 ∼ di(bi−1didi−1)b2

i (bi−1cidi−1); (6.24)

b2
i−1did

2
i−1 ∼ di(bi−1didi−1)b2

i (bi−1didi−1); (6.25)

b2
i−1x2p−1,id

2
i−1 ∼ (bi−1didi−1)dix2p−1,ib

2
i (bi−1bidi−1)(b2

i−1did
2
i−1); (6.26)

b2
i−1x2q,id

2
i−1 ∼ (b2

i−1bid
2
i−1)(bi−1didi−1)d2

i x2q,ib
2
i (bi−1bidi−1)(b2

i−1did
2
i−1). (6.27)

Proof. (6.1)–(6.3) follow from (1.1) and (1.2). Due to (1.2) we have di ∼ b−1
i ,

bi−1bidi−1 ∼ (bi−1didi−1)−1 and t′i ∼ t−1
i . Then (6.13) and (6.15)–(6.17) follow

from (1.8). The other equivalences will be verified step by step exploiting the already
checked ones. Since i ∈ Z3 = {0, 1, 2}, we have (i+1)+1 = i−1 and (i−1)−1 = i+1.

ai−1bi+1
(1.3)∼ (aidi+1)bi+1

(1.2)∼ ai, di+1ci−1
(1.3)∼ di+1(bi+1ci)

(1.2)∼ ci; (6.4)

aibi
(6.4)∼ (ai−1bi+1)bi

(6.2)∼ ai−1di−1, dici
(6.2)∼ (bi−1bi+1)ci

(1.3)∼ bi−1ci−1; (6.5)

aibici
(6.5)∼ ai(di+1ci+1)

(1.3)∼ ai−1ci+1
(1.3)∼ bi,

aidici
(6.5)∼ ai(bi−1ci−1)

(6.4)∼ ai+1ci−1
(1.3)∼ di;

 (6.6)

bp−1
i x2p−1,id

p−1
i

(1.4)∼ bp−1
i (dp−1

i x2p−1,i+1di−1b
p−2
i )dp−1

i

(1.2)∼
(1.2)∼ x2p−1,i+1(di−1di)

(6.1)∼ x2p−1,i+1bi+1;

 (6.7)

dp−1
i (x2p−1,i+1bi+1)b

p
i

(6.7)∼ dp−1
i (bp−1

i x2p−1,id
p−1
i )bp

i

(1.2)∼ x2p−1,ibi; (6.8)

di−1b
q−2
i x2q,id

q−2
i bi−1

(1.4)∼
(1.4)∼ di−1b

q−2
i (dq−2

i bi−1x2q,i+1di−1b
q−2
i )dq−2

i bi−1
(1.2)∼ x2q,i+1;

 (6.9)

bq−1
i x2q,id

q−1
i

(1.4)∼ bq−1
i (dq−2

i bi−1x2q,i+1di−1b
q−2
i )dq−1

i

(1.2)∼
(bibi−1)x2q,i+1(di−1di)

(6.1)∼ (bibi−1)x2q,i+1bi+1
(6.2)∼ di+1x2q,i+1bi+1.

 (6.10)
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Below in the proof of (6.11) we commute firstly bi+1 with dici and after that we
use this equivalence to commute ai+1 with dici.

bi+1(dici)
(6.6)∼ (ai+1bi+1ci+1)(dici)

(1.7)∼ ai+1bi+1(dici)ci+1
(6.2)∼

(6.2)∼ ai+1bi+1(bi−1bi+1)cici+1
(1.3)∼ (ai+1bi+1)bi−1ci−1ci+1

(1.8)∼
(1.8)∼ bi−1ci−1(ai+1bi+1)ci+1

(6.6)∼ bi−1ci−1bi+1
(1.3)∼

(1.3)∼ bi−1(bi+1ci)bi+1
(6.2)∼ (dici)bi+1;


(6.11b)

ai+1(dici)
(1.3)∼ (ai−1di)(dici)

(6.2)∼ ai−1(bi−1bi+1)(dici)
(6.11b)∼

(6.11b)∼ ai−1bi−1(dici)bi+1
(6.13)∼ (dici)(ai−1bi−1)bi+1

(6.2)∼
(6.2)∼ (dici)(ai−1di)

(1.3)∼ (dici)ai+1.

 (6.11a)

The remaining equivalences in (6.11) follow from (6.11a), (6.11b) and (1.7).
Equivalences (6.12) are easily proved by (6.5) and (6.11), as well as (6.14) by (6.5)
and (6.13), as well as (6.18) by (6.7) and (6.16), as well as (6.19) by (6.8) and (6.16),
as well as (6.20) by (6.10) and (6.17). The last calculations are straightforward:

di+1bi−1widi−1bi+1
(6.3)∼ (bi−1di+1ti)widi−1bi+1

(6.15)∼
(6.15)∼ bi−1di+1(witi)di−1bi+1

(6.3)∼ bi−1di+1wibi+1di−1;

 (6.21)

b2
i−1aid

2
i−1

(1.2)∼ b2
i−1ai(dibi)d2

i−1

(6.14)∼ bi−1(aidi)(bi−1bi)d2
i−1

(6.2)∼
(6.2)∼ bi−1aidi(bi−1bi)di−1(bi+1bi)

(6.15)∼ bi−1aibi+1(dibi−1bidi−1)bi
(6.1)∼

(6.1)∼ (bi−1aidi−1)d2
i (bi−1bidi−1)bi;

 (6.22)

b2
i−1bid

2
i−1

(1.2)∼ bi−1(bidi)bi−1bid
2
i−1

(6.2)∼ bi−1bi(dibi−1bidi−1)(bi+1bi)
(6.15)∼ bi−1bibi+1(dibi−1bidi−1)bi

(6.1)∼ (bi−1bidi−1)d2
i (bi−1bidi−1)bi;

 (6.23)

b2
i−1cid

2
i−1

(1.2)∼ b2
i−1(dibi)cid

2
i−1

(6.12)∼ b2
i−1didi−1(bici)di−1

(6.1)∼
(6.1)∼ (didi+1)(bi−1didi−1bi)cidi−1

(6.15)∼ di(bi−1didi−1bi)di+1cidi−1
(6.2)∼

(6.2)∼ di(bi−1didi−1)b2
i (bi−1cidi−1);

 (6.24)

b2
i−1did

2
i−1

(1.2)∼ b2
i−1didi−1(bidi)di−1

(6.1)∼ (didi+1)bi−1didi−1bididi−1

(6.15)∼ di(bi−1didi−1bi)di+1didi−1
(6.2)∼ di(bi−1didi−1)b2

i (bi−1didi−1);

 (6.25)
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b2
i−1x2p−1,id

2
i−1

(1.2)∼ b2
i−1x2p−1,i(bib

2
i+1d

2
i+1di)d2

i−1

(6.16)∼ b2
i−1b

2
i+1(x2p−1,ibi)d2

i+1did
2
i−1

(6.2)∼
(6.2)∼ bi−1(didi+1)b2

i+1x2p−1,ibi(bibi−1)2did
2
i−1

(1.2)∼
(1.2)∼ bi−1dibi+1x2p−1,ib

2
i (bi−1bi)bi−1did

2
i−1

(6.1),(1,2)∼
(bi−1didi−1)dix2p−1,ib

2
i (bi−1bidi−1)(b2

i−1did
2
i−1);


(6.26)

b2
i−1x2q,id

2
i−1

(1.2)∼ b2
i−1(bidi)x2q,i(bib

2
i+1d

2
i+1di)d2

i−1

(6.17)∼
b2
i−1bib

2
i+1(dix2q,ibi)d2

i+1did
2
i−1

(6.1)∼ b2
i−1bi(di−1di)2dix2q,ibid

2
i+1did

2
i−1

(6.2)∼ (b2
i−1bidi−1)didi−1d

2
i x2q,ibi(bibi−1)2did

2
i−1

(1.2)∼
(b2

i−1bid
2
i−1)(bi−1didi−1)d2

i x2q,ib
2
i (bi−1bidi−1)(b2

i−1did
2
i−1).


