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Abstract

A finite set of unlabelled points in Euclidean space is the
simplest representation of many real objects from mineral
rocks to sculptures. Since most solid objects are rigid, their
natural equivalence is rigid motion or isometry maintaining
all inter-point distances. More generally, any finite metric
space is an example of a metric-measure space that has a
probability measure and a metric satisfying all axioms.

This paper develops Simplexwise Distance Distributions
(SDDs) for any finite metric spaces and metric-measures
spaces. These SDDs classify all known non-equivalent
spaces that were impossible to distinguish by simpler in-
variants. We define metrics on SDDs that are Lipschitz con-
tinuous and allow exact computations whose parametrised
complexities are polynomial in the number of given points.

1. Motivations for classifying metric spaces
The simplest representation of any rigid object such a car

or a sculpture is a finite set (cloud) S ⊂ Rn of m unlabelled
points, where n = 2, 3 are the most practical dimensions.

The rigidity of many solid objects motivates us to study
them up to rigid motion, which is a composition of transla-
tions and rotations in Euclidean space Rn. We can consider
any finite set X with a metric that is a distance function
dX : X ×X → [0,+∞) satisfying all metric axioms. The
natural equivalence relation on metric spaces is an isome-
try that is any map f : X → Y maintaining all inter-point
distances so that dX(p, q) = dY (f(p), f(q)) for p, q ∈ X .

In Rn, any isometry is a composition of a mirror reflec-
tion with some rigid motion. Any orientation-preserving
isometry can be realised as a continuous rigid motion.

The shape of a rigid object is mathematically defined
as its isometry class. Any non-rigid deformation defines a
weaker equivalence (than isometry) with a smaller space of
flexible shapes. Comparing shapes up to isometry requires
finer invariants to distinguish many more isometry classes.

The mathematical approach to distinguish spaces up to
isometry uses invariants that are properties preserved by
any isometry. Any invariant I maps all isometric spaces to
the same value, hence has no false negatives that are pairs
of isometric spaces S ∼= Q with I(S) ̸= I(Q).

A complete invariant I should distinguish all non-
isometric clouds, so if S ̸∼= Q then I(S) ̸= I(Q). Equiva-
lently, I has no false positives that are pairs of non-isometric
spaces S ̸∼= Q with I(S) = I(Q). Then I is a DNA-style
code that uniquely identifies any space S up to isometry.

Since real data are always noisy, a useful complete in-
variant must be also continuous under the movement of
points. Satisfying both completeness and continuity is ex-
tremely challenging for sets of m unlabelled points because
of m! potential permutations that match all m points.

A complete and continuous invariant for m = 3 points
consists of three pairwise distances a, b, c (sides of a trian-
gle) and is known in school as the SSS theorem [69] about
the congruence (isometry) of triangles. As a result, the
isometry space of 3-point sets is continuously mapped as a
quadrangular cone {0 < a ≤ b ≤ c ≤ a+ b} parametrised
by a ≤ b ≤ c satisfying one triangle inequality a+ b ≥ c.

The full description above had no easy analogue for m ≥
4 points in Rn. One obstacle was a family of 4-point sets in
R2 that have the same six pairwise distances, see Fig. 1.

Problem 1.1 (complete isometry invariants with com-
putable continuous metrics). Design an invariant I of finite
metric spaces satisfying the following properties:

(a) completeness : S,Q are isometric ⇔ I(S) = I(Q);

(b) Lipschitz continuity : if any point of C is perturbed
within its ε-neighbourhood then I(S) changes by at most
λε for a constant λ and a metric d satisfying all axioms:
(1) d(I(S), I(Q)) = 0 if and only if S ∼= Q are isometric,
(2) symmetry : d(I(S), I(Q)) = d(I(Q), I(S)),
(3) d(I(S), I(Q)) + d(I(Q), I(T )) ≥ d(I(S), I(T ));

(c) computability : I(S) and d are computable in a polyno-
mial time in the number m of points in given spaces.
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Figure 1. Left: trapezium T = {(1, 1), (−1, 1), (−2, 0), (2, 0)}.
Right: kite K = {(0, 1), (−1, 0), (0,−1), (3, 0)}. Both T and
K have the same six pairwise distances
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Condition (1.1b) asking for a continuous metric is
stronger than the completeness in (1.1a). Detecting an
isometry S ∼= Q gives a discontinuous metric, say d = 1
for all non-isometric S ̸∼= Q even if S,Q are nearly identi-
cal. Any metric d satisfying the first axiom in (1.1b) detects
an isometry S ∼= Q by checking if d(I(S), I(Q)) = 0.

Problem 1.1 was open at least since 1974 when Gilbert
and Shepp [29] described a 4-parameter family of 4-point
sets in R2 that have the same six pairwise distances. Prob-
lem 1.1 is also motivated by the weaknesses [26, 27, 63] of
persistent homology in Topological Data Analysis.

Section 2 reviews the closely related work on invariants
of point sets and more general metric spaces. Section 3 in-
troduces the Simplexwise Distance Distributions (SDDs),
which substantially generalise all past distance-based in-
variants of finite metric spaces. Section 4 shows that SDDs
are simple enough for manual computations and classify-
ing infinite families of clouds that cannot be distinguished
by simpler distance distributions. Section 5 develops Lip-
schitz continuous metrics on SDDs that are computed in a
parametrized polynomial time in the number m of points.

We consider Problem 1.1 a first important step toward
understanding moduli spaces of any data objects. Met-
ric spaces and isometry can be replaced by other data and
equivalence, respectively, to get analogues of Problem 1.1.
This paper extends section 3 of [73], whose 8-page version
without proofs and big examples will appear soon. In the
papers [71–73] the first author implemented all algorithms,
the second author designed all theory, proofs, and examples.

2. Past work on isometries and metric spaces
This section reviews the related work starting from a

simpler version of Problem 1.1 asking only to detect a po-
tential isometry between clouds of m unlabelled points
Isometry detection refers to a simpler version of Prob-
lem 1.1 to algorithmically detect a potential isometry be-
tween given clouds of m points in Rn. The best algo-
rithm by Brass and Knauer [10] takes O(m⌈n/3⌉ logm)
time, so O(m logm) in R3 [11]. The latest advance is the
O(m logm) algorithm in R4 [39]. These algorithms out-
put a binary answer (yes/no) without quantifying similarity
between non-isometric clouds by a continuous metric.

Multidimensional scaling (MDS). For a given m×m dis-
tance matrix of any m-point cloud A, MDS [61] finds an
embedding A ⊂ Rk (if it exists) preserving all distances of
M for a dimension k ≤ m. A final embedding A ⊂ Rk

uses eigenvectors whose ambiguity up to signs gives an ex-
ponential comparison time that can be close to O(2m).

The Heat Kernel Signature (HKS) is a complete isome-
try invariant of a manifold M whose the Laplace-Beltrami
operator has distinct eigenvalues by [66, Theorem 1]. If M
is sampled by points, HKS can be discretized and remains
continuous [66, section 4] but the completeness is unclear.

The Hausdorff distance [35] can be defined for any sub-
sets A,B in an ambient metric space as dH(A,B) =

max{d⃗H(A,B), d⃗H(B,A)}, where the directed Hausdorff
distance is d⃗H(A,B) = sup

p∈A
inf
q∈B

|p − q|. To take into ac-

count isometries, one can minimize the Hausdorff distance
over all isometries [17, 19, 37]. For n = 2, the Hausdorff
distance minimized over isometries in R2 for sets of at most
m point needs O(m5 logm) time [18]. For a given ε > 0
and n > 2, the related problem to decide if dH ≤ ε up
to translations has the time complexity O(m⌈(n+1)/2⌉) [70,
Chapter 4, Corollary 6]. For general isometry, only approx-
imate algorithms tackled minimizations for infinitely many
rotations initially in R3 [31] and in Rn [4, Lemma 5.5].

The Gromov-Wasserstein distances can be defined for
metric-measure spaces, not necessarily sitting in a com-
mon ambient space. The simplest Gromov-Hausdorff (GH)
distance cannot be approximated with any factor less than
3 in polynomial time unless P = NP [60, Corollary 3.8].
Polynomial-time algorithms for GH were designed for ul-
trametric spaces [50]. However, GH spaces are challenging
even for finite point sets in the line R, see [46] and [76].

