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Equivalence by rigid motion
Many real-life objects are rigid and should be
considered equivalent under rigid motion:

Compositions of translations and rotations in Rn

form the group SE(n). If we allow reflections, we
get the Euclidean group E(n) of isometries.

In a general metric space, an isometry is any
map that preserves all inter-point distances.



Persistence and isometry
We can reconstruct any ordered p1, . . . ,pm ∈ Rn

from the matrix of distances dij = |pi − pj | or
pi ·pj , uniquely under isometry (Annals of Maths,
1935). Unordered points have m! permutations.

For the Vietoris-Rips (VR), Cech, α-filtrations on
a point set A in a metric space or Rn, persistent
homology is an invariant of A under isometry.

Questions: How strong is persistence under
isometry? If incomplete, is it invariant under any
weaker geometric relation on point clouds in Rn?



0D persistence << mergegram
{0,4,6,9,10} ̸≃ {0,1,3,7,10} have the same
0D persistence (edge-lengths of a Minimum
Spanning Tree), but are distinguished by the
stronger mergegram: also continuous in the
bottleneck distance, the same asymptotic time.

Yury Elkin, VK. Mathematics v.9(17), 2121 (2021).



P.Smith, VK. Generic families of metric spaces
with identical or trivial 1D persistence, APCT’24.



Geo-mapping problem: point sets
Find a (complete, bi-continuous, and poly-time)
geocode I for discrete sets of unordered points.

Invariance: if point sets S ≃ Q are isometric,
then I(S) = I(Q), so I should be well-defined on
isometry classes or I has no false negatives.

Completeness: if I(S) = I(Q), then S ≃ Q are
isometric, hence I has no false positives.

Continuity: find a metric d and a constant λ
such that if any point of S is perturbed within its
ε-neighborhood, then I(S) changes by max λε.



Harder practical requirements
Invertibility: any S ⊂ Rn can be reconstructed
from its invariant I(S) in a continuous way.

Computability: the invariant I, the metric d ,
and a reconstruction of S ⊂ Rn from I(S) can be
obtained in polynomial time in the size of S,
forbidding infinite or exponential size invariants.

Geo-style maps: describe all realizable values
I(S) that allow us to reconstruct a cloud S ⊂ Rn.
Then I defines geographic-style coordinates on
the moduli space of point clouds under isometry.



Euclid’s ideal solution for triangles
SSS theorem for m = 3 points in any Rn. Two
triangles are congruent (isometric) if and only if
they have the same triple of sides a,b, c (under
all 6 permutations). For rigid motion (without
reflections), allow only 3 cyclic permutations.

The Cloud Isometry Space
CIS(Rn;3) is the cone in R3

{0 < a ≤ b ≤ c ≤ a + b} con-
tinuously parametrized by three
inter-point distances a,b, c.



Generically complete invariants
Is the problem open for quadrilaterals in R2?

One can train neural networks to experimentally
output isometry invariants but it can be hard to
prove their completeness and continuity.

Boutin, Kemper, 2004: the vector of all sorted
pairwise distances is generically complete in Rn

distinguishing almost all clouds of
unordered points except singular ex-
amples. These non-isometric clouds
have the same 6 pairwise distances.



Clouds with the same 6 distances
Pairs of non-isometric clouds {p1,p2,p3,p±

4 } in
R2 (depending on 4 parameters a,b, c,d > 0)
have the same 6 pairwise distances below.

What invariant can distinguish these clouds?



Pointwise Distance Distributions
For a set S of m points p1, . . . ,pm in a metric
space, choose any number 1 ≤ k < m of
neighbors and build the m × k matrix D(S; k).
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Collapse identical rows and assign weights. The
matrices PDDs are continuously compared by
Earth Mover’s Distance (EMD), NeurIPS 2022.



Earth Mover’s Distance (EMD)

[Widdowson, VK. NeurIPS 2022] If we perturb
all points of a set S up to ε, the perturbed set S′

has EMD(PDD(S; k),PDD(S′; k)) ≤ 2ε.

EMD minimizes a cost of matching weighted rows.



New types of 4-point clouds in R2

Thm 5.3 in arxiv:2108.04798v3 (July 2025):
PDD is complete for any m ≤ 4 points in Rn.