(6.27)

6.2. Decomposition of i-balanced words

The goal here is to prove Lemma 6.7, which allows us to decompose i-balanced
words into elementary ones. Due to this decomposition infinitely many relations
ϕ(4.1)–ϕ(4.13) will reduce to finitely many relations (1.1)–(1.10).

Lemma 6.2. For each i ∈ Z3, any i-balanced word is equivalent by (1.1)–(1.8),
(6.1)–(6.27) to an i-balanced word containing only ai, bi, ci, di, xm,i, bi−1, di−1.

Proof. The rest letters can be eliminated by using the substitutions:

x2p−1,i+1
(1.4)∼ dp−1

i+1 x2p−1,i−1dib
p−2
i+1 , x2p−1,i−1

(1.4)∼ dp−1
i−1 x2p−1,idib

p−2
i−1 ,

x2q,i−1
(1.4)∼ dq−2

i−1 bi+1x2q,idi+1b
q−2
i , x2q,i+1

(6.9)∼ di−1b
q−2
i x2q,id

q−2
i bi−1,

ai+1
(1.3)∼ ai−1di, ci+1

(1.3)∼ bici−1, ai−1
(1.3)∼ aidi+1, ci−1

(1.3)∼ bi+1ci,

bi+1
(6.1)∼ di−1di, di+1

(6.2)∼ bibi−1.

In what follows, fix an index i ∈ Z3.

Definition 6.3 (the encoding µ(w) and depth d(w) of a word).

(a) Let w be an i-balanced word in the letters ai, bi, ci, di, xm,i, bi−1, di−1. Consider
the following substitution

µ : ai, bi, ci, di, xm,i → •; bi−1 → (; di−1 →).

Denote by µ(w) the resulting encoding consisting of brackets and bullets.
(b) Since w is i-balanced, the encoding µ(w) without bullets is a balanced bracket

expression, see Definition 3.3. For each place k, denote by dif(k) the difference
between the number of the left and right brackets in the subword of µ(w) ending
at this place. The maximum of dif(k) over all k is called the depth of w, d(w).

For example, the word w = b2
i−1aid

2
i−1 gives µ(w) = ((•)) and d(w) = 2.

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

7.
16

:5
9-

10
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

D
U

R
H

A
M

 o
n 

01
/0

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 9, 2007 14:42 WSPC/134-JKTR 00521

Three-Page Encoding and Complexity Theory for Spatial Graphs 85

Definition 6.4 (stars and star decomposable words).

(a) A star of depth k is an encoding of the type (k•)k that has k pairs of brackets.
The bullet • is the star of depth 0.

(b) If the encoding µ(w) decomposes into several stars, then w is called star decom-
posable. In this case, the depth d(w) is the maximal depth over the depths of
all stars participating in the decomposition.

Lemma 6.5. Every i-balanced word w is equivalent to a star decomposable word
w′ of same depth d(w′) = d(w).

Proof. Consider the beginning of the encoding µ(w). After several initial left brack-
ets the encoding µ(w) contains either a right bracket or a bullet.

In the first case, delete a pair of brackets () by relation bi−1di−1
(1.2)∼ ∅. Hence,

we may assume that the next symbol after k left brackets is a bullet. Since µ(w) is
balanced, after this bullet there can be a sequence of j, 0 ≤ j ≤ k, right brackets.

If j < k, then insert the subword dk−j
i−1 bk−j

i−1

(1.2)∼ ∅ in w after the last right bracket.
This operation does not change the depth d(w). Therefore, in the resulting word
w1, the encoding µ(w1) contains a star of depth k at the beginning.

For instance, starting with word w = bi−1a
2
i di−1, we get w1 =

bi−1aidi−1bi−1aidi−1 and µ(w1) = (•)(•). Continuing this process, after a finite
number of steps, we get a star decomposable word wN with d(wN ) = d(w).

For a letter s, denote by s′ the word bi−1sdi−1, for example, a′
i = bi−1aidi−1.

Lemma 6.6. For each i ∈ Z3, every star decomposable word w is equivalent to a
word decomposed into the following i-balanced subwords

ai, bi, ci, di, xm,i, a′
i, b′i, c′i, d′i, x′

m,i, where 3 ≤ m ≤ n.

Proof. Induction on d(w). The case d(w) = 1 is trivial. Let the encoding µ(w)
contain a star of depth ≥ 2. Apply one of the following moves to every such star.

u = b2
i−1aid

2
i−1

(6.22)∼ a′
id

2
i b

′
ibi = v, i.e. µ(u) = ((•)) → µ(v) = (•) • •(•)•;

u = b2
i−1bid

2
i−1

(6.23)∼ b′id
2
i b

′
ibi = v, i.e. µ(u) = ((•)) → µ(v) = (•) • •(•)•;

u = b2
i−1cid

2
i−1

(6.24)∼ did
′
ib

2
i c

′
i = v, i.e. µ(u) = ((•)) → µ(v) = •(•) • •(•);

u = b2
i−1did

2
i−1

(6.25)∼ did
′
ib

2
i d

′
i = v, i.e. µ(u) = ((•)) → µ(v) = •(•) • •(•);

u = b2
i−1x2p−1,id

2
i−1

(6.26)∼ (bi−1didi−1)dix2p−1,ib
2
i (bi−1bidi−1)(b2

i−1did
2
i−1)

(6.25)∼
b′idix2p−1,ib

2
i b

′
i(did

′
ib

2
i d

′
i) = v, i.e. µ(u) = ((•)) → µ(v) = (•) • • • •(•) • (•) • •(•);
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u = b2
i−1x2q,id

2
i−1

(6.27)∼ (b2
i−1bid

2
i−1)(bi−1didi−1)d2

i x2q,ib
2
i (bi−1bidi−1)(b2

i−1did
2
i−1)

(6.23),(6.25)∼ (b′id
2
i b

′
ibi)d′id

2
i x2q,ib

2
i b

′
i(did

′
ib

2
i d

′
i) = v, i.e.

µ(u) = ((•)) → µ(v) = (•) • •(•) • (•) • • • • • (•) • (•) • •(•).

We get a word w1 ∼ w of depth d(w1) = d(w) − 1. By Lemma 6.5 the word w1

is equivalent to a star decomposable word w2 of depth d(w2) = d(w1) = d(w) − 1.
The induction step is complete.

Recall that Wn,i is the set of all i-balanced words in the alphabet An.

Lemma 6.7. For each i ∈ Z3, every i-balanced word from Wn,i is equivalent to a
word decomposed into i-balanced words belonging to the set

Bn,i = {ai, bi, ci, di, bi−1bidi−1, bi−1didi−1, xm,i | 3 ≤ m ≤ n}.

Proof. By Lemmas 6.5 and 6.6 it remains to eliminate only the following words:

a′
i = bi−1aidi−1

(6.1),(1.2)∼ (didi+1)aidi−1
(1.2)∼ (didi+1)ai(bidi)di−1

(6.13)∼
(6.13)∼ di(aibi)di+1didi−1

(6.2)∼ diaib
2
i (bi−1didi−1);

c′i = bi−1cidi−1
(6.2),(1.2)∼ bi−1ci(bi+1bi)

(1.2)∼ bi−1(bidici)(bi+1bi)
(6.11)∼

(6.11)∼ bi−1bibi+1(dici)bi
(6.1)∼ (bi−1bidi−1)d2

i cibi;

x′
2p−1,i = bi−1x2p−1,idi−1

(1.2)∼ bi−1x2p−1,i(bidi)di−1
(6.1)∼ (didi+1)(x2p−1,ibi)didi−1

(6.16)∼ di(x2p−1,ibi)di+1didi−1
(6.2)∼ dix2p−1,ib

2
i (bi−1didi−1);

x′
2q,i = bi−1x2q,idi−1

(1.2)∼ bi−1(bidi)x2q,i(bidi)di−1

(1.2)∼ bi−1bi(bi+1di+1)(dix2q,ibi)didi−1
(6.17)∼

bi−1bibi+1(dix2q,ibi)di+1didi−1
(6.1),(6.2)∼ (bi−1bidi−1)d2

i x2q,ib
2
i (bi−1didi−1).