Experimental approaches cover a wide variety of de-
scriptors designed manually or optimised through machine
learning, for example, Scale Invariant Feature Transform
[57, 65, 67, 78]. Some of these descriptors are designed for
invariance under permutations of points [56, 75], and also
for invariance under isometry [16, 52, 62], for example, in
Geometric Deep Learning [14, 15]. Among many obsta-
cles [1, 21, 22, 34, 45], the hard one is to theoretically guar-
antee the completeness and Lipschitz continuity of such de-
scriptors under perturbations as in Problem 1.1.

Local distributions of distances in Mémoli’s seminal work
[48, 49] for metric-measure spaces, or shape distributions
[8, 32, 47, 53, 54], are first-order versions of the new SDDs.
Another approach to Problem 1.1 uses direction-based in-
variants [41], which inspired Complete Neural Networks
[36]. The Lipschitz continuity was proved [41, Theo-
rem 4.9] in general position but not for near-singular con-
figurations, for example, when a triangle degenerates to a
line. These degeneracies will be addressed in the forthcom-
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ing work [44] extending SDD to a complete invariant of
clouds in Rn.

3. Simplexwise Distance Distribution (SDD)
This section introduces the isometry invariants SDD for

a finite cloud C of unlabelled points in any metric space X .
The lexicographic order u < v on vectors u = (u1, . . . , uh)
and v = (v1, . . . , vh) means that if the first i (possibly, i =
0) coordinates of u, v coincide then ui+1 < vi+1. Let Sh

denote the permutation group on indices 1, . . . , h.

Definition 3.1 (RDD(C;A)). Let C be a cloud of m unla-
belled points in a space with a metric d. A basis sequence
A = (p1, . . . , ph) ∈ Ch consists of 1 ≤ h < m distinct
points. Let D(A) be the triangular distance matrix whose
entry D(A)i,j−1 is d(pi, pj) for 1 ≤ i < j ≤ h, all other
entries are filled by zeros. Any permutation ξ ∈ Sh acts on
D(A) by mapping D(A)ij to D(A)kl, where k ≤ l is the
pair of indices ξ(i), ξ(j)− 1 written in increasing order.

For any other point q ∈ C − A, write distances from
q to p1, . . . , ph as a column. The h × (m − h)-matrix
R(C;A) is formed by these m − h lexicographically or-
dered columns. The action of ξ on R(C;A) maps any i-th
row to the ξ(i)-th row, after which all columns can be writ-
ten again in the lexicographic order. The Relative Distance
Distribution RDD(C;A) is the equivalence class of the pair
[D(A), R(C;A)] of matrices up to permutations ξ ∈ Sh.

For h = 1 and a basis sequence A = (p1), the matrix
D(A) is empty and R(C;A) is a single row of distances (in
the increasing order) from p1 to all other points q ∈ C. For
h = 2 and a basis sequence A = (p1, p2), the matrix D(A)
is the single number d(p1, p2) and R(C;A) consists of two
rows of distances from p1, p2 to all other points q ∈ C.

Figure 2. Left: a cloud C = {p1, p2, p3} with distances a ≤
b ≤ c. Middle: the triangular cloud R = {(0, 0), (4, 0), (0, 3)}.
Right: the square cloud S = {(1, 0), (−1, 0), (0, 1), (−1, 0)}.

Example 3.2 (RDD for a 3-point cloud C). Let C ⊂ R2

consist of p1, p2, p3 with inter-point distances a ≤ b ≤ c
ordered counter-clockwise as in Fig. 2 (left). Then

RDD(C; p1) = [∅; (b, c)],RDD(C;

(
p2
p3

)
) = [a;

(
c
b

)
],

RDD(C; p2) = [∅; (a, c)],RDD(C;

(
p3
p1

)
) = [b;

(
a
c

)
],

RDD(C; p3) = [∅; (a, b)],RDD(C;

(
p1
p2

)
) = [c;

(
b
a

)
].

We have written RDD(C;A) for a basis sequence A =
(pi, pj) of ordered points represented by a column. Swap-
ping the points p1 ↔ p2 makes the last RDD above equiv-

alent to RDD
(
C;

(
p2
p1

))
=
[
c;

(
a
b

)]
.

Though RDD(C;A) is defined up to a permutation ξ ∈
Sh of h points in A ∈ Ch, comparisons of RDDs will be
practical for h = 2, 3 with metrics independent of ξ.

Definition 3.3 (Simplexwise Distance Distribution
SDD(C;h)). Let C be a cloud of m unlabelled points in a
metric space. For an integer 1 ≤ h < m, the Simplexwise
Distance Distribution SDD(C;h) is the unordered set of
RDD(C;A) for all unordered h-point subsets A ⊂ C.

For h = 1 and any m-point cloud C, the distribution
SDD(C; 1) can be considered as a matrix of m rows of or-
dered distances from every point p ∈ C to all other m − 1
points. If we lexicographically order these m rows and col-
lapse any l > 1 identical rows into a single one with the
weight l/m, then we get the Pointwise Distance Distribu-
tion PDD(C;m− 1) introduced in [72, Definition 3.1].

The PDD was simplified to the easier-to-compare vec-
tor of Average Minimum Distances [74]: AMDk(C) =
1

m

m∑
i=1

dik, where dik is the distance from a point pi ∈ C

to its k-th nearest neighbor in C. These neighbor-based in-
variants can be computed in a near-linear time in m [25] and
were pairwise compared for all all 660K+ periodic crystals
in the world’s largest database of real materials [72]. Defi-
nition 3.4 similarly maps SDD to a smaller invariant.

Recall that the 1st moment of a set of numbers a1, . . . , ak

is the average µ =
1

k

k∑
i=1

ai. The 2nd moment is the stan-

dard deviation σ =

√
1

k

k∑
i=1

(ai − µ)2. For l ≥ 3, the l-th

standardized moment [38, section 2.7] is
1

k

k∑
i=1

(
ai − µ

σ

)l

.

Definition 3.4 (Simplexwise Distance Moments SDM).
For any m-point cloud C in a metric space, let A ⊂ C be
a subset of h unordered points. The Sorted Distance Vec-
tor SDV(A) is the list of all h(h−1)

2 pairwise distances be-
tween points of A written in increasing order. The vector
R⃗(C;A) ∈ Rm−h is obtained from the h× (m− h) matrix
R(C;A) in Definition 3.1 by writing the vector of m − h
column averages in increasing order.

The pair [SDV(A); R⃗(C;A)] is the Average Distance
Distribution ADD(C;A) considered as a vector of length
h(h−3)

2 + m. The unordered collection of ADD(C;A) for

3



RDD(T ;A) in SDD(T ; 2) RDD(K;A) in SDD(K; 2)

[
√
2,

(
2

√
10

√
10 4

)
]× 2 [

√
2,

(
2

√
10

√
2 4

)
]× 2

[2,

( √
2

√
10

√
10

√
2

)
] [2,

( √
2

√
10

√
2

√
10

)
]

[
√
10,

( √
2 4

2
√
2

)
]× 2 [

√
10,

( √
2 2

4
√
10

)
]× 2

[4,

( √
2

√
10

√
10

√
2

)
] [4,

( √
2

√
2

√
10

√
10

)
]

ADD(T ;A) in ASD(T ; 2) ADD(K;A) in ASD(K; 2)

[
√
2, (

2+

√
10

2 , 4+
√
10

2 )]× 2 [
√
2, (

2+

√
2

2 , 4+
√
10

2 )]× 2

[2, (

√
2 +

√
10

2
,

√
2 +

√
10

2
)] [2, (

√
2,
√
10 )]

[
√
10, (

2+

√
2

2 , 4+
√
2

2 )]× 2 [
√
10, (

2+

√
10

2 , 4+
√
2

2 )]× 2

[4, (
√
2+

√
10

2 ,
√
2+

√
10

2 )] [4, (
√
2+

√
10

2 ,
√
2+

√
10

2 )]

SDM1 =
3 +

√
2 +

√
10

3
SDM1 =

3 +
√
2 +

√
10

3

SDM2 =
6 + 2

√
2 + 4

√
10

12
SDM2 =

8 + 5
√
2 + 3

√
10

12

SDM3 =
16+ 4

√
2 + 4

√
10

12 SDM3 =
16+ 3

√
2 + 5

√
10

12

Table 1. The Simplexwise Distance Distributions from Defini-
tion 3.3 for the 4-point clouds T,K ⊂ R2 in Fig. 1. The symbol
×2 indicates a doubled RDD. The three bottom rows show co-
ordinates of SDM(C; 2, 1) ∈ R3 from Definition 3.4 for h = 2,
l = 1 and both C = T,K. Different elements are highlighted.

all
(
m
h

)
unordered subsets A ⊂ C is the Average Simplex-

wise Distribution ASD(C;h). The Simplexwise Distance
Moment SDM(C;h, l) is the l-th (standardized for l ≥ 3)
moment of ASD(C;h) considered as a probability distribu-
tion of

(
m
h

)
vectors, separately for each coordinate.

