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Abstract

The most fundamental model of a molecule is a cloud of un-
ordered atoms, even without chemical bonds that can depend on
thresholds for distances and angles. The strongest equivalence be-
tween clouds of atoms is rigid motion, which is a composition of
translations and rotations. The existing datasets of experimental
and simulated molecules require a continuous quantification of simi-
larity in terms of a distance metric. While clouds ofm ordered points
were continuously classified by Lagrange’s quadratic forms (distance
matrices or Gram matrices), their extensions to m unordered points
are impractical due to the exponential number of m! permutations.
We propose new metrics that are continuous in general position and
are computable in a polynomial time in the number m of unordered
points in any Euclidean space of a fixed dimension n.

1 Motivations and metric problem statement

Any finite chemical system such as a molecule can be represented as a cloud

of atoms whose nuclei are real physical objects [1], while chemical bonds

are not real sticks and only abstractly represent inter-atomic interactions.
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In the hardest scenario, all atoms are modeled as zero-sized points at all

atomic centers without any labels such as chemical elements. For example,

the C60 molecule [2] consists of 60 unordered carbons. Allowing different

compositions enables a quantitative comparison of isomers, see Fig. 1.

Figure 1. Isomers of C20, benzene C6H6, phenyllithium C6H5Li,
chlorobenzene C6H5Li have many indistinguishable atoms.

Now we formalize the key concepts. A point cloud is any finite set of

unordered points in a Euclidean space Rn. Since many objects have rigid

shapes, the natural equivalence of clouds is a rigid motion or isometry.

Any isometry of Rn is a composition of translations, rotations, and

reflections represented by matrices from the orthogonal group O(Rn). If

reflections are excluded, any orientation-preserving isometry f is realized

by a rigid motion as a continuous family of isometries ft : Rn → Rn,

t ∈ [0, 1], where f1 = f and f0 is the identity. We focus on the isometry

because a change of orientation can be easily detected by the sign of the

determinant det(f(v1), . . . , f(vn)) for a basis v1, . . . , vn of Rn.

Clouds of unordered points can be decided to be non-isometric only due

to an invariant [3] that is a descriptor preserved under any isometry and

all permutations of points. If points p1, . . . , pm are ordered, the matrix of

Euclidean distances |pi − pj | or the Gram matrix of scalar products pi · pj
is invariant under isometry [4], but not under m! permutations of points.

The exponential number m! of permutations is the major computa-

tional obstacle in extending invariants of ordered points to the much harder

unordered case. Since all atomic coordinates are determined only approxi-

mately, all real clouds are not isometric in practice at least slightly. Hence

the important problem is to continuously quantify the difference in terms

of a distance metric. This metric should satisfy all metric axioms, oth-

erwise, the results of clustering algorithms may not be trustworthy [5].
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The continuity of a metric in condition (1.1d) below is based on 1-1

perturbations of atoms motivated by atomic displacements in real systems.

Problem 1.1 (continuous isometry classification of unordered point clouds).

Find a complete isometry invariant I and a continuous metric d for any

clouds of unordered points in Rn so that the conditions below hold.

(1.1a) Invariance: if clouds A ∼= B are isometric in Rn, meaning that

f(A) = B for an isometry f : Rn → Rn, then I(A) = I(B), so the invariant

I has no false negatives, which are pairs A ∼= B with I(A) ̸= I(B).

(1.1b) Completeness : if I(A) = I(B), then A ∼= B, so I has no false

positives, which are pairs of non-isometric A ̸∼= B with I(A) = I(B).

(1.1c) A metric d on invariant values should satisfy all axioms below :

(1) coincidence : d(I(A), I(B)) = 0 if and only if A ∼= B are isometric;

(2) symmetry : d(I(A), I(B)) = d(I(B), I(A)) for any clouds A,B ⊂ Rn;

(3) triangle inequality : d(I(A), I(C)) ≤ d(I(A), I(B)) + d(I(B), I(C)).

(1.1d) Continuity : for A and ε > 0, there is δ such that if B is obtained by

perturbing points of A in their δ-neighborhoods, then d(I(A), I(B)) < ε.

(1.1e) Computability : for a fixed n, the invariant I(A) and the metric

d(A,B) are exactly computable in a polynomial time in the sizes of A,B.

(1.1f) Parametrization : all realizable values I(A) can be parametrized so

that any new value of I always gives rise to a reconstructable cloud A.

