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Persistence is an isometry in-
variant of a cloud S ⊂ Rn of un-
labeled points for standard filtrations
of Vietoris-Rips, Cech, and Delaunay
complexes. How strong is persistence
as an isometry invariant of a cloud?

0D persistence for a point set extends
to the stronger mergegram, which is
continuous in the bottleneck distance
and has the same asymptotic time [1].

In the Delaunay-based 1D persis-
tence, each (birth,death) comes from
an acute Delaunay triangle with cir-
cumradius = death because all non-
acute triangles enter the filtration at
half-length of their longest edge. If all
Delaunay triangles are non-acute, the
resulting 1D persistence is trivial.

A huge generic family of
point sets have identical or
even trivial 1D persistence.

Any point set S ⊂ Rn can be extended
[2] to a large family of non-isometric
sets S ∪ T that have the same 1D per-
sistence as S, by adding a ‘tail’ T of
points ‘angularly’ close to a ray R at-
tached to a ‘corner’ point v ∈ S.

New isometry invariants
For each point, p ∈ S, write the row
of ordered distances to the k nearest
neighbors of p in the full (discrete or
periodic) set S. If k of m points in
S have identical rows, collapse them
into one row with weight k/m.
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The Pointwise Distance Distribution
PDD(S; k) is the matrix of rows with
weights in the extra column, extended
to complete invariants in Rn [3].

The 4-point sets T, K have the same
6 pairwise distances but are distin-
guished by PDD [4] quickly com-
puted due to a fast k-nearest neigh-
bor search [5]. By taking the weighted
average of each column in PDD(S; k),
we get the Average Minimum Distance
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dik. The square and

hexagonal lattices have these AMDs:

These invariants are defined for peri-
odic sets modeling all crystals whose
structures are rigidly determined.

PDD: continuous invariants
If points are perturbed up to ε, then
PDD(S; k) changes up to 2ε in Earth
Mover’s Distance, which can com-
pare PDD matrices of different sizes.

PDD : generically complete
Under tiny perturbation, any crystal
becomes generic, e.g. no repeated dis-
tances except due to periodicity.
Any such crystal is uniquely recon-
structed from lattice invariants and
PDD(S; k) for a large enough k [4].
Feynman’s first lecture geometrically
distinguished 7 crystals below, now
extended to all periodic crystals in the
CSD: Cambridge Structural Database.

200B+ comparisons of all 660K+ pe-
riodic crystals in the CSD over two
days on a modest desktop detected 5
pairs of entries with identical geome-
try and one atom replacement [4], e.g.
HIFCAB vs JEPLIA (Cd ↔ Mn).
Five journals are investigating the in-
tegrity of the underlying articles.

Crystal Isometry Principle:
periodic crystals → periodic point
sets is injective on isometry classes.
Map: periodic crystals → periodic
point sets is injective modulo isome-
try, so any periodic crystal is deter-
mined by its atomic geometry with-
out chemical types. Hence all known
and undiscovered crystals live in one
Crystal Isometry Space parametrized
by complete isometry invariants.
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Geometric Data Science extends TDA and Geometric Deep Learning

Geometric Data Science aims to continuously parametrize moduli spaces of discrete objects
(finite and periodic sets and graphs) up to important relations (rigid motion and isometry),
e.g. the space of all periodic crystals whose structures are determined in a rigid form.

The key obstacle for crystals was the ambiguity of conventional representations based on
reduced cells, which are discontinuous under perturbations. Without continuously quantifying
the crystal similarity, the brute-force Crystal Structure Prediction produces millions of nearly
identical approximations to numerous local energy minima, see the red peaks in Fig. 1 (left).

Figure 1: Left: energy landscapes show crystals as isolated peaks of height=-energy. To see
beyond the ‘fog’, we need a map with invariant coordinates and continuous distances satisfying
metric axioms. Right: all cell-based invariants including symmetries are discontinuous.

Problem: isometry classification of discrete sets with continuous metrics and fast algorithms.
Find a function on finite or periodic sets of unordered points in Rn satisfying the conditions:

(a) invariance : if sets S ≃ T are isometric, then I(S) = I(T ), so I has no false negatives ;

(b) completeness : if I(S) = I(T ), then S ≃ T are isometric, so I has no false positives ;

(c) continuity : if any point of a set S ⊂ Rn is perturbed by at most ε, the invariant I changes
up to λε for a fixed constant λ and a suitable metric d on invariant values satisfying the metric
axioms: (1) coincidence d(I(S), I(T )) = 0 if and only if S ≃ T are isometric, (2) symmetry
d(I, I ′) = d(I ′, I), (3) triangle inequality d(I, I ′) + d(I ′, I ′′) ≥ d(I, I ′′) for any values I, I ′, I ′′;

(d) inverse design : parametrize all I(S) that can be efficiently inverted to a set S ⊂ Rn;

(e) computability : I, d, the verification of I(S) = I(T ), and reconstruction of S from I(S)
should be obtained in polynomial time in the number of given points for a fixed dimension n.

Figure 2: Left: Geometric Data Science (GDS) is based on equivalence, metric continuity, and
computability. The first breakthrough is the Crystal Isometry Principle (CRISP): all periodic
crystals live in a common Crystal Isometry Space continuously parametrized by complete
invariants. Right: GDS extends Topological Data Analysis, which studies the persistence of
cycles in data, and Geometric Deep Learning, which experimentally searches for invariants.