Example 3.5 (SDD and SDM for T,K). Fig. 1 shows the
non-isometric 4-point clouds T,K with the same Ordered
Pairwise Distances: SDV = {

√
2,
√
2, 2,

√
10,

√
10, 4},

see infinitely many examples in [9]. The arrows on the
edges of T,K show orders of points in each pair of vertices
for RDDs. Then T,K are distinguished up to isometry by
SDD(T ; 2) ̸= SDD(K; 2) in Table 1. The 1st coordinate
of SDM(C; 2, 1) ∈ R3 is the average of the six distances
from SDV (the same for T,K) but the other two coordi-
nates (column averages from R(C;A) matrices) differ.

Some of the
(
m
h

)
RDDs in SDD(C;h) can concide as in

Example 3.5. If we collapse any l > 1 identical RDDs into

a single RDD with the weight l/
(
m
h

)
, SDD can be consid-

ered as a weighted probability distribution of RDDs.

All time complexities are proved for a random-access
machine (RAM) model. In a general metric space, a point
cloud C is usually given by a distance matrix on (arbitrarily
ordered) points of C. Hence we assume that the distance
between any points of C is accessible in a constant time.

Theorem 3.6 (invariance and time of SDDs). For h ≥ 1
and any cloud C of m unlabelled points in a metric space,
SDD(C;h) is an isometry invariant, which can be com-
puted in time O(mh+1/(h − 1)!). For any l ≥ 1, the in-
variant SDM(C;h, l) ∈ Rm+

h(h−3)
2 has the same time.

Proof. Any isometry S → Q preserves distances, hence
induces a bijection SDD(S;h) → SDD(Q;h) for h ≥ 1.

By Definition 3.3, for any h ≥ 1 and a cloud C of m un-
labelled points in a metric space, the Simplexwise Distance
Distribution SDD(C;h) of consists of

(
m
h

)
= m!

h!(m−h)! =

O(mh/h!) Relative Distance Distributions RDD(C;A) for
any unordered subset A ⊂ C of h points.

For any order of points of A, every RDD(C;A) consists
of the distance matrix D(A), which needs O(h2) time and
h× (m− h) matrix R(C;A), which needs h(m− h) time.
Since h ≤ m, the extra factor O(hm) gives the final time
O(mh+1/(h− 1)!) for SDD(C;h).

For a fixed h-point subset A ⊂ C, the vector R⃗(C;A)
from Definition 3.4 needs O(hm) time to average h dis-
tances in m − h columns and O(m logm) time to order
these averages. The list SDV(A) of Ordered Pairwise Dis-
tances is obtained by sorting all pairwise distances from
D(A) in time O(h2 log h). So the Average Distance Distri-
bution ADD(C;A) obtained by concatenating the ordered
vectors SDV(A) ∈ R

h(h−1)
2 and R⃗(C;A) ∈ Rm−h re-

quires only O((h2 + m) logm) extra time. Hence the Av-
erage Simplexwise Distribution ASD(C;h) for all h-point
subsets A ⊂ C needs O(mh+1/(h − 1)!) time including
O((h2 +m) logm), the same as the initial SDD(C;h).

For l = 1, the first raw moment SDM(C;h, 1) is the
simple average of all k =

(
m
h

)
vectors ADD(C;A) of

length O(hm), hence needs O(mh+1/(h − 1)!) time. For
l = 2, the standard deviation σ of each coordinate in all
vectors ADD(C;A) requires the same time. Then, for any

fixed l ≥ 3, the l-th standardized moment
1

k

k∑
i=1

(
ai − µ

σ

)l

needs again the same time O(mh+1/(h− 1)!).

We conjecture that SDD(C;h) is a complete isometry
invariant of a cloud C ⊂ Rn for some h ≤ n. Sec-
tion 4 shows that SDD(C; 2) distinguishes all infinitely
many known pairs [55, Fig. S4] of non-isometric m-point
sets S,Q ⊂ R3 that have equal PDD(S) = PDD(Q)
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Figure 3. Left: (x, y)-projection of the 5-point set S− ⊂ R3 consisting of the green points G− = (−1,−1, 0) and G+ = (1, 1, 0), the
red points R− = (−2, 0,−2) and R+ = (2, 0, 2), and the blue point B− = (0, 1,−1). Right: to get the set S+ ⊂ R3 from S−, replace
the point B− with the new point B+ = (0, 1, 1).

4. The strength of the isometry invariant SDD
Examples 4.1 and 4.2 distinguish clouds of 5 points and

7 points, respectively, in R3 by comparing their SDDs of
order 2. In Example 4.3, SDD(C; 2) distinguishes 6-point
clouds in a family of pairs depending on three parameters.

Example 4.1 (5-point clouds). Fig. 3 shows the 5-point
clouds S± ⊂ R3 taken from [55, Figure S4(A)].

distances of S− R− R+ G− G+ B−

R−(−2, 0,−2) 0
√
32

√
6

√
14

√
6

R+(+2, 0,+2)
√
32 0

√
14

√
6

√
14

G−(−1,−1, 0)
√
6

√
14 0

√
8

√
6

G+(+1,+1, 0)
√
14

√
6

√
8 0

√
2

B−(0,+1,−1)
√
6

√
14

√
6

√
2 0

distances of S+ R− R+ G− G+ B+

R−(−2, 0,−2) 0
√
32

√
6

√
14

√
14

R+(+2, 0,+2)
√
32 0

√
14

√
6

√
6

G−(−1,−1, 0)
√
6

√
14 0

√
8

√
6

G+(+1,+1, 0)
√
14

√
6

√
8 0

√
2

B+(0,+1,+1)
√
14

√
6

√
6

√
2 0

Table 2. Distances between all points of the set S∓ in Fig. 3.

The sets S± are not isometric, because S+ has the triple
of points B+, G+, R+ with pairwise distances

√
2,
√
6,
√
6,

but S− has no such a triple. Table 2 highlights differences
between distance matrices. If we order distances to neigh-
bors, the matrices in Table 3 differ only in one pair.

If we ignore labels of points, S± have identical Point-
wise Distance Distribution (PDD), which is the Simplex-
wise Distance Distributions (SDD) in Definition 3.3.

For easier visualization, the matrix below is obtained by

S− distances to 1st neighbor 2nd 3rd 4th

R− = (−2, 0,−2)
√
6

√
6

√
14

√
32

R+ = (+2, 0,+2)
√
6

√
14

√
14

√
32

G− = (−1,−1, 0)
√
6

√
6

√
8

√
14

G+ = (+1,+1, 0)
√
2

√
6

√
8

√
14

B− = (0,+1,−1)
√
2

√
6

√
6

√
14

S+ distances to 1st neighbor 2nd 3rd 4th

R− = (−2, 0,−2)
√
6

√
14

√
14

√
32

R+ = (+2, 0,+2)
√
6

√
6

√
14

√
32

G− = (−1,−1, 0)
√
6

√
6

√
8

√
14

G+ = (+1,+1, 0)
√
2

√
6

√
8

√
14

B+ = (0,+1,−1)
√
2

√
6

√
6

√
14

Table 3. For each point from the 5-point set S+ in Fig. 3, the
distances to neighbors from Table 2 are ordered in each row.

lexicographically ordering the rows in Table 3:

PDD(S±) = SDD(S±; 1) =


√
2

√
6

√
6

√
14√

2
√
6

√
8

√
14√

6
√
6

√
8

√
14√

6
√
6

√
14

√
32√

6
√
14

√
14

√
32


Now we show that SDD(S−; 2) ̸= SDD(S+; 2). For h = 2,
the Simplexwise Distance Distribution SDD(C;h) consists
of RDD(C;A) for 2-point subsets A ⊂ C. Both sets S±
have a single pair of points (G+, B−) and (G+, B+) at
distance

√
2. Hence it suffices to show that the Relative

Distance Distributions differ for this pair:

RDD(S−,

(
G+

B−

)
) =

√2,


√
8

√
14

√
6

√
6

√
6

√
14

G− R− R+
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RDD(S+,

(
G+

B+

)
) =

√2,


√
8

√
14

√
6

√
6

√
14

√
6

G− R− R+




The last rows in the above 3×3 matrices indicate a com-
plementary point q ∈ C − A for indexing columns of the
2 × 3 matrices R(C;A) in Definition 3.1. The resulting
RDDs differ because any permutation of rows or columns
of R(S+; {G+, B+}) keeps the pair

√
6,
√
6 in the same

column but R(S−; {G+, B+}) has no pair
√
6,
√
6 in one

column. Hence SDD(S−; 2) ̸= SDD(S+; 2).