In the simplest case of m = 3 points, all triangles are classified up

to isometry (also called congruence in school geometry) by a triple of

unordered edge-lengths. This Euclid’s SSS (side-side-side) theorem was

extended to plane polygons whose complete invariant is a sequence of edge-

lengths considered up to cyclic shifts [6, Chapter 2, Theorem 1.8].

Section 3 first introduces the Principal Coordinates Invariant (PCI) to

classify all clouds that allow a unique alignment by principal directions.
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Section 4 defines a symmetrized metric on PCIs, which is continuous un-

der perturbations in general position and can be computed (for a fixed

dimension n) in a subquadratic time in the number of unordered points.

Section 5 introduces the Weighted Matrices Invariant (WMI) for any

point clouds in Rn. Section 6 applies the Linear Assignment Cost and

Earth Mover’s Distance to define metrics on WMIs, which need only a

polynomial time in the number m of points For a fixed dimension n. Sec-

tion 7 discusses the impact of new results on molecular shape recognition.

2 Past work on point clouds under isometry

The case of ordered points is much easier than Problem 1.1. Indeed,

any ordered points p1, . . . , pm ∈ Rn can be reconstructed (uniquely up

isometry) from the matrix of Euclidean distances dij = |pi − pj | for i, j =
1, . . . ,m [7, Theorem 9]. The equivalent complete invariant is the Gram

matrix of scalar products pi · pj , which can be written and classified in

terms of quadratic forms going back to Lagrange in the 18th century.

For any clouds A,B ⊂ Rn of the same number m of points, the differ-

ence between matrices above can be converted into a continuous metric by

taking a matrix norm. The Procrustes distance between isometry classes

of clouds can be computed from the Singular Value Decomposition [8, ap-

pendix A]. All these approaches strongly depend on point order, hence

their extensions to unordered points require m! permutations of points.

Multidimensional scaling (MDS) is a related approach again for a

cloud A of m ordered points given by their m × m distance matrix D.

The classical MDS [9] finds an embedding A ⊂ Rk (if it exists) preserving

all distances of M for a minimum dimension k ≤ m. The underlying

computation of m eigenvalues of the Gram matrix expressed via D needs

O(m3) time. The resulting representation of A ⊂ Rk uses orthonormal

eigenvectors whose ambiguity up to signs for potential comparisons leads

to the time factor 2k, which can be close to 2m. The new invariant of

unordered points needs the much smaller n × n covariance matrix of a

cloud A ⊂ Rn and has the faster time O(n2m+ n3) in Lemma 3.6.
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The crucial difference between order vs no-order on m points is the

exponential number of m! permutations, which are impractical to apply to

invariants of ordered points such as distance matrices or Gram matrices.

Isometry decision refers to a simpler version of Problem 1.1 to al-

gorithmically detect a potential isometry between clouds of m unordered

points in Rn. The algorithm by Brass and Knauer [10] takesO(m⌈n/3⌉ logm)

time, so O(m logm) in R3 [11]. The latest advance is the O(m logm) al-

gorithm in R4 [12]. These algorithms output a binary answer (yes/no)

without quantifying similarity between clouds by a continuous metric.

The Hausdorff distance [13] can be defined for any subsets A,B in

an ambient metric space as dH(A,B) = max{dH⃗(A,B), dH⃗(B,A)}, where
the directed Hausdorff distance is dH⃗(A,B) = sup

p∈A
inf
q∈B

|p − q|. To get a

metric on rigid shapes, one can further minimize [14–17] the Hausdorff

distance over all isometries f in Rn. For n = 1, the Hausdorff distance

minimized over translations in R for sets of at most m points can be found

in time O(m logm) [18]. For n = 2, the Hausdorff distance minimized over

isometries in R2 for sets of at most m point needs O(m5 logm) time [16].

Approximate algorithms. For a given ε > 0 and n > 2, the related

problem to decide if dH ≤ ε up to translations has the time complexity

O(m⌈(n+1)/2⌉) [19, Chapter 4, Corollary 6]. For general isometry in di-

mensions n > 2, approximate algorithms [20] tackled minimizations for

infinitely many rotations in R3, later in any Rn [21, Lemma 5.5], but the

time of exact computations was analyzed only in special cases [22,23].

Gromov-Wasserstein distances are defined between any metric-

measure spaces, not necessarily sitting within a common ambient space.