In equivalences (6.11)–(6.21), let us replace the condition wi ∈ Bn,i by wi. The
resulting relations will be denoted by (6.11′)–(6.21′).

Lemma 6.8. Relations (6.11′)–(6.21′) hold for all i-balanced words wi.

Proof. By Lemma 6.7 each i-balanced word w ∈ Wn,i can be decomposed into the
i-balanced words belonging to Bn,i. Since commutative equivalences (6.11)–(6.21)
hold for words in Bn,i by Lemma 6.7, they also hold for all words wi ∈ Wn,i.
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6.3. Deduction of relations ϕ(4.1)–ϕ(4.13) from (1.1)–(1.10)

Relations ϕ(4.1)–ϕ(4.13) between words in An were obtained from (4.1)–(4.13)
under the isomorphism ϕ : RGTn → RBTn, see Sec. 5.1.

For l ≥ 1, denote by ul a generator of the semigroup RGTn, i.e.

ul ∈ {ξl, ηl, σl, σ
−1
l , λm,l | 3 ≤ m ≤ n}.

Define the shift maps θk : RGTn → RGTn and ωk : RBTn → RBTn by θk(ul) =
uk+l and ωk(w) = dk

2wbk
2 , k ≥ 1. Then θk is a well-defined homomorphism of

semigroups. Indeed, each relation in (4.1)–(4.13) for k > 1 is obtained from the
corresponding relation for k = 1 by the shift map θk−1. For example, relation
ξkξl = ξl+2ξk is obtained from ξ1ξl−k+1 = ξl−k+3ξ1 under the shift map θk−1.

Due to relations (1.2) the shift map ωk sends equivalent words to equivalent
ones, i.e. ωk is also a homomorphism. The following diagram is commutative.

RGTn
θk−−−−→ RGTn

ϕ

	 	ϕ

RBTn
ωk−−−−→ RBTn

Lemma 6.9. For each k ∈ N, relations ϕ(4.1)–ϕ(4.13) can be obtained from rela-
tions ϕ(4.1)–ϕ(4.13) for k = 1 by using relation (1.2) b2d2 ∼ 1 ∼ d2b2.

Proof. It follows from the commutativity of the diagram. For instance, we have

ϕ(ξkξl) = ϕ ◦ θk−1(ξ1ξl−k+1) = ωk−1 ◦ ϕ(ξ1ξl−k+1) = dk−1
2 ϕ(ξ1ξl−k+1)bk−1

2

ϕ(4.1)∼
dk−1
2 ϕ(ξl−k+3ξ1)bk−1

2 = ωk−1 ◦ ϕ(ξl−k+3ξ1) = ϕ ◦ θk−1(ξl−k+3ξ1) = ϕ(ξl+2ξk).

Lemma 6.10. Under the map ϕ : RGTn → RBTn relations (1.1)–(1.10), (6.1)–
(6.10), (6.11′)–(6.21′) imply the following ones:

ϕ(Σ1,l) ∼ b1d
l
2d1b

l
2, where Σk,l = σkσk+1 · · ·σk+l−1; (6.28)

ϕ(Σ̄k,l) ∼ dk−1
2 bl

1d2d
l
1b

k
2 , where Σ̄k,l = σk+l−1 · · ·σk+1σk; (6.29)

ϕ(Σ′
1,l) ∼ Dl+1,2, where Dk,i = dk

i dk
i+1d

k
i−1. (6.30)

Proof. The following calculations are straightforward:

ϕ(Σ1,l) = ϕ(σ1) · · ·ϕ(σl)
(5.1)∼ (b1d2d1b2)(d2b1d2d1b

2
2) · · · (dl−1

2 b1d2d1b
l
2)

(1.2)∼ (b1d2d1)(b1d2d1)(̧b1d2d1b
l
2)

(1.2)∼ b1d
l
2d1b

l
2;

 (6.28)
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ϕ(Σ̄1,l)
(5.1)∼ (dl−1

2 b1d2d1b
l
2)(d

l−2
2 b1d2d1b

l−1
2 ) · · · (b1d2d1b2)

(1.2)∼ dl−1
2 (b1d2d1b

2
2)l−2(b1d2d1b2)(b2b1)d2d1b2

(6.15′)∼ dl−1
2 (b1d2d1b

2
2)

l−2(b2b1)(b1d2d1b2)d2d1b2

(1.2)∼ dl−1
2 (b1d2d1b

2
2)

l−3(b1d2d1b2)(b2
2b

2
1)d2d

2
1b2

(6.15′),(1.2)∼ · · · (6,15′),(1.2)∼ dl−1
2 (bl−1

2 bl
1)d2d

l
1b2

(1.2)∼ bl
1d2d

l
1b2,

ϕ(Σ̄k,l) = ϕ(θk−1(Σ̄1,l)) = ωk−1(ϕ(Σ̄1,l)) ∼ dk−1
2 bl

1d2d
l
1b

k
2 ;


(6.29)

ϕ(Σ′
1,l) = ϕ(σ−1

l ) · · ·ϕ(σ−1
1 · · ·σ−1

l ) = ϕ(Σ̄−1
l,1 ) · · ·ϕ(Σ̄−1

2,l−1)ϕ(Σ̄−1
1,l )

(6.29)∼ (dl
2b1b2d1b

l−1
2 )(dl−1

2 b1b2d1b
l−2
2 ) · · · (d2

2b
l−1
1 b2d

l−1
1 b2)(d2b

l
1b2d

l
1)

(1.2)∼
(1.2)∼ dl

2b1(b2b1)l−1b2d
l
1

(6.2)∼ dl
2b1d

l−1
0 b2d

l
1

(6.1)∼ dl+1
2 dl+1

0 dl+1
1 = Dl+1,2.

 (6.30)

Proof of Lemma 5.5. Here relations ϕ(4.1)–ϕ(4.13) are deduced from equivalences
(1.1)–(1.10), (6.1)–(6.10), (6.11′)–(6.21′), (6.28)–(6.30). Denote by the star � the
following images under the map ϕ : RGTn → RBTn, see (5.1):

ϕ(ξ1) = d2c2, ϕ(σ1) = b1d2d1b2, ϕ(λ2p−1,1) = x2p−1,2b2,

ϕ(η1) = a2b2, ϕ(σ−1
1 ) = d2b1b2d1, ϕ(λ2q,1) = d2x2q,2b2.