Example 4.2 (7-point sets). The sets Q± in Fig. 4 taken
from [55, Figure S4(B)] have distances in Table 4. Both
sets have only two pairs of points at distance

√
6. Hence it

suffices to compare RDDs for these pairs below.

R(Q−;

(
G

B+1

)
) =


√
32

√
14

√
17 3

√
13√

6
√
8

√
5 1

√
3

R B−1 B−2 B+2 O−

 ,

R(Q−;

(
R

B−1

)
) =


√
32

√
14 3

√
17

√
5√

14
√
8 3

√
13

√
3

G B+1 B−2 B+2 O−


The pair above has submatrices

(
3

√
13

1
√
3

)
and(

3
√
5

3
√
3

)
but the pair below has no such submatrices.

R(Q+;

(
G

B+1

)
) =


√
32

√
14

√
17 3

√
5√

6
√
8

√
5 1

√
3

R B−1 B−2 B+2 O+

 ,

R(Q+;

(
R

B−1

)
) =


√
32

√
14 3

√
17

√
13√

14
√
8 3

√
13

√
3

G B+1 B−2 B+2 O+


The pair of RDD(Q−;

(
G

B+1

)
) and

RDD(Q−;

(
R

B−1

)
) differs from the pair

RDD(Q+;

(
G

B+1

)
) and RDD(Q+;

(
R

B−1

)
).

Hence SDD(Q−; 2) ̸= SDD(Q+; 2).

Example 4.3 (6-point sets). The sets T± in Fig. 5, which
was motivated by [55, Figure S4(C)], have the points
R,G,O± from the sets Q± in Example 4.2 and three new
points C1(x1, y1, 0), C2(x2, y2, 0), C3(x3, y3, 0) such that
|RC1| = |GC2|, |RC2| = |GC3|, |RC3| = |GC1|.

Denote by 2l1, 2l2, 2l3 the lengths of these three pairs of
line segments after their projection to the xy-plane so that

(4.3.1)

{
(x2 + 2)2 + y22 = |RC2|2 − 4 = (2l1)

2,
(x3 − 2)2 + y23 = |GC3|2 − 4 = (2l1)

2;

(4.3.2)

{
(x3 + 2)2 + y23 = |RC3|2 − 4 = (2l2)

2,
(x1 − 2)2 + y21 = |GC1|2 − 4 = (2l2)

2;

(4.3.3)

{
(x1 + 2)2 + y21 = |RC1|2 − 4 = (2l3)

2,
(x2 − 2)2 + y22 = |GC2|2 − 4 = (2l3)

2.

Comparing the first part of (4.3.1) with the second part
side of (4.3.3), we get (2l1)2 − 4x2 = (2l3)

2 + 4x2, so

x2 =
l21 − l23

2
. Similarly, x3 =

l22 − l21
2

, x1 =
l23 − l22

2
so

that x1 + x2 + x3 = 0. From the second part of (4.3.2), we
get x2

1 − 4x1 + 4 + y21 = 4l22, so

|O±C1|2 = x2
1 + y21 + 1 = 4l22 + 4x1 − 3 = 2l22 + 2l23 − 3,

similarly |O±C2|2 = 2l23+2l21−3, |O±C3|2 = 2l21+2l22−3.

Then |C1C2|2 = (x1 − x2)
2 + (y1 − y2)

2 = x2
1 + y21 .

Table 5 contains all pairwise distances between the
points of T∓. We show that T± differ by the simplified in-
variants S̃DD(T±; 2) below. In each column of R(C;A),
we additionally allow any permutation of elements inde-
pendent of other columns, so we could order each column
(a pair of distances) lexicographically. Denote the result-
ing simplification of RDD by R̃DD. Then S̃DD(T±; 2)

have identical R̃DDs for the 2-point subsets A from the list
{R,G}, {O±, Ci}, {Ci, Cj} for distinct i, j = 1, 2, 3.

For example, both R̃DD(T±; {R,G}) start with the dis-
tance |R − G| =

√
32 and then include the same four

pairs (
√
5,
√
13), (2

√
l2i + 1, 2

√
l2i−1 + 1) for i ∈ {1, 2, 3}

modulo 3, which should be ordered and written lexico-
graphically. Hence it makes sense to compare S̃DD(T±; 2)

only by the remaining R̃DD(T±;A) for A from the list
{R,O±}, {G,O±}, {R,Ci}, {G,Cj} in Table 6.

Without loss of generality assume that l1 ≥ l2 ≥ l3. If
all the lengths are distinct, then l1 > l2 > l3. Then the
rows for {R,O−} and {G,O+} differ in Table 6 even after
ordering each pair so that a smaller distance precedes a
larger one, and after writing all pairs lexicographically. So
S̃DD(T−; 2) ̸= S̃DD(T+; 2) unless two of li are equal.

If (say) l1 = l2, the lexicographically ordered rows
of {R,O−} and {G,O+} coincide in S̃DD(T±; 2), simi-
larly for the rows of {G,O−} and {R,O+}. Hence it suf-
fices to compare only the six rows for the remaining pairs
{R,Ci}, {G,Cj} in S̃DD(T±; 2).
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Figure 4. Left: (x, y)-projection of the 7-point set Q− ⊂ R3 of the red point R = (−2, 0,−2), green point G = (2, 0, 2), four blue points
B±1 = (±1,±1, 0), B±2 = (±1, 2, 0), orange point O− = (0, 0,−1). Right: to get Q+ from Q−, replace O− with O+ = (0, 0,+1).

distances of Q− R G B−1 B+1 B−2 B+2 O−

R = (−2, 0,−2) 0
√
32

√
6

√
14 3

√
17

√
5

G = (+2, 0,+2)
√
32 0

√
14

√
6

√
17 3

√
13

B−1 = (−1,−1, 0)
√
6

√
14 0

√
8 3

√
13

√
3

B+1 = (+1,+1, 0)
√
14

√
6

√
8 0

√
5 1

√
3

B−2 = (−1, 2, 0) 3
√
17 3

√
5 0 2

√
6

B+2 = (+1, 2, 0)
√
17 3

√
13 1 2 0

√
6

O− = (0, 0,−1)
√
5

√
13

√
3

√
3

√
6

√
6 0

distances of Q+ R G B−1 B+1 B−2 B+2 O+

R = (−2, 0,−2) 0
√
32

√
6

√
14 3

√
17

√
13

G = (+2, 0,+2)
√
32 0

√
14

√
6

√
17 3

√
5

B−1 = (−1,−1, 0)
√
6

√
14 0

√
8 3

√
13

√
3

B+1 = (+1,+1, 0)
√
14

√
6

√
8 0

√
5 1

√
3

B−2 = (−1, 2, 0) 3
√
17 3

√
5 0 2

√
6

B+2 = (+1, 2, 0)
√
17 3

√
13 1 2 0

√
6

O+ = (0, 0,+1)
√
13

√
5

√
3

√
3

√
6

√
6 0

Table 4. The matrices of distances between all points of the 7-point set Q∓ in Fig. 4 taken from [55, Figure S4(B)].

For l1 = l2, we get x3 =
l22 − l21

2
= 0 and x1 = −x2 =

l23 − l22
2

. In equation (4.3.3) the equality (x1 + 2)2 + y21 =

(x2 − 2)2 + y22 with x1 = −x2 implies that y21 = y22 .
The even more degenerate case l1 = l2 = l3, means that
x1 = x2 = x3 = 0 and y21 = y22 = y23 , hence at least
two of C1, C2, C3 should coincide. The above contradiction
means that it remains to consider only the case l1 = l2 > l3
when x1 = −x2 ̸= 0 = x3 and y1 = ±y2, see Fig. 5.

If y1 = y2, the sets T± are isometric by (x, y, z) 7→

(−x, y,−z). If y1 = −y2 and y3 = 0, the sets T± are
isometric by (x, y, z) 7→ (−x,−y,−z). If y1 = −y2 and
y3 ̸= 0, then C1 = (x1, y1, 0), C2 = (−x1,−y1, 0), C3 ̸=
(0, 0, 0). Then among the six remaining rows, only the rows
of {R,C1}, {G,C2} have points at the distance 2

√
l23 + 1,

see Table 6 for i = 3 considered modulo 3. Then i+ 1 ≡ 1
(mod 3), i− 1 ≡ 2 (mod 3), so li+1 = l1 = l2 = li−1.

