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A cloud consists of m unlabeled points.
An isometry is any map preserving
inter-point distances. In any Euclidean
space Rn, all isometries are composi-
tions of translations, rotations, and re-
flections, and form the group E(n).

If reflections are excluded, the resulting
orientation-preserving isometries are rigid
motions and form the group SE(n).
If m points are unlabeled, such clouds
can be represented by m! distance ma-
trices obtained by m! permutations of
given points, which is impractical.
Geometric Deep Learning experimen-
tally outputs invariants preserved by
the actions of E(3) or SE(3), optimized
for specific data without using stronger
explicitly defined invariants [1,2].
1
2m(m− 1) sorted pairwise distances are
generically complete: distinguish m-point
clouds in general position in Rn [1].

Problem: design a complete invariant I
for unlabeled point clouds satisfying
(a) completeness : any clouds A, B are
isometric if and only if I(A) = I(B),
equivalently I has no false negatives and
no false positives for all possible data;
(b) Lipschitz continuity : there is a con-
stant λ such that if any point of A is per-
turbed within its ε-neighborhood, then
I(A) changes by at most λε in a metric d
satisfying all the metric axioms below:
(1) coincidence : d(I(A), I(B)) = 0 if and
only if the clouds A, B are isometric,
(2) d(I(A), I(B)) = d(I(B), I(A)),
(3) triangle inequality d(I(A), I(B)) +
d(I(B), I(C)) ≥ d(I(A), I(C));
(c) computability : I, d are computable
in a polynomial time in the number m
of points for a fixed dimension of Rn.
For any point p ∈ C, write distances
d1 ≤ · · · ≤ dm−1 to all points in C−{p}.
The Pointwise Distance Distribution [2] is
the unordered set of all such distance
rows in the m(m − 1)-matrix PDD(C).
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New invariants: the Simplexwise Cen-
tered Distribution (SCD) solves the prob-
lem in any Rn. Fix the center of C at the
origin p0 = 0. SCD(C) is the unordered
set of pairs [D(A′), M(C; A′)] for all
subsets A ⊂ C of permutable points
p1, . . . , pn−1, D(A′) is the distance ma-
trix on A′ = A ∪ {0}, M(C; A′) is the
(n + 1)× (m − n + 1)-matrix with per-
mutable columns for q ∈ C − A, each
consisting of n distances |q− pi|, sign of
determinant on q − pi, i = 0, . . . , n − 1.
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