The words ϕ(ul) = dl−1
2 � bl−1

2 are 1-balanced (see Fig. 14), i.e. dl
2 � bl

2 ∈ Wn,1 for
each l ∈ N. Then ϕ(4.1)–ϕ(4.4) can be proved following the same scheme:

ϕ(ξ1ul)
(1.2)∼ d2

2(b2c2)(dl−1
2 � bl−1

2 )
(6.12′)∼ d2

2(d
l−1
2 � bl−1

2 )(b2c2)
(1.2)∼ ϕ(ul+2ξ1);

(4.1)

ϕ(η1ul)
(1.2)∼ (a2d2)(dl−3

2 � bl−3
2 )b2

2

(6.14′)∼ (dl−3
2 � bl−3

2 )(a2d2)b2
2

(1.2)∼ ϕ(ul−2η1);

(4.2)

ϕ(σ1ul)
(1.2)∼ (b1d2d1)(dl−2

2 � bl−1
2 )

(6.1)∼ d2
2(b2d0d2b0)(dl−3

2 � bl−3
2 )b2

2

(6.15′)∼
d2
2(d

l−3
2 � bl−3

2 )(b2d0d2b0)b2
2

(6.2)∼ (dl−1
2 � bl−2

2 )(b2b1)d2d1b2
(5.1)
= ϕ(ulσ1);

 (4.3)

ϕ(λ2p−1,1ul)
(1.2)∼ dp−1

2 (bp−1
2 x2p−1,2d

p−1
2 )(dl−p−1

2 � bl−p−1
2 )bp

2

(6.18′)∼
dp−1
2 (dl−p−2

2 � bl−p−2
2 )(bp−1

2 x2p−1,2d
p−1
2 )bp

2

(1.2)∼ ϕ(ul−1λ2p−1,1);

ϕ(λ2q,1ul)
(1.2)∼ dq

2(b
q−1
2 x2q,2d

q−1
2 )(dl−q−1

2 � bl−q−1
2 )bq

2

(6.20′)∼
dq
2(d

l−q−1
2 � bl−q−1

2 )(bq−1
2 x2q,2d

q−1
2 )bq

2

(1.2)∼ ϕ(ulλ2q,1).


(4.4)

The remaining calculations are straightforward:

ϕ(η2ξ1)
(1.2)∼ d2(a2b2c2)

(6.6)∼ d2b2
(1.2)∼ 1

(1.2),(6.6)∼ (a2d2c2)b2
(1.2)∼ ϕ(η1ξ2); (4.5)
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ϕ(η3σ2ξ1)
(5.1)
= (d2

2a2b
3
2)(d2b1d2d1b

2
2)(d2c2)

(1.2)∼
(1.2)∼ d2

2a2b2(b2b1)d2d1(b2c2)
(6.2)∼ d2

2(a2b2)d0d2d1(b2c2)
(6.13)∼

(6.13)∼ d2
2d0(a2b2)d2d1(b2c2)

(6.12)∼ d2(d2d0)(a2b2)d2(b2c2)d1
(1.2)∼

(1.2)∼ d2(d2d0)(a2b2c2)d1
(6.1)∼ d2b1(a2b2c2)d1

(6.6)∼ d2b1b2d1
(5.1)
= ϕ(σ−1

1 ),

ϕ(η1σ2ξ3)
(5.1)
= (a2b2)(d2b1d2d1b

2
2)(d

3
2c2b

2
2)

(1.2)∼ a2b1d2(d1d2)c2b
2
2

(6.1)∼ a2b1d2(b0c2)b2
2

(1.3)∼ (a0d1)b1d2c1b
2
2

(1.2)∼ a0d2(b1d1)c1b
2
2

(6.11)∼
a0d2b1b2(d1c1)b2

(6.15)∼ (d2b1b2d1)(a0c1)b2
(1.3),(1.2)∼ d2b1b2d1

(5.1)
= ϕ(σ−1

1 );



(4.6)

ϕ(ηpλ2p−1,2ξ1)
(5.1),(1.2)∼ dp−1

2 (a2b
p−1
2 x2p−1,2b2c2)

(1.5)∼
(1.5)∼ dp−1

2 (bp−1
2 x2p−1,2b2)

(1.2),(5.1)∼ ϕ(λ2p−1,1),

ϕ(η1λ2p−1,2ξp+1)
(5.1),(1.2)∼ (a2x2p−1,2d

p−1
2 c2)b

p
2

(1.5)∼
(1.5)∼ d2

2(x2p−1,2d
p−1
2 )bp

2

(1.2),(5.1)∼ ϕ(λ2p−1,1);


(4.7)

ϕ(ηq+1λ2q,2ξ1)
(5.1),(1.2)∼ dq

2(a2b
q−1
2 x2q,2b2c2)

(1.6)∼
(1.6)∼ dq

2(b
q−1
2 x2q,2b2)

(1.2)∼ d2x2q,2b2
(5.1)
= ϕ(λ2q,1),

ϕ(η1λ2q,2ξq+1)
(5.1),(1.2)∼ (a2d2x2q,2d

q−1
2 c2)b

q
2

(1.6)∼
(1.6)∼ (d2x2q,2d

q−1
2 )bq

2

(1.2)∼ d2x2q,2b2
(5.1)
= ϕ(λ2q,1);


(4.8)

ϕ(σ1ξ1)
(1.2)∼ b1d2(d1c2)

(6.4)∼ b1(d2c0)
(6.4)∼

(6.4)∼ b1c1
(6.1)∼ (d2d0)c1

(6.4)∼ a2b2
(5.1)
= ϕ(ξ1),

ϕ(η1σ1)
(1.2)∼ a2(b2b1)d2d1b2

(6.2)∼ (a2d0)d2d1b2
(1.3)∼

(1.3)∼ (a1d2)d1b2
(1.3)∼ (a0d1)b2

(1.3)∼ ϕ(η1);


(4.9)

ϕ(σ1σ
−1
1 )

(5.1)
= (b1d2d1b2)(d2b1b2d1)

(1.2)∼ (b1d2)(b2d1)
(1.2)∼ 1

(1.2)∼
(1.2)∼ (d2b1)(d1b2)

(1.2)∼ (d2b1b2d1)(b1d2d1b2)
(5.1)
= ϕ(σ−1

1 σ1);

 (4.10)

ϕ(σ2σ1σ2)
(1.2)∼ d2b1d2d1b

2
2b1d

2
2d1b

2
2

(6.2)∼ d2(b1d2d1b2)d0d
2
2d1b

2
2

(6.15)∼
d2d0(b1d2d1b2)d2

2d1b
2
2

(6.1)∼ b2
1d2(d1d2)d1b

2
2

(6.2)∼ b2
1d2(d1d2)d1(d0d1)b2

(6.1)∼
b2
1d2b0d1(d0d1)b2

(1.2)∼ b2
1(d2b0d1d0b2)d2d1b2

(6.21)∼ b2
1(b0d2d1b2d0)d2d1b2

(6.1)∼ b2
1(d1d2)d2d1b2d0d2d1b2

(6.2)∼ b1d
2
2d1b2(b2b1)d2d1b2

(1.2)∼ ϕ(σ1σ2σ1);


(4.11)
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ϕ(λ2p−1,2Σ1,p)
(6.28)∼ (d2x2p−1,2b

2
2)(b1d

p
2d1b

p
2)

(6.2)∼ d2(x2p−1,2b2)d0d
p
2d1b

p
2

(6.16)∼ d2d0(x2p−1,2b2)d
p
2d1b

p
2

(1.2)∼ (d2d0)(d
p−1
2 bp−1

2 )(x2p−1,2d
p−1
2 )d1b

p
2

(6.1)∼ b1d
p−1
2 (bp−1

2 x2p−1,2d
p−1
2 )d1b

p
2

(6.18)∼ b1d
p−1
2 d1(b

p−1
2 x2p−1,2d

p−1
2 )bp

2

(1.2)∼ (b1d
p−1
2 d1b

p−1
2 )(x2p−1,2b2)

(6.28)∼ ϕ(Σ1,p−1λ2p−1,1),

ϕ(λ2p−1,1Σ̄1,p)
(6.29)∼ (x2p−1,2b2)(b

p
1d2d

p
1b2)

(1.2)∼
bp−1
1 (dp−1

1 x2p−1,2b2b
p
1)d2d

p
1b2

(6.19)∼ bp−1
1 d2(d

p−1
1 x2p−1,2b2b

p
1)d

p
1b2

(1.2)∼ (bp−1
1 d2d

p−1
1 b2)(d2x2p−1,2b

2
2)

(6.29),(5.1)∼ ϕ(Σ̄1,p−1λ2p−1,2),



(4.12)