Looking at the rows of {R,C1}, {G,C2}, the three com-
mon pairs in each of SDD(T±; 2) include the same distance
2
√

l21 + 1 = 2
√

l22 + 1 but differ by |Ci−1Ci| = |C2C3| ≠

7



Figure 5. Left: (x, y)-projection of the 6-point set T− ⊂ R3 consisting of the red point R = (−2, 0,−2), green point G = (2, 0, 2),
three blue points C1 = (x1, y1, 0), C2 = (x2, y2, 0), C3 = (x3, y3, 0) and orange point O− = (0, 0,−1) so that |RC1| = 2l3 = |GC2|,
|RC2| = 2l1 = |GC3|, |RC3| = 2l2 = |GC1|. Right: to get the set T+ ⊂ R3 from T−, replace O− with O+ = (0, 0,+1).

distances of T− R G C1 C2 C3 O−

R = (−2, 0,−2) 0
√
32 2

√
l23 + 1 2

√
l21 + 1 2

√
l22 + 1

√
5

G = (+2, 0,+2)
√
32 0 2

√
l22 + 1 2

√
l23 + 1 2

√
l21 + 1

√
13

C1 = (x1, y1, 0) 2
√
l23 + 1 2

√
l22 + 1 0 |C1C2| |C3C1|

√
2l22 + 2l23 − 3

C2 = (x2, y2, 0) 2
√
l21 + 1 2

√
l23 + 1 |C1C2| 0 |C2C3|

√
2l23 + 2l21 − 3

C3 = (x3, y3, 0) 2
√
l22 + 1 2

√
l21 + 1 |C3C1| |C2C3| 0

√
2l21 + 2l22 − 3

O− = (0, 0,−1)
√
5

√
13

√
2l22 + 2l23 − 3

√
2l23 + 2l21 − 3

√
2l21 + 2l22 − 3 0

distances of T+ R G C1 C2 C3 O+

R = (−2, 0,−2) 0
√
32 2

√
l23 + 1 2

√
l21 + 1 2

√
l22 + 1

√
13

G = (+2, 0,+2)
√
32 0 2

√
l22 + 1 2

√
l23 + 1 2

√
l21 + 1

√
5

C1 = (x1, y1, 0) 2
√
l23 + 1 2

√
l22 + 1 0 |C1C2| |C3C1|

√
2l22 + 2l23 − 3

C2 = (x2, y2, 0) 2
√
l21 + 1 2

√
l23 + 1 |C1C2| 0 |C2C3|

√
2l23 + 2l21 − 3

C3 = (x3, y3, 0) 2
√
l22 + 1 2

√
l21 + 1 |C3C1| |C2C3| 0

√
2l21 + 2l22 − 3

O+ = (0, 0,+1)
√
13

√
5

√
2l22 + 2l23 − 3

√
2l23 + 2l21 − 3

√
2l21 + 2l22 − 3 0

Table 5. The matrices of distances between all points of the 6-point set T∓ in Fig. 5 motivated by [55, Figure S4(C)].

|C3C1| = |CiCi+1| as C1 = ±C2, C3 ̸= (0, 0, 0).

This couple of different rows implies that SDD(T−; 2) ̸=
SDD(T+; 2) due to the swapped distances

√
5,
√
13 in their

remaining pairs, see Table 7 for the sets T± in Fig. 5 with

l1 = l2 =
√
13
2 , l3 =

√
5
2 .
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T− pair distance common pairs in S̃DD(T±; 2) pairs that differ in S̃DD(T+; 2)

{R,O−}
√
5 (

√
13,

√
32) to G

(2
√
l23 + 1,

√
2l22 + 2l23 − 3) to C1,

(2
√
l21 + 1,

√
2l23 + 2l21 − 3) to C2,

(2
√
l22 + 1,

√
2l21 + 2l22 − 3) to C3

{G,O−}
√
13 (

√
5,
√
32) to R

(2
√
l22 + 1,

√
2l22 + 2l23 − 3) to C1,

(2
√
l23 + 1,

√
2l23 + 2l21 − 3) to C2,

(2
√

l21 + 1,
√

2l21 + 2l22 − 3) to C3

{R,Ci+1} 2
√
l2i + 1

(2
√
l2i−1 + 1,

√
32) to G,

(2
√

l2i+1 + 1, |Ci+1Ci−1|) to Ci−1,

(2
√

l2i−1 + 1, |CiCi+1|) to Ci

(
√
5,
√

2l2i−1 + 2l2i − 3) to O−

{G,Ci−1} 2
√
l2i + 1

(2
√
l2i+1 + 1,

√
32) to R,

(2
√

l2i−1 + 1, |Ci+1Ci−1|) to Ci+1,

(2
√

l2i+1 + 1, |Ci−1Ci|) to Ci

(
√
13,
√
2l2i + 2l2i+1 − 3) to O−

T+ pair distance common pairs in S̃DD(T±; 2) pairs that differ in S̃DD(T−; 2)

{G,O+}
√
5 (

√
13,

√
32) to R

(2
√
l22 + 1,

√
2l22 + 2l23 − 3) to C1,

(2
√
l23 + 1,

√
2l23 + 2l21 − 3) to C2,

(2
√

l21 + 1,
√
2l21 + 2l22 − 3) to C3

{R,O+}
√
13 (

√
5,
√
32) to G

(2
√
l23 + 1,

√
2l22 + 2l23 − 3) to C1,

(2
√
l21 + 1,

√
2l23 + 2l21 − 3) to C2,

(2
√

l22 + 1,
√
2l21 + 2l22 − 3) to C3

{R,Ci+1} 2
√
l2i + 1

(2
√
l2i−1 + 1,

√
32) to G,

(2
√
l2i+1 + 1, |Ci+1Ci−1|) to Ci−1,

(2
√

l2i−1 + 1, |CiCi+1|) to Ci

(
√
13,
√
2l2i−1 + 2l2i − 3) to O+

{G,Ci−1} 2
√
l2i + 1

(2
√
l2i+1 + 1,

√
32) to R,

(2
√
l2i−1 + 1, |Ci+1Ci−1|) to Ci+1,

(2
√

l2i+1 + 1, |Ci−1Ci|) to Ci

(
√
5,
√

2l2i + 2l2i+1 − 3) to O+

Table 6. For the sets T±, the distributions S̃DD(T±; 2) can differ only by R̃DDs of the pairs {R,O±}, {G,O±}, {R,Ci}, {G,Ci}
shown above, where i ∈ {1, 2, 3} is considered modulo 3 so that 1 − 1 ≡ 3 (mod 3). In rows of corresponding pairs of points, some
pairs of distances are the same in both S̃DD(T±; 2), but other pairs can differ. If parameters l1, l2, l3 are pairwise distinct, the rows
{R,O−}, {G,O+} include three different pairs of distances, so S̃DD(T−; 2) ̸= S̃DD(T+; 2), see Example 4.3.
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T− pair distance distance to neighbor1 distance to neighbor 2 distance to neighbor 3 distance to neighbor 4

{R,C1} 3 (
√
2,
√
17) to C3 (

√
5,
√
6) to O− (

√
17,

√
20) to C2 (

√
17,

√
32) to G

{G,C2} 3 (
√
6,
√
13) to O− (

√
17,

√
20) to C1 (

√
17,

√
26) to C3 (

√
17,

√
32) to R

T+ pair distance distance to neighbor1 distance to neighbor 2 distance to neighbor 3 distance to neighbor 4

{R,C1} 3 (
√
2,
√
17) to C3 (

√
6,
√
13) to O+ (

√
17,

√
20) to C2 (

√
17,

√
32) to G

{G,C2} 3 (
√
5,
√
6) to O+ (

√
17,

√
20) to C1 (

√
17,

√
26) to C3 (

√
17,

√
32) to R

Table 7. The above rows show that SDD(T−; 2) ̸= SDD(T+; 2) for the sets T± with C1 = (−1, 2, 0), C2 = (1,−2, 0), C3 = (0, 3, 0)

so that l1 = l2 =
√
5

2
, l3 =

√
13
2

in Table 6.

