Recognizing rigid patterns of unlabeled point clouds by the complete and continuous isometry invariants with **no false negatives, no false positives** for all possible data

Daniel Widdowson, *Vitaliy Kurlin*'s Data Science group Materials Innovation Factory, University of Liverpool, UK

A **cloud** consists of *m* unlabeled points. An **isometry** is any map preserving inter-point distances. In any Euclidean space \mathbb{R}^n , all isometries are compositions of translations, rotations, and reflections, and form the group E(n).

If reflections are excluded, the resulting *orientation-preserving isometries* are rigid motions and form the group SE(n).

If *m* points are *unlabeled*, such clouds can be represented by *m*! distance matrices obtained by *m*! permutations of given points, which is impractical.

Geometric Deep Learning experimentally outputs *invariants* preserved by the actions of E(3) or SE(3), optimized for specific data without using *stronger* explicitly defined invariants [1,2].

 $\frac{1}{2}m(m-1)$ sorted pairwise distances are *generically complete*: distinguish *m*-point clouds in *general* position in \mathbb{R}^n [1].

Problem: design a *complete* invariant *I* for unlabeled point clouds satisfying (a) **completeness** : any clouds *A*, *B* are isometric *if and only if* I(A) = I(B), equivalently *I* has *no false negatives* and *no false positives* for all possible data;

(b) **Lipschitz continuity** : there is a constant λ such that if any point of A is perturbed within its ε -neighborhood, then I(A) changes by at most $\lambda \varepsilon$ in a metric d satisfying all the metric axioms below: (1) *coincidence* : d(I(A), I(B)) = 0 if and only if the clouds A, B are isometric, (2) d(I(A), I(B)) = d(I(B), I(A)), (3) triangle inequality $d(I(A), I(B)) + d(I(B), I(C)) \ge d(I(A), I(C))$; (c) **computability** : I, d are computable in a polynomial time in the number m

of points for a fixed dimension of \mathbb{R}^n . For any point $p \in C$, write distances $d_1 \leq \cdots \leq d_{m-1}$ to all points in $C - \{p\}$. The *Pointwise Distance Distribution* [2] is the unordered set of all such distance rows in the m(m-1)-matrix PDD(C).

New invariants: the *Simplexwise Cen tered Distribution* (SCD) solves the problem in any \mathbb{R}^n . Fix the center of *C* at the origin $p_0 = 0$. SCD(*C*) is the unordered set of pairs [D(A'), M(C; A')] for all subsets $A \subset C$ of permutable points $p_1, \ldots, p_{n-1}, D(A')$ is the distance matrix on $A' = A \cup \{0\}, M(C; A')$ is the $(n + 1) \times (m - n + 1)$ -matrix with permutable columns for $q \in C - A$, each consisting of *n* distances $|q - p_i|$, sign of determinant on $q - p_i$, $i = 0, \ldots, n - 1$.

[1] M.Boutin, G.Kemper. Advances in Applied Math. 32 (2004), 709-735.

[2] Widdowson, Kurlin. NeurIPS 2022.