ϕ(λ2q,2Σ1,q)
(6.28)∼ (d2

2x2q,2b
2
2)(b1d

q
2d1b

q
2)

(1.2)∼ d2
2x2q,2b

2
2b1d

q
2d1b

q
2

(6.2)∼ d2(d2x2q,2b2)d0d
q
2d1b

q
2

(6.17)∼ d2d0(d2x2q,2b2)d
q
2d1b

q
2

(1.2)∼
(1.2)∼ (d2d0)(d2x2q,2d

q−1
2 )d1b

q
2

(6.1)∼ b1(d2x2q,2d
q−1
2 )d1b

q
2

(2)∼
(1.2)∼ b1d

q
2(b

q−1
2 x2q,2d

q−1
2 )d1b

q
2

(6.20)∼ b1d
q
2d1(b

q−1
2 x2q,2d

q−1
2 )bq

2

(1.2)∼ (b1d
q
2d1b

q
2)(d2x2q,2b2)

(6.28),(5.1)∼ ϕ(Σ1,qλ2q,1),

ϕ(λ2q,1Σ̄1,q)
(6.29)∼ (d2x2q,2b2)(b

q
1d2d

q
1b2)

(1.2)∼ d2x2q,2b2b
q
1d2d

q
1b2

(1.6)∼ d2(d0b
q−2
1 x2q,1d

q−2
1 b0)b2b

q
1d2d

q
1b2

(6.2),(1.2)∼ bp
1(d1x2q,1b1)d2d

q
1b2

(6.17)∼ bq
1d2(d1x2q,1b1)d

q
1b2

(2)∼ bq
1d2d1(d

q−2
1 b0x2q,2d0b

q−2
1 )dq−1

1 b2

(6.1),(1.2)∼ (bq
1d2d

q
1b2)(d2

2x2q,2b
2
2)

(6.29),(5.1)∼ ϕ(Σ̄1,qλ2q,2);



(4.13)

ϕ(λ2p−1,1Σ′
1,p−1)

(6.30)∼ (x2p−1,2b2)Dp,2
(1.9)∼

(1.9)∼ Dp−1,2(x2p−1,2b2)
(6.30)∼ ϕ(Σ′

1,p−2λ2p−1,1),

ϕ(λ2q,1Σ′
1,q−1)

(6.30)∼ (d2x2q,2b2)Dq,2
(1.10)∼

(1.10)∼ Dq,2(d2x2q,2b2)
(6.30)∼ ϕ(Σ′

1,q−1λ2q,1).


(4.14)

7. Further Approaches to Classification of Spatial Graphs

By Theorems 1.6 and 1.7 the isotopy classification of spatial graphs reduces to a
word problem in the semigroups RSGn, NSGn. A solution of the word problem
will provide an algorithmic classification of spatial graphs up to ambient isotopy.

Problem 7.1. Find an algorithm to decide whether two central elements of the
semigroup RSGn (respectively, NSGn) are equal.

In Sec. 7.1 the semigroups RSGn and NSGn are studied via representation the-
ory of groups. In Lemma 7.6 a presentation for the fundamental group π1(S3 − G) of
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a spatial graph G is obtained by means of three-page embeddings. This description
will be used to get a lower bound for the three-page complexity tp(G). In Sec. 7.3
a complexity theory for spatial graphs is developed by introducing the three-page
complexity tp(G) in Definition 7.10. A lower bound of tp(G) will be obtained in
terms of the group π1(S3 − G), see Proposition 7.20 in Sec. 7.4. In Sec. 7.5 spatial
graphs up to complexity 6 are described.

7.1. Groups associated to the semigroups RSGn, NSGn.

By Theorems 1.6 and 1.7 any representation of RSGn, NSGn, that is non-trivial
on their centres, gives an isotopy invariant of spatial graphs. Representation theory
of groups is simpler than that of semigroups. So, the goal is to map the semigroups
RSGn, NSGn to groups and then to study representations of these groups.

Definition 7.2 (the group F̃ associated to a semigroup F ). Let F be a
finitely presented semigroup generated by a set A and relations R. Put A−1 =
{a−1 | a ∈ A}. The associated group F̃ is generated by the set A ∪ A−1 and rela-
tions R. The natural homomorphism F → F̃ is given by A → A ∪ A−1.

Lemma 7.3. The groups R̃SGn, ÑSGn are isomorphic to the free abelian group
Zn+1 generated by ãi, x̃m, where i ∈ Z3, 3 ≤ m ≤ n. The natural homomorphisms
RSGn → R̃SGn and NSGn → ÑSGn are defined on the generators:

ai �→ ãi, bi �→ ãi−1 − ãi+1, ci �→ −ãi, di �→ ãi+1 − ãi−1, x2q,i �→ x̃2q ,

x2p−1,0 �→ x̃2p−1, x2p−1,1 �→ x̃2p−1 + ã2 − ã0, x2p−1,2 �→ x̃2p−1 + ã2 − ã1.

Proof. Let ãi, b̃i, c̃i, d̃i be the images of ai, bi, ci, di under the natural homomor-
phisms RSGn → R̃SGn and NSGn → ÑSGn. Relations (1.1)–(1.10) convert to

new relations (̃1.1) − (̃1.10) between words in the letters ãi, b̃i, c̃i, d̃i.
Firstly, let us consider the case n = 2, i.e. the Dynnikov semigroup DS =

RSG2 = NSG2. The elements b̃i, d̃i ∈ D̃S are invertible by (1.2). In order to get
a presentation of D̃S, let us add the symbols ã−1

i , c̃−1
i that are inverses of ãi, c̃i,

respectively. We have (̃1.3) b̃i = ãi−1c̃i+1, d̃i = ãi+1c̃i−1. Then b̃i = ãi−1c̃i+1 =
c̃−1
i−1ã

−1
i+1 or c̃i−1ãi−1c̃i+1ãi+1 = 1.

Put ẽi = c̃iãi, i ∈ Z3. Hence, ẽ2ẽ1 = ẽ0ẽ2 = ẽ1ẽ0 = 1, i.e. ẽ0 = ẽ1 = ẽ2 and
ẽ2
0 = 1. The relation (1.1) maps to (̃1.1) ã1c̃2ã2c̃0ã0c̃1 = 1 or c̃1ã1c̃2ã2c̃0ã0 = 1, i.e.

ẽ3
0 = 1 and ẽ0 = ẽ1 = ẽ2 = 1. So, the elements ãi, c̃i are mutually inverse.

Then (̃1.3) ãi+1 = ãi−1d̃i and b̃i = ãi+1c̃i+1 imply ãi+1 = ãi−1b̃
−1
i and b̃i =

ãi−1ã
−1
i+1, respectively. Therefore, ãi+1 = ãi−1ãi+1ã

−1
i−1, i.e. the elements ãi commute

with each other. So, D̃S is the free abelian group Z3 generated by ã0, ã1, ã2. The
other letters are b̃i = ãi−1ã

−1
i+1, c̃i = ã−1

i , d̃i = ãi+1ã
−1
i−1.
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In the general case n > 2, it suffices to check that the images x̃m,i of the letters
xm,i commute with each other and with all ãi. Recall that commutativity uv = vu

is briefly denoted by u ↔ v. Relations

(̃1.5) x̃2p−1,id̃
p−1
i = ãi(x̃2p−1,id̃

p−1
i )ã−1

i , (̃1.6) d̃ix̃2q,id̃
q−1
i = ãi(d̃ix̃2q,id̃

q−1
i )ã−1

i

imply x̃k,i ↔ ãi, where 3 ≤ k ≤ n. By (̃1.4) we get ãi ↔ x̃k,i±1. By (̃1.8) x̃2p−1,i b̃i ↔
≈xm,i+1 and d̃ix̃2q,i b̃i ↔ x̃m,i+1 we have x̃k,i ↔ x̃m,i+1. By (̃1.4) we conclude
x̃m,i+1 ↔ x̃k,i±1. The symbols x̃m,1, x̃m,2 are expressed in terms of x̃m = x̃m,0 by
(̃1.4), (̃6.7), (̃6.9).