5. Continuous and computable metrics on SDD
The m − h permutable columns of the matrix R(C;A)

in RDD from Definition 3.1 can be interpreted as m − h
unlabelled points in Rh. Since any isometry is bijective,
the simplest metric respecting bijections is the bottleneck
distance (also called the Wasserstein distance W∞).

Definition 5.1 (bottleneck distance W∞). For any vector
v = (v1, . . . , vn) ∈ Rn, the Minkowski norm is ||v||∞ =
max

i=1,...,n
|vi|. For any vectors or matrices N,N ′ of the same

size, the Minkowski distance is L∞(N,N ′) = max
i,j

|Nij −

N ′
ij |. For clouds C,C ′ ⊂ Rn of m unlabelled points,

the bottleneck distance W∞(C,C ′) = inf
g:C→C′

sup
p∈C

||p −

g(p)||∞ is minimized over all bijections g : C → C ′.

Lemma 5.2 (the max metric M∞ on RDDs).
For any m-point clouds and ordered h-point se-
quences A ⊂ C and A′ ⊂ C ′, set d(ξ) =
max{L∞(ξ(D(A)), D(A′)),W∞(ξ(R(C;A)), R(C ′;A′))}
for a permutation ξ ∈ Sh on h points. Then the max metric
M∞(RDD(C;A),RDD(C ′;A′)) = min

ξ∈Sh

d(ξ) satisfies all

metric axioms on RDDs from Definition 3.1 and can be
computed in time O(h!(h2 +m1.5 logh m)).

Proof of Lemma 5.2. The first metric axiom says that
RDD(C;A),RDD(C ′;A′) are equivalent by Definition 3.1
if and only if M∞(RDD(C;A),RDD(C ′;A′)) = 0 or
d(ξ) = 0 for some permutation ξ ∈ Sh. Then d(ξ) = 0
is equivalent to ξ(D(A)) = D(A′) and ξ(R(C;A)) =
R(C ′;A′) up to a permutation of columns due to the first
axiom for W∞. The last two conclusions mean that the Rel-
ative Distance Distributions RDD(C;A),RDD(C ′;A′) are
equivalent by Definition 3.1. The symmetry axiom follows
since any permutation ξ is invertible. To prove the triangle
inequality M∞(RDD(C;A),RDD(C ′;A′))+
M∞(RDD(C ′′;A′′),RDD(C ′;A′)) ≥
M∞(RDD(C;A),RDD(C ′′;A′′)), let ξ, ξ′ ∈ Sh be opti-
mal permutations for the M∞ values in the left-hand side

above. The triangle inequality for L∞ says that
L∞(ξ(D(A)), D(A′))+
L∞(ξ′(D(A′′)), D(A′)) ≥
L∞(ξ(D(A)), ξ′(D(A′′))) =
L∞(ξ′−1ξ(D(A)), D(A′′)), similarly for the bottleneck
distance W∞ from Definition 5.1. Taking the maxi-
mum of L∞,W∞ preserves the triangle inequality. Then
M∞(RDD(C;A),RDD(C ′′;A′′)) = min

ξ∈Sh

d(ξ) cannot be

larger than d(ξ′−1ξ) for the composition of the permuta-
tions above, so the triangle inequality holds for M∞.

For a fixed permutation ξ ∈ Sh, the distance
L∞(ξ(D(A)), D(A′)) requires O(h2) time. The bottle-
neck distance W∞(ξ(R(C;A)), R(C ′;A′)) on the h ×
(m − h) matrices ξ(R(C;A)) and R(C ′;A′) with per-
mutable columns can be considered as the bottleneck dis-
tance on clouds of (m − h) unlabelled points in Rh, so
W∞(ξ(R(C;A)), R(C ′;A′)) needs only O(m1.5 logh m)
time by [24, Theorem 6.5]. The minimization over all per-
mutations ξ ∈ Sh gives the factor h! in the final time.

For h = 1 and a 1-point subset A ⊂ C, the matrix D(A)
is empty, so d(ξ) = W∞(ξ(R(C;A)), R(C ′;A′)). The
metric M∞ on RDDs will be used for intermediate costs
to get metrics on unordered collections of RDDs (SDDs)
by using the standard tools in Definitions 5.3 and 5.4 below.

Definition 5.3 (Linear Assignment Cost LAC [28]). For
any k × k matrix of costs c(i, j) ≥ 0, i, j ∈ {1, . . . , k},

the Linear Assignment Cost LAC = 1
k min

g

k∑
i=1

c(i, g(i)) is

minimized for all bijections g on the indices 1, . . . , k.

The normalization factor 1
k in LAC makes this metric

better comparable with EMD whose weights sum up to 1.

Definition 5.4 (Earth Mover’s Distance on distributions).
Let B = {B1, . . . , Bk} be a finite unordered set of objects
with weights w(Bi), i = 1, . . . , k. Consider another set
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D = {D1, . . . , Dl} with weights w(Dj), j = 1, . . . , l. As-
sume that a distance between Bi, Dj is measured by a met-
ric d(Bi, Dj). A flow from B to D is a k × l matrix whose
entry fij ∈ [0, 1] represents a partial flow from an object Bi

to Dj . The Earth Mover’s Distance [59] is the minimum of

EMD(B,D) =
k∑

i=1

l∑
j=1

fijd(Bi, Dj) over fij ∈ [0, 1] sub-

ject to
l∑

j=1

fij ≤ w(Bi) for i = 1, . . . , k,
k∑

i=1

fij ≤ w(Dj)

for j = 1, . . . , l, and
k∑

i=1

l∑
j=1

fij = 1.

The first condition
l∑

j=1

fij ≤ w(Bi) means that not more

than the weight w(Bi) of the object Bi ‘flows’ into all
Dj via the flows fij , j = 1, . . . , l. The second condi-

tion
k∑

i=1

fij ≤ w(Dj) means that all flows fij from Bi for

i = 1, . . . , k ‘flow’ to Dj up to its weight w(Dj). The last

condition
k∑

i=1

l∑
j=1

fij = 1 forces all Bi to collectively ‘flow’

into all Dj . LAC [28] and EMD [59] can be computed in a
near cubic time in the sizes of given sets of objects.

Theorem 5.5(b) extends the O(m1.5 logn m) algorithm
for fixed clouds of m unlabelled points in [24, Theorem 6.5]
to the harder case of isometry classes but keeps the polyno-
mial time in m for a fixed dimension n.

Theorem 5.5 (time of metrics on SDDs). For any m-
point clouds C,C ′ in their own metric spaces and h ≥ 1,
let the Simplexwise Distance Distributions SDD(C;h) and
SDD(C ′;h) consist of k =

(
m
h

)
RDDs with equal weights

1
k without collapsing identical RDDs.

(a) Using the k × k matrix of costs computed by the metric
M∞ between RDDs from SDD(C;h) and SDD(C ′;h), the
Linear Assignment Cost LAC from Definition 5.3 satisfies
all metric axioms on SDDs and can be computed in time
O(h!(h2 +m1.5 logh m)k2 + k3 log k).

(b) Let SDD(C;h) and SDD(C ′;h) have a maximum size
l ≤ k after collapsing identical RDDs. Then EMD from
Definition 5.4 satisfies all metric axioms on SDDs and is
computed in time O(h!(h2 +m1.5 logh m)l2 + l3 log l).

Proof. The Linear Assignment Cost (LAC) from Defini-
tion 5.3 is symmetric because any bijective matching can
be reversed. The triangle inequality for LAC follows from
the triangle inequality for the metric M∞ in Lemma 5.2
by using a composition of bijections SDD(C;h) →
SDD(C ′;h) → SDD(C ′′;h) matching all RDDs similarly
to the proof of Lemma 5.2. The first metric axiom for LAC
means that LAC = 0 if and only if there is a bijection
g : SDD(C;h) → SDD(C ′;h) so that all matched RDDs

are at distance M∞ = 0, so these RDDs are equivalent
(hence SDDs are equal) due to the first axiom of M∞ = 0,
which was proved in Lemma 5.2.

The metric axioms for the Earth Mover’s Distance
(EMD) are proved in the appendix of [59] assuming the
metric axioms for the underlying distance d, which is the
metric M∞ from Lemma 5.2 in our case.

The time complexities for LAC and EMD follow from
the time O((h2 +m1.5 logh m)h!) for M∞ in Lemma 5.2,
after multiplying by a quadratic factor for the size of cost
matrices and adding a near cubic time [28, 30].

The Lipschitz continuity of SDD in Theorem 5.8 needs
Lemma 5.7 follows from its partial case in Lemma 5.6.