Invariants stronger than PDD
Conjecture: PDD is complete for any m in R2.

Some clouds in R3 have equal PDDs. We have
extended the PDD to a complete SCD in Rn.

All these invariants are Lipschitz continuous
with constant 2 [Widdowson, VK. CVPR 2023].
Extended in arxiv:2303.13486 and 2303.14161.



Towards complete invariants
Let C be a cloud of m unordered points in a
metric space. SDD(C;h) for h = 1 is PDD(C).

Any sequence A ⊂ C of h points has the matrix
RDD(C;A) with m − h permutable columns of
distances from q ∈ C − A to all points of A.
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Simplexwise Distance Distribution
Classes of these RDD pairs with the distance
matrix of A (under permutations of points in A)
for all h-point unordered subsets A ⊂ C form
SDD(C;h). For h = 2, the stronger invariant
SDD(C;2) distinguished all counter-examples to
the completeness of easier past invariants in R3

Thm (CVPR’23): for any m-point cloud C in a
metric space, SDD(C;h) is computable in time
O(mh+1/(h − 1)!) and has Lipschitz constant 2
in EMD, time O(h!(h2 + m1.5 logh m)l2 + l3 log l).



Simplexwise Centered Distribution
In Rn, fix the center of a cloud C at p0 = 0 ∈ Rn.

For any ordered subset A = (p1, . . . ,pn−1) ⊂ C,
OCD(C;A) is the pair of the distance matrix
D(A ∪ {0}), matrix M with m − n + 1 permutable
columns of n distances |q − pi | for q ∈ C − A.

To reconstruct C ⊂ Rn under rigid motion, we
add the sign of the determinant on the vectors
from each q ∈ C − A to the points p0, . . . ,pn−1.

SCD(C) is the unordered set of classes of
OCD(C;A) for all (n − 1)-point subsets A ⊂ C.



For each 1-point subset A = {p} ⊂ S, the
distance matrix D(A ∪ {0}) on two points
is one number 1. Then M(S;A ∪ {0}) has

m − n + 1 = 3 columns. For p1 = (1,0), we have
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Complete invariant SCD in Rn

Theorem (CVPR 2023): for any n-dimensional
cloud C of m unordered points, the Simplexwise
Centered Distribution SCD(C) is a complete
invariant under rigid motion in Rn, computable
in time O(mn/(n − 4)!), and has Lipschitz
constant 2 in the EMD, which is computable in
time O((n − 1)!(n2 + m1.5 logn m)l2 + l3 log l).
Here l is the number of different OCDs in SCDs.

The complete isometry invariant of C ⊂ Rn is
the pair {SCD(C), SCD(C)} with reversed signs.



Hierarchy of cloud invariants
Fast: Sorted Radial Distances SRD (decreasing
distances from 0 to m points) in time O(m).

Stronger: Sorted Pairwise Distances SPD(C).

Even stronger: PDD(C;m − 1) in time O(m2).

Complete: SCD(C) in time O(m3) for C ⊂ R3.

The QM9 database has 130K+ molecules with
atomic coordinates and 873,527,974 pairs of
molecules of the same size. The hierarchy of
the invariants above distinguished all pairs in
QM9 within a few hours on a desktop computer.



Principle of Molecular Rigidity
Chemically different molecules differ rigidly.

invariant distance, Å molecule A molecule B
SRD 0.02057 H3C4N3O2 H4C5N2O1

SPD 0.05505 H3C4N5 H3C5N3O1

PDD 0.05145 H3C4N5 H3C5N3O1

SCD 0.07054 H4C5N4 H4C6N2O1

The map: {molecules} → {clouds of atomic
centers} is injective modulo rigid motion in R3.

New definition: a molecular structure is a class
of atomic clouds under rigid motion in R3.



Geo-graphic-style maps of QM9
All
QM9
mole-
cules.
The
units
are
Å =

10−10

m.



Use further invariants to zoom in
QM9
sub-
set:
SRD1 =

SRD2

equal
radii
from
a cen-
ter.



Collaborations are welcome!
We can similarly explore continuous spaces of
other data objects (proteins, graphs, meshes)
under rigid motion or other equivalences.

The key concepts needed for real data objects
are equivalence (to detect identical objects) and
metric, which should be computable, continuous
under perturbations to quantify the similarity.