For each i ∈ Z3, introduce the linear functions

Fi : R̃SGn, ÑSGn → Z by Fi(ãi) = 0, F (ãi±1) = 1, Fi(x̃m) = 0,

except i = 2 and m = 2p − 1. In the latter case, put F2(x̃2p−1) = 1.
Denote by |β| the difference between the number of the left and right brackets

in a bracket expression β. The following claim is an easy observation.

Lemma 7.4. For any w ∈ RSGn, NSGn and i ∈ Z3, we have Fi(w̃) = |βi(w)|.
Now we may describe the images of RSGn and NSGn in the associated groups.

Elements of the groups R̃SGn and ÑSGn will be written in the abelian form.

Proposition 7.5. Under the natural homomorphisms RSGn → R̃SGn and
NSGn → ÑSGn, the centres of RSGn, NSGn map to the set{
− zã0−zã1 + zã2 + k3x̃3 + · · · + knx̃n

∣∣∣∣∣ ∑
2≤p≤n+1

2

k2p−1 = 2z, km ≥ 0, 3 ≤ m ≤ n

}
.

The centre of DS = RSG2 = NSG2 maps to the zero element 0 ∈ D̃S ∼= Z3.

Proof. Let w̃ be the image of a word w ∈ RSGn or w ∈ NSGn under the natural
homomorphism. By Lemma 7.3 the word w̃ ∈ R̃SGn, ÑSGn has the form w̃ =
xã0 + yã1 + zã2 +

∑n
m=3 kmx̃m, where x, y, z, km ∈ Z. Since the words βi(w) are

balanced, then |βi(w)| = 0 for each i ∈ Z3. By Lemma 7.4 we have

F0(w̃) = y + z = 0, F1(w̃) = z + x = 0, F2(w̃) = x + y +
∑

p

k2p−1 = 0,

i.e. x = y = −z and
∑

p k2p−1 = 2z. Conversely, any word w̃ of this type is the
image of the central element w = az

2x
k3
3,0 · · ·xkn

n,0c
z
0c

z
1 ∈ RSGn, NSGn.

The image of the centre of RSG3
∼= NSG3 is {−zã0−zã1 +zã2 +2zx̃3 | z ≥ 0}.

For singular knots, the centre of RSG{4} maps to the subset {kx̃4 | k ≥ 0} of the

group Z4 generated by ã0, ã1, ã2, x̃4. If the image of a word in R̃SG{4} is w̃G = kx̃4,
then the given singular knot G contains exactly k singular points.
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More generally, only the set of the vertices of a spatial graph G can be recon-
structed from the image of an encoding word wG in the associated group. It means
that the algebrac approach to the method of three-page embeddings can be effective
only via semigroups, not via groups.

7.2. Presentation of the fundamental group π1(S3 − G)

Further spatial graphs G ⊂ S3 are considered up to homeomorphism f : S3 → S3,
which can reverse the orientation of S3. Assume that S3 is obtained from R3 by
adding the infinity point ∞. For a knot (or a graph) K ⊂ S3, the fundamental
group π1(S3 − K) is said to be the knot group π(K) or the graph group.

Neuwirth constructed a presentation of the knot group by using an arc presen-
tation of a given knot [13]. The arc presentation is an embedding of a knot into a
book with finitely many pages in such a way that each page contains exactly one
arc. The Neuwirth construction will be modified for three-page embeddings.

Adding the infinity point ∞ to the axis α gives the circle ᾱ ⊂ S3. Let us
demonstrate our computations for the trefoil K in Fig. 15. We are going to choose
the Neuwirth loops lying in S3 near the pages Pi, the base point is ∞ ∈ ᾱ. For each
arc γ ⊂ K∩Pi, let us take a loop going around γ and all the arcs lying in Pi farther
from α than γ. See the right picture of Fig. 15.

For example, for the arc A1A2 ⊂ P1 in Fig. 15, we take the loop r near P1.
Similarly, the arc A1A3 ⊂ P0 provides the loop u0 near P0. The chosen loops will
be the generators of π(K). To each segment AjAj+1 ⊂ α associate two or three
loops (at most one near each page) going around nearest arcs. To get defining
Neuwirth’s relations let us write down the associated loops from P0 to P2. The
segment A1A2 ⊂ α provides u0r = 1, the segment A2A3 gives u0v1 = 1.

In fact, we get the following presentation:

π(K) = 〈u0, u1, u2, u3, r, s, t, v1, v2, v3 | u0r = u0v1 = sv1 = u1sv2

= u2sv3 = u3v3 = u3t
−1v2 = u2t

−1v1 = u1t
−1 = 1〉.

Fig. 15. The trefoil K is encoded by the word wK = a2d0d2a2
1b2b0c21c2.
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We have r−1 = v−1
1 = u0 = u2t

−1 = s, v−1
2 = u1s = u3t

−1, v−1
3 = u2s = u3, u1 = t,

hence u0 = s, u1 = t, u2 = st, u3 = tst. Relation u2s = u3 converts to sts = tst.
We get the presentation π(K) = 〈s, t | sts = tst〉 of the trefoil group.

Lemma 7.6. The above modification of the Neuwirth construction provides a pre-
sentation of the graph group π(G) = π1(S3 − G) for any spatial graph G ⊂ Y.

Proof. For each segment AjAj+1 ⊂ α, choose a small subsegment Ij ⊂ AjAj+1.
For sufficiently small ε > 0, let N(Ij) be the ε-neighborhood (a cylinder) of Ij , and
N(A1Am) be the ε

2 -neighborhood (also a cylinder) of the segment A1Am. We join
the two neighboring cylinders N(Ij), N(Ij+1) by an arc Tj ⊂ R3 − Y. Put

X = N(I1) ∪ T1 ∪ N(I2) ∪ · · · ∪ Tm−2 ∪ N(Im−1), Y = S3 − (G ∪ N(A1Am)).

Then the space X is contractible, i.e. π1(X) = 1. The group π1(Y ) is freely gener-
ated by the Neuwirth loops. Moreover, the space X ∪Y is homotopically equivalent
to S3 − G, hence π1(X ∪ Y ) = π(G).

By Seifert–Van–Kampen’s theorem, in order to get a presentation of π1(X ∪ Y )
we should add relations corresponding to all generators of π1(X ∩ Y ). The inter-
section X ∩ Y consists of the tubes N(Ij) − N(A1Am) joined by the arcs Tj . The
group π1(X ∩ Y ) is generated by loops going around the segments Ij ⊂ AjAj+1.
All defining relations of π(G) are Neuwirth’s relations introduced above.

Definition 7.7 (the disjoint union, a vertex sum, an edge sum, a loop
sum).

(a) A spatial graph F ⊂ S3 is called the disjoint union of spatial graphs G, H ⊂ S3

and denoted by G 
 H , if there is a two-sided 2-sphere S ⊂ S3 such that
F = G∪H , the subgraph G ⊂ F lies inside the sphere S, the subgraph H ⊂ F

lies outside S.
(b) A spatial graph F ⊂ S3 is called a vertex sum of spatial graphs G, H ⊂ S3 and

denoted by G∗H , if there is a two-sided 2-sphere S ⊂ S3 such that F = G∪H ,
F ∩ S = v is either a vertex or a point inside a loop of G and H , the subgraph
G − v lies inside the sphere S, H − v lies outside S, see Fig. 16.

(c) A spatial graph F ⊂ S3 is called an edge sum of spatial graphs G, H ⊂ S3 and
denoted by G ∨ H , if there is a two-sided 2-sphere S ⊂ S3 and an edge e ⊂ F

such that F − e = G ∪ H , F ∩ S = e ∩ S = 1 point, G lies inside S, H lies
outside S.