Lemma 5.6. For any a, b, c, d ∈ R, if a ≤ b and c ≤ d then
max{|a− c|, |b− d|} ≤ max{|a− d|, |b− c|}.

Proof. We consider several cases of the relative locations of
the pairs a ≤ b and c ≤ d in the line R.
Case a ≤ b ≤ c ≤ d. The required inequality follows from
max{c− a, d− b} ≤ d− a = max{d− a, c− b}.
Case a ≤ c ≤ b ≤ d. The required inequality follows from
max{c− a, d− b} ≤ d− a = max{d− a, b− c}.
Case a ≤ c ≤ d ≤ b. The inequality max{c− a, b− d} ≤
max{d− a, b− c} holds as c− a ≤ d− a, b− d ≤ b− c.
All other cases reduce to the cases above by the transfor-
mation (a, b) 7→ (−b,−a), (c, d) 7→ (−d,−c), which pre-
serves the given condition and required conclusion.

Lemma 5.7 (the metric L∞ respects ordering). For any
vector v = (v1, . . . , vk) ∈ Rk, the vector v⃗ ∈ Rk is ob-
tained from v by writing all coordinates in increasing order.
Then |u⃗− v⃗|∞ ≤ |u− v|∞ for any vectors u, v ∈ Rk.

Proof. Since |u−v|∞ = max
i=1,...,k

|ui−vi|, the metric L∞ is

preserved under any permutation ξ ∈ Sk applied simultane-
ously to the coordinates of both u, v. Hence, without loss of
generality, we can assume that all coordinates of one vector
u are already in increasing order, so u = u⃗. For any pair
of successive coordinates ui ≤ ui+1, let the corresponding
pair in v be in the opposite order vi > vi+1.

By Lemma 5.6 the swap vi ↔ vi+1 does not increase
the L∞ distance between (ui, ui+1) and (vi, vi+1), hence
between u, v ∈ Rk. Applying such swaps puts all coordi-
nates of v in increasing order without increasing L∞.

Theorem 5.8 substantially generalizes the fact that per-
turbing two points in their ε-neighborhoods changes the Eu-
clidean distance between these points by at most 2ε.

Theorem 5.8 (Lipschitz continuity of SDDs). In any
metric space, let C ′ be obtained from a cloud C by
perturbing each point within its ε-neighborhood. For
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any h ≥ 1, SDD(C;h) changes by at most 2ε in
the LAC and EMD metrics. The lower bound holds:
EMD

(
SDD(C;h),SDD(C ′;h)

)
≥ |SDM(C;h, 1) −

SDM(C ′;h, 1)|∞.

Proof. Order all points of the given clouds C,C ′ so that
every point pi ∈ C has the same index as its perturbation
p′i ∈ C ′. In the given metric space, the distance d(pi, pj)
between any points in C changes under perturbation by at
most 2ε so that |d(pi, pj) − d(p′i, p

′
j)| ≤ 2ε. This upper

bound 2ε remains for the max metric M∞ from Lemma 5.2,
also for the LAC and EMD metrics due to the total weight
1 of all costs in Definitions 5.3 and 5.4, respectively.

Lemma 5.7 implies that re-writing coordinates of a vec-
tor in increasing order cannot increase the metric L∞, hence
L∞(ξ(D(A)), D(A′)) ≥ |SDV(A) − SDV(A′)|∞ for any
permutation ξ ∈ Sh of indices 1, . . . , h.

The bottleneck distance W∞(ξ(R(C;A)), R(C ′;A′)) is
the maximum of the metric L∞ computed between cor-
responding column vectors of the h × (m − h) matrices
ξ(R(C;A)) and R(C ′;A′). Let d = (d1, . . . , dh) and d′ =
(d′1, . . . , d

′
h) be two such columns. The triangle inequali-

ties imply that |d− d′|∞ = max
i=1,...,h

|di − d′i| ≥ 1
h

h∑
i=1

|di −

d′i| ≥ | 1h
h∑

i=1

di − 1
h

h∑
i=1

d′i|. Hence taking averages of all

vector coordinates cannot increase the metric L∞. Then
W∞(ξ(R(C;A)), R(C ′;A′)) has the lower bound equal to
the metric L∞ between the vectors of m − h column av-
erages in the matrices ξ(R(C;A)) and R(C ′;A′). Ap-
plying Lemma 5.7 to these vectors in Rm−h implies that
W∞(ξ(R(C;A)), R(C ′;A′)) ≥ |R⃗(C;A)− R⃗(C ′;A′)|∞

Taking the maximum of the metrics L∞ and W∞
considered above, we get the lower bound in terms of the
Average Distance Distribution from Definition 3.4: d(ξ) =
max{L∞(ξ(D(A)), D(A′)),W∞(ξ(R(C;A)), R(C ′;A′))} ≥
|ADD(C;A)−ADD(C ′;A′)|∞

Since the above argument holds for any permutation
ξ ∈ Sh, we get M∞(RDD(C;A),RDD(C ′;A′)) =
min d(ξ) ≥ |ADD(C;A)−ADD(C ′;A′)|∞.

Both SDD(C;h) and ASD(C;h) are unordered collec-
tions of

(
m
h

)
RDD and vectors, respectively. If we use an

optimal flow matrix fij for EMD
(
SDD(C;h),SDD(C ′;

)
from Definition 5.4 to compute EMD on ASD vectors, we
get an upper bound for EMD

(
ASD(C;h),ASD(C ′;h)

)
,

which can be potentially smaller (for anoth flow ma-
trix) but not larger, so EMD

(
SDD(C;h),SDD(C ′;h)

)
≥

EMD
(
ASD(C;h),ASD(C ′;h)

)
. Considering ASD(S;h)

as a weighted distribution of vectors, SDM(C;h; 1) is its
centroid from section 3 in [20, section 3]. The lower bound
EMD

(
ASD(C;h),ASD(C ′;h)

)
≥ |SDM(C;h, 1) −

SDM(C ′;h, 1)|∞ follows from [20, Theorem 1].

6. Measured Simplexwise Distribution (MSD)
This section adapts SDD for metric-measure spaces.

Definition 6.1 (metric-measure space). According to
Gromov [33, section 3 1

2 .1], a metric-measure space
(X, dX , µX) is a compact space X with a metric dX and
a Borel measure µX such that µX(X) < +∞. An iso-
morphism between metric-measure spaces is an isometry
f : X → Y that respects the measures in the sense that
µY (U) = µX(f−1(X)) for any subset U ⊂ Y .

Dividing µX(U) by the full measure µX(X) < +∞ for
any U ⊂ X , we can assume that µX(X) = 1, so µX is
a probability measure. Any metric space X of m points
can be considered a metric-measure space with the uniform

measure µX(p) =
1

m
for all points p ∈ X .

On two points 0, 1 in Euclidean line R, the mm-spaces
X = ({0, 1}, 1, { 1

2 ,
1
2}) and Y = ({0, 1}, 1, { 1

3 ,
2
3}) are

isometric but not isomorphic because of different weights.

Definition 6.2 extends the local distribution of distances
from [48, Definition 5.5] to higher orders h > 1.

Definition 6.2 (Measured Simplexwise Distribution MSD).
Let (X, dX , µX) be any metric-measure space. For any ba-
sis sequence A = (p1, . . . , ph) ∈ Xh of h ≥ 1 ordered
points, write the triangular distance matrix D(A) from Def-
inition 3.1 row-by-row as the Vector of Interpoint Distances
VID(A) ∈ Rh(h−1)/2

+ so that VIDk = dX(pi, pj) for
k = h(i − 1) + j − 1, 1 ≤ i < j ≤ h. For a vector
d⃗ = (d1, . . . , dh) ∈ Rh

+ of distance thresholds, the Vector
of Sequence-based Measures VSM(A; d⃗) ∈ Rh

+ consists of
h values µX({q ∈ X : dX(q, pi) ≤ di}) for i = 1, . . . , h.
The Measured Simplexwise Distribution of order h ≥ 1 is
the function MSD[X;h] : Xh×Rh

+ → Rh(h+1)/2
+ mapping

any A ∈ Xh and d⃗ ∈ Rh
+ to the pair [VID(A),VSM(A; d⃗)]

considered as a concatenated vector in Rh(h+1)/2
+ .

For h = 1, the vector VID(A) is empty and the Mea-
sured Simplexwise Distribution of order h = 1 coincides
with the local distribution of distances [48, Definition 5.5]
MSD[X; 1] : X × R+ → R+ mapping any point p ∈ X
and a threshold d ∈ R+ to µX({q ∈ X : dX(q, p) ≤ d}).

Any permutation ξ on indices 1, . . . , h naturally per-
mutes the components of MSD[X;h]. If X consists of m
points, MSD[X;h] reduces to the finite collection of

(
m
h

)
vectors VID(A) paired with fields VSM(A; d⃗) : Rh

+ → Rh
+

only for unordered h-point subsets A ⊂ X , which can be
refined to a stronger invariant analog of SDD below.

Definition 6.3 (Weighted Simplexwise Distribution WSD).
Let X be a finite mm-space whose any point p has a weight
w(p). For h ≥ 1 and a sequence A = (p1, . . . , ph) ∈ Xh
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Figure 6. Non-isomorphic mm-spaces X,Y from [48, Fig. 8] have equal local distributions of distances but are distinguished by the new
Weighted Simplexwise Distribution of order 1 and the Measured Simplexwise Distributions of order 2, see details in Example 6.4.

in Definition 3.1, endow any distance d(p, q) in D(A) with
the unordered pair w(p), w(q) of weights. For every point
q ∈ X − A, put the weight w(q) in the extra (h + 1)-st
row of the matrix M(X;A) whose columns are indexed by
unordered q ∈ X − A. If h = 1 and A = p1, set D(A) =
w(p1). The Weighted Distance Distribution WDD(X;A)
is the equivalence class of the pair [D(A);M(X;A)] up to
permutations ξ ∈ Sh acting on A. The Weighted Simplex-
wise Distribution WSD(X) is the unordered collection of
WDD(X;A) for all subsets A ⊂ X of unordered h points.

For finite mm-spaces, a metric on WDDs can be defined
similar to M∞ from Lemma 5.2 by combining the weights
and distances. Then LAC and EMD from Definitions 5.3
and 5.4 can be computed as in Theorem 5.5.

Example 6.4 (the strength of WSD). Fig. 6 shows mm-
spaces X,Y on 9 points visualised as trees [48, Fig. 8].
All edges have length 1

2 and induce the shortest-path met-
rics dX , dY . The sum of weights in every small branch of
3 nodes is 1

3 . These mm-spaces X,Y have all inter-point
distances only 1 and 2, and equal local distributions of dis-
tances MSD[X; 1] = MSD[Y ; 1] by [48, Example 5.6].

Indeed, both MSDs can be considered the same set of
9 piecewise constant functions µ(p) taking values w(p), 1

3 ,
and 1 on the intervals [0, 1), [1, 2), [2,+∞), respectively.

However, WSDs have more pointwise data: WSD[X; 1]
has A(D) = w(p) = 23

140 and the following 2× 8 matrix

M(X; p) =

(
1 1 2 2 2 2 2 2
1

105
67
240

2
15

1
15

2
15

4
21

1
28

3
28

)
,

but WSD[Y ; 1] has another matrix for w(p) = 23
140 .

M(Y ; p) =

(
1 1 2 2 2 2 2 2
2
15

1
28

1
105

4
21

2
15

3
28

1
15

67
420

)
.

The matrices with freely permutable columns are different,
so X,Y are distinguished by WSD for h = 1

Also, MSD[X; 2] ̸= MSD[Y ; 2] because, for any
basis sequence A = (p, q) ∈ X2, we have
VSM[X; 2](A; d1, d2) = (w(p), w(q)) for d1, d2 < 1 since
all other points have minimum distance 1 from p, q, simi-

larly for Y . The unique points p, q of weights w(p) =
23

140

and w(q) =
67

420
have different distances dX(p, q) = 1 and

dY (p, q) = 2. Then MSD[X; 2] ̸= MSD[Y ; 2] differ by the
uniquely identifiable fields mapping [0, 1)2 to the constant
vector (w(p), w(q)) with VIDX(A) = 1 ̸= 2 = VIDY (A).

We conjecture that any mm-spaces X,Y can be distin-
guished up to isomorphism by Measured Simplexwise Dis-
tributions for a high enough h depending on X,Y .

Future updates of this paper will include continuous met-
rics between Measured Simplexwise Distributions on mm-
spaces. We are open to new ideas and collaboration.

New invariants in Definitions 3.3, 6.2 and main Theo-
rems 3.6, 5.5, 5.8 essentially contribute to the new area of
Geometric Data Science aiming to resolve all data chal-
lenges whose bottlenecks are analogues of Problem 1.1.

The earlier work has studied the following important
cases of Problem 1.1: 1-periodic discrete series [5,6,41], 2D
lattices [13, 43], 3D lattices [12, 40, 42, 51], periodic point
sets in R3 [23, 64] and in higher dimensions [2–4].

The applications of Geometric Data Science to crys-
talline materials [7, 58, 68, 77] led to the Crystal Isometry
Principle [71,72,74] extending Mendeleev’s table of chem-
ical elements to the Crystal Isometry Space of all periodic
crystals continuously parametrised by complete invariants.
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che Annalen, 79(2):157–179, 1919. 2

[36] Snir Hordan, Tal Amir, Steven J Gortler, and Nadav
Dym. Complete neural networks for Euclidean graphs.
arXiv:2301.13821, 2023. 2

[37] Daniel Huttenlocher, Gregory Klanderman, and William
Rucklidge. Comparing images using the Hausdorff distance.
Transactions PAMI, 15:850–863, 1993. 2

[38] Ernest Sydney Keeping. Introduction to statistical inference.
Courier Corporation, 1995. 3

[39] Heuna Kim and Günter Rote. Congruence testing of point
sets in 4 dimensions. arXiv:1603.07269, 2016. 2

[40] Vitaliy Kurlin. A complete isometry classification of 3-
dimensional lattices. arxiv:2201.10543, 2022. 13

[41] Vitaliy Kurlin. Computable complete invariants for fi-
nite clouds of unlabeled points under Euclidean isometry.
arXiv:2207.08502, 2022. 2, 13

[42] Vitaliy Kurlin. Exactly computable and continuous met-
rics on isometry classes of finite and 1-periodic sequences.
arxiv:2205.04388, 2022. 13

[43] Vitaliy Kurlin. Mathematics of 2-dimensional lattices.
Found. Comp. Mathematics, pages Dec 7: 1–59, 2022. 13

[44] Vitaliy Kurlin. The strength of a simplex is the key to a con-
tinuous isometry classification of Euclidean clouds of unla-
belled points. arXiv:2303.13486, 2023. 3

[45] Cassidy Laidlaw and Soheil Feizi. Functional adversarial
attacks. Adv. Neural Inform. Proc. Systems, 32, 2019. 2

[46] Sushovan Majhi, Jeffrey Vitter, and Carola Wenk. Ap-
proximating Gromov-Hausdorff distance in Euclidean space.
arXiv:1912.13008, 2019. 2

[47] Siddharth Manay, Daniel Cremers, Byung-Woo Hong, An-
thony Yezzi, and Stefano Soatto. Integral invariants for shape
matching. Trans. PAMI, 28:1602–1618, 2006. 2

[48] Facundo Mémoli. Gromov–Wasserstein distances and the
metric approach to object matching. Foundations of Compu-
tational Mathematics, 11(4):417–487, 2011. 2, 12, 13

[49] Facundo Mémoli and Tom Needham. Distance distributions
and inverse problems for metric measure spaces. Studies in
Applied Mathematics, 149(4):943–1001, 2022. 2

[50] Facundo Mémoli, Zane Smith, and Zhengchao Wan. The
Gromov-Hausdorff distance between ultrametric spaces: its
structure and computation. arXiv:2110.03136, 2021. 2

[51] Marco M Mosca and Vitaliy Kurlin. Voronoi-based similar-
ity distances between arbitrary crystal lattices. Crystal Re-
search and Technology, 55(5):1900197, 2020. 13

[52] Jigyasa Nigam, Michael J Willatt, and Michele Ceriotti.
Equivariant representations for molecular hamiltonians and
n-center atomic-scale properties. Journal of Chemical
Physics, 156(1):014115, 2022. 2

[53] Robert et al Osada. Shape distributions. Transactions on
Graphics, 21:807–832, 2002. 2

[54] Helmut Pottmann, Johannes Wallner, Qi-Xing Huang, and
Yong-Liang Yang. Integral invariants for robust geometry
processing. Comp. Aided Geom. Design, 26(1):37–60, 2009.
2

[55] Sergey N Pozdnyakov, Michael J Willatt, Albert P Bartók,
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