(d) A spatial graph F ⊂ S3 is called a loop sum of spatial graphs G, H ⊂ S3 and
denoted by G ◦ H , if there is a two-sided 2-sphere S ⊂ S3 and an arc I ⊂ S

such that F = (G ∪ H)− I, G ∩ H = I is contained in a loop eG ⊂ G and in a
loop eH ⊂ H , the subgraph G − I ⊂ F lies inside S, H − I lies outside S, see
Fig. 16.
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Fig. 16. A vertex sum of spatial graphs, an edge sum, a loop sum.

The disjoint union G 
 H is determined uniquely up to homeomorphism f :
S3 → S3. In the case of links, the notion of a loop sum coincides with the usual
connected sum. For arbitrary spatial graphs, a loop sum can be nonassociative and
noncommutative since it depends on the loops eG, eH from Definition 7.7(d).

For finitely presented groups π, π′, the group π ∗ π′ is called the free product
of π, π′. A presentation of π ∗ π′ can be obtained by uniting the generators and
defining relations of π, π′. Lemma 7.6 implies

Lemma 7.8. For any spatial graphs G, H ⊂ S3, we have

π(G 
 H) ∼= π(G ∗ H) ∼= π(G ∨ H) ∼= π(G) ∗ π(H).

Due to Lemma 7.8 we are able to calculate the Alexander polynomial of spatial
graphs by means of three-page embeddings. This allows us to classify an infinite
family of singular knots with arbitrary numbers of singular points and crossings
[9, Propositions 2.4–2.5].

7.3. Complexity theory for spatial graphs

It is convenient to extend a three-page embedding to a more general one.

Definition 7.9 (general three-page embeddings). An embedding G ⊂ Y of a
graph is called a general three-page embedding, if conditions (a)–(c) of Definition 3.1
hold and

(f) a neighborhood of each m-vertex A ∈ G lies in Pi ∪ Pj ⊂ Y.

A general three-page embedding of a spatial graph can be constructed as in
Sec. 3.2, but there is no need to check conditions (iv)–(vi) there. General three-page
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embeddings also can be encoded by finitely many letters. We may prove analogues
of Theorems 1.6 and 1.7, but in this general case universal semigroups will be
generated by much more letters and defining relations.

Definition 7.10 (the arch number ar(G) and three-page complexity
tp(G)).

(a) An arch of a general three-page embedding G ⊂ Y is a connected component
of G − α. The arch number ar(G) is the number of arches in the embedding.

(b) The three-page complexity tp(G) is the minimum of ar(G) − 2 over all possible
general three-page embeddings G ⊂ Y of a given spatial graph G.

In the case of a link L ⊂ Y, the arch number ar(L) is equal to the length of wL.
In general, we have tp(G) ≥ 0 for a spatial graph G. Moreover, tp(G) = 0 if and
only if G is the unknot O1. For the Hopf link L, we have tp(L) = 4.

Let S(p, q) be the nonoriented 2-bridge link having Shubert’s normal form with
the parameters p, q ≥ 1 [2, Chap. 12.A]. The link S(p, q) can be encoded by

a0a
p−1
1 b2b

q−1
1 b0c

p−q
1 dq−1

1 c2c
q−1
1 , hence tp(S(p, q)) ≤ 2p + 2q − 2.

Conjecture 7.11. The three-page complexity of S(p, q) is 2p + 2q − 2, p + q ≥ 3.

Conjecture 7.11 is true for the Hopf link S(2, 1) and trefoil S(3, 1).

Lemma 7.12. For any k ∈ N, there is a finite number of spatial graphs G of
three-page complexity tp(G) = k.

Proof. Let us estimate from above the number TPk of all three-page embeddings
G ⊂ Y of spatial graphs with ar(G) = k. For such a three-page embedding, the
number of the intersection points from G ∩ α is not more than k. A neighborhood
of an m-vertex can be embedded into two pages of Y in not more than 4m different
monotone ways. We may estimate TPk very roughly as TPk ≤ (4k)k.

A spatial graph G ⊂ S3 is called prime, if it is not a loop sum of other spatial
graphs disctinct from the unknot O1.

Problem 7.13. Find asymptotics for the number Nn(k) of all prime spatial n-
graphs of three-page complexity k.

To get additivity (a) of Theorem 1.8 we need a geometric inversion.

Definition 7.14 (the geometric inversion fa,r : S3 → S3). Let Sa,r ⊂ S3

be the geometric 2-sphere with a centre a ∈ S3 and a radius r > 0. Then the
geometric inversion fa,r : S3 → S3 is defined by fa,r(x) = a + r2

|x−a|2 (x − a). Here
x, a ∈ S3 are considered as usual 3-dimensional vectors, |x− a| is the length of the
vector x−a. In particular, fa,r(a) = ∞, fa,r(∞) = a, fa,r(x) = x for each x ∈ Sa,r.
Moreover, the inversion changes the orientation of S3.
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If the centre a of a geometric inversion fa,r lies in the axis α of the book Y, then
fa,r(α) = α and fa,r(Y) = Y. Assume that the arches of a spatial graph G ⊂ Y

come to the axis α as perpendicular smooth curves. Any three-page embedding of
a graph is isotopic inside Y to such a geometric embedding.

For a geometric three-page embedding K ⊂ Y of a singular knot K, two branches
of K intersect non-transversally at a singular point A ∈ K, see the singular knot 22

in Fig. 17. But we may always select the branches of K at A since any rigid isotopy
keep a neighborhood of A in a (non-constant) plane or a bowed disk.

Under an inversion fa,r, a ∈ α, a smooth arch with endpoints b, c ∈ α goes to a
smooth arch with endpoints fa,r(b), fa,r(c) ∈ α, in the same page.

Lemma 7.15. Let eG be a loop of a spatial graph G. Let G ⊂ Y be a general three-
page embedding. Then there is a geometric inversion fa,r such that fa,r(G) ⊂ Y,

ar(fa,r(G)) = ar(G), the left extreme point from fa,r(G) ∩ α belongs to fa,r(eG).

Proof. The loop eG has two extreme points from eG ∩α, say Ak, Al, where k < l.
Since the loop eG contains not more than one vertex of G, then one of these points
(say Ak) is not a vertex of G. Both geometric arches at Ak come perpendicularly
to the axis α. Then we may take a geometric sphere Sa,r with a ∈ α and a small
radius r, such that Ak ∈ Sa,r and G − Ak lies outside Sa,r.

Then fa,r(Ak) = Ak, and fa,r(G − Ak) lies inside Sa,r. The point Ak is now an
extreme point of fa,r(G) ∩ α, in the axis α. If Ak is the right extreme point, then
take a symmetric reflection of fa,r(G) ⊂ Y in a plane perpendicular to α.

Proposition 7.16. For any spatial graphs G, H ⊂ S3, we have

(a) tp(G 
 H) = tp(G) + tp(H) + 2;

(b) tp(G ∗ H) = tp(G) + tp(H) + 2;

(c) tp(G ∨ H) = tp(G) + tp(H) + 3;

(d) tp(G ◦ H) ≤ tp(G) + tp(H).

Proof. (a) Take general three-page embeddings G, H ⊂ Y with the minimal num-
bers of arches, i.e. ar(G) = tp(G)+2, ar(H) = tp(H)+2. To get a general three-page
embedding G 
 H ⊂ Y, we attach two copies of Y along α. Then

tp(G 
 H) ≤ ar(G 
 H) − 2 = ar(G) + ar(H) − 2 = tp(H) + tp(H) + 2.

Conversely, choose a general three-page embedding G
H ⊂ Y such that ar(G

H) = tp(G 
 H) + 2. The sphere S from Definition 7.7(a) divides the embedding
G
H ⊂ Y into two disjoint parts in such a way that wG�H = u1v1 · · ·ukvk, where
the words u1 · · ·uk and v1 · · · vk encode the subgraphs G, H ⊂ Y. So, we have
ar(G) + ar(H) = ar(G 
 H) = tp(G 
 H) + 2. We get the desired inequality

tp(G) + tp(H) ≤ ar(G) + ar(H) − 4 = tp(G 
 H) − 2.
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(b) Take general three-page embeddings G, H ⊂ Y such that ar(G) = tp(G) + 2,
ar(H) = tp(H) + 2. Choose general three-page embeddings G, H ⊂ Y such that
ar(G) = tp(G) + 2, ar(H) = tp(H) + 2, and also the right extreme point of G ∩ α

(respectively, the left extreme point of H ∩ α) is the gluing point v from Defini-
tion 7.7(b). Attach the obtained embeddings G, H ⊂ Y to get a general three-page
embedding G ∗ H ⊂ Y such that ar(G ∗ H) = ar(G) + ar(H) as (a).

Conversely, take a general embedding G∗H ⊂ Y with ar(G∗H) = tp(G 
 H)+2.
The sphere S from Definition 7.7(b) divides the embedding G∗H ⊂ Y into two parts
intersecting at the point v. These parts form two independent general embeddings
G, H ⊂ Y with ar(G) + ar(H) = ar(G ∗ H). The proof finishes as in (a).

The item (c) is similar to (a) and (b). Given general three-page embeddings
G, H ⊂ Y, by Lemma 7.15 we may construct a general three-page embedding
G
H ⊂ Y such that the right extreme point of G∩α (respectively, the left extreme
point of H ∩ α) is an endpoint of the edge e ⊂ G ∨ H from Definition 7.7(c).

Also we may assume that neighborhoods of these endpoints lie in two common
pages of Y. Otherwise it suffices to rotate the embedding of G (say) to secure the
above condition. Now we are able to add the edge e ⊂ G ∨ H to the embedding
G
H ⊂ Y and to get a general three-page embedding G∨H ⊂ Y with ar(G∨H) =
ar(G) + ar(H) + 1. The proof finishes as in the item (b).

The item (d) is similar to the first part of (c). Take general three-page embed-
dings G, H ⊂ Y with ar(G) = tp(G) + 2, ar(H) = tp(H) + 2. By Lemma 7.15 we
may construct general three-page embeddings G, H ⊂ Y that are intersected at a
common “vertical” arc I ⊥ α from Definition 7.7(d), see Fig. 16. Here monotone
condition (e) of Definition 2.2 does not play any role. Now the arc I can be removed
from the union G ∪H ⊂ Y to get a general three-page embedding G ◦ H ⊂ Y such
that ar(G ◦ H) = ar(G) + ar(H) − 2 = tp(G) + tp(H) + 2. Then

tp(G ◦ H) ≤ ar(G 
 H) − 2 = ar(G) + ar(H) − 4 = tp(H) + tp(H).

The reverse of the item (d) is much harder since the sphere S from Defini-
tion 7.7(d) may intersect an embedding G ◦ H ⊂ Y in a terrible way.

Conjecture 7.17. The three-page complexity is additive under a loop sum, i.e.
tp(G ◦ H) = tp(G) + tp(H) for any spatial graphs G, H .

If Conjecture 7.17 is true, then we get an hierarchy on the set of spatial graphs
considered up to homeomorphism f : S3 → S3. Proposition 7.16(a) implies that
the three-page complexity of trivial k-component link Ok is tp(Ok) = k · tp(O1) +
2(k − 1) = 2k − 2. Theorem 1.8 follows from Lemma 7.12 and Proposition 7.16.

7.4. Lower bound of the three-page complexity

The crucial problem in a complexity theory is to find a sharp lower bound for the
complexity. This will be done for the three-page complexity tp(G) in terms of the
group π(G) = π1(S3 − G).
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Definition 7.18 (the three-letters complexity tl(π) of a group).

(a) Let π be a finitely presented group. A presentation of π is called a three-letters
presentation, if it contains k generators and not more than k−1 relations, each
relation consists of 3 generators or their inverses.

(b) The three-letters complexity tl(π) is the minimal number of generators over all
three-letters presentations of π if they exist, otherwise put tl(π) = ∞.

For instance, Z is the only group of tl = 1. The groups of tl = 2 are Z ∗ Z and
Z3 ∗ Z. The group Z ⊕ Z ∼= 〈a, b, c | abc = acb = 1〉 has tl = 3. All groups of tl = 3
are listed in [9, Example 2.11]. The cyclic groups Zk (k > 1) have tl = ∞.

Proposition 7.19.

(a) There are finitely many groups π of tl(π) = k for fixed k.

(b) If π1 and π2 have three-letters presentations, then tl(π1 ∗ π2) = tl(π1) + tl(π2).

Proof.

(a) It suffices to estimate from above the number TLk of all three-letters presen-
tations of complexity k. For such a presentation, there are not more than 3k

different relations, hence TLk ≤ (3k)k−1.
(b) Since the union of three-letters presentations for π1, π2 gives a three-letters

presentation for π1 ∗ π2, then tl(π1 ∗ π2) ≤ tl(π1) + tl(π2). If a defining relation
from a three-letters presentation of π1 ∗ π2 contains two generators of π1 (say)
and a generator g of π2, then g ∈ π1 that is a contradiction.

So, any three-letters presentation of π1 ∗ π2 splits into two three-letters presen-
tation for π1 and π2. Hence, one gets tl(π1 ∗ π2) ≥ tl(π1) + tl(π2).

The θk-graph consists of 2 vertices joined by k ≥ 2 edges. The trivial graph
θk ⊂ S3 is the θk-graph embedded into R2 ⊂ S3. For example, the trivial graph
θ2 is the unknot. The trivial graphs θ3 and θ4 are the second and fourth graphs in
Fig. 17 below. Each trivial graph θk has a general three-page embedding θk ⊂ Y

such that ar(θk) = k and θk ∩ α = 2 points.

Proposition 7.20. For any spatial graph G, distinct from a trivial graph θk, we
have tp(G) ≥ tl(π(G)). For the trivial graph θk, we get π(θk) = Fk−1, the free group
with k − 1 generators, and tl(π(θk)) = k − 1, tp(θk) = k − 2.

Table 1. The number of spatial graphs up to three-page complexity 6.

Spatial graphs tp = 0 tp = 1 tp = 2 tp = 3 tp = 4 tp = 5 tp = 6

Nonoriented knots 1 0 0 0 0 0 1
Nonoriented links 0 0 0 0 1 0 0
Nonoriented spatial 3-graphs 0 1 0 1 2 2 2
Nonoriented singular knots 0 0 2 0 2 2 5
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Proof. Let us take a general three-page embedding G ⊂ Y with the minimal
number of arches, i.e. ar(G) = tp(G) + 2. Lemma 7.6 gives a presentation of π(G)
with ar(G) generators, all relations contain at most three letters.

Two Neuwirth’s relations corresponding to the extreme segments A1A2, Al−1Al

contain exactly two letters. Hence at least two generators are superfluous, i.e.
tl(π(G)) ≤ ar(G) − 2 = tp(G). The above argument does not work, if there is
exactly one extreme segment, i.e. A1A2 = Al−1Al and G = θk.

Problem 7.21. Find lower bounds for the three-page complexity in terms of
known polynomial invariants of links and spatial graphs.

7.5. Spatial graphs up to complexity 6

Figures 17–20 show all nonoriented links, spatial 3-graphs and singular knots of
three-page complexity ≤ 6, except disjoint unions. Figures 17–20 contain only two
non-trivial links: Hopf link 41 and trefoil 61.

Fig. 17. Spatial graphs up to complexity 3.

Fig. 18. Spatial graphs of complexity 4.

Fig. 19. Spatial graphs of complexity 5.
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Fig. 20. Spatial graphs of complexity 6.
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