However, even the simplest Gromov-Hausdorff distance for finite metric

spaces cannot be approximated within any factor less than 3 in polyno-

mial time unless P=NP [24, Corollary 3.8]. Gromov-Hausdorff distances

were exactly computed for simplices [25], for ultrametric spaces [26, Algo-

rithm 1] in O(m2)-time and approximated in polynomial time for metric

trees [27] and in O(m logm)-time for m points in R [28, Theorem 3.2].
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Topological Data Analysis studies persistent homology for filtra-

tions of simplicial complexes [29] on a finite cloud A of unordered points.

If we consider the standard (Vietoris-Rips, Cech, Delaunay) filtrations,

then persistent homology is invariant up to isometry, not up to more gen-

eral deformations. Persistence in dimensions 0 and 1 cannot distinguish

generic families of inputs [30,31] including non-isometric clouds [32].

Distance-based invariants. Significant results on matching rigid

shapes and registering finite clouds were obtained in [33–35]. The total

distribution of pairwise distances is complete for point clouds in general

position [36], though infinitely many counter-examples are known, see the

non-isometric clouds T ̸∼= K of 4 points in the first two pictures of Fig. 2.

Figure 2. First and second: non-isometric sets T ̸∼= K of 4 points
have the same 6 pairwise distances. Third: the vertex set
RC[l1, l2] of a 2l1 × 2l2 rectangle. Fourth: what is the
distance between an equilateral triangle A3 and a square A4?
See new invariants and metrics in Examples 3.4, 4.5, 6.7.

The stronger local distributions of distances [37, 38], also known as

shape distributions [39–43] for metric-measure spaces, are similar to the

more specialized [44] Pointwise Distance Distributions (PDDs), which can

be continuously compared by the Earth Mover’s Distance [45].

Energy potentials of molecules use equivariant descriptors of atomic

environments [46], which are often obtained by deep learning [47] and

controllably change under rotations. PDD is conjectured to be complete

for finite clouds in R2 but [48, Fig. S4] provided excellent examples in R3

that were distinguished only by the stronger invariants in [49, section 4].

The latest distance-based invariants [50, 51] satisfy all conditions of

Problem 1.1 apart from parametrization (1.1f). Indeed, 4 points in the

plane have 6 pairwise distances that satisfy one polynomial equation say-

ing that the tetrahedron on these points has volume 0. Hence randomly

sampled 6 positive distances give rise to a real cloud with probability 0.
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3 A complete invariant PCI in a generic case

We start by recalling the Principal Component Analysis (PCA) whose

principal directions [52] will be used for building the Principal Coordinates

Invariant (PCI). For any cloud A ⊂ Rn of m points has the center of mass

Ā =
1

m

∑
p∈A

p. Shifting A by the vector −Ā allows us to always assume

that Ā is the origin 0. Then Problem 1.1 reduces to invariants only under

orthogonal maps from the group O(n) instead of the Euclidean group.

Definition 3.1 (covariance matrix Cov(A) of a point cloud A). If we

arbitrarily order points p1, . . . , pm of a cloud A ⊂ Rn, we get the sample

n × m matrix (or data table) P (A), whose i-th column consists of n co-

ordinates of the point pi ∈ A, i = 1, . . . ,m. The covariance n× n matrix

Cov(A) =
P (A)P (A)T

n− 1
is symmetric and positive semi-definite meaning

that vTCov(A)v ≥ 0 for any vector v ∈ Rn. Hence the matrix Cov(A)

has real eigenvalues λ1 ≥ · · · ≥ λn ≥ 0 satisfying Cov(A)vj = λjvj for an

eigenvector vj ∈ Rn, which can be scaled by any real s ̸= 0.

If all eigenvalues of Cov(A) are distinct and positive, there is an or-

thonormal basis of eigenvectors v1, . . . , vn ordered according to the de-

creasing eigenvalues λ1 > · · · > λn > 0. This eigenbasis is unique up to

reflection vj ↔ −vj of each eigenvector, j = 1, . . . , n.

Definition 3.2 (principally generic cloud). A point cloud A ⊂ Rn is

principally generic if, after shifting Ā to the origin, the covariance matrix

Cov(A) has distinct eigenvalues λ1 > · · · > λn > 0. The j-th eigenvalue

λj defines the j-th principal direction parallel to an eigenvector vj , which

is uniquely determined up to scaling.

The vertex set of a rectangle, but not a square, is principally generic.

Definition 3.3 (matrix PCM and invariant PCI). For n ≥ 1, let A ⊂
Rn be a principally generic cloud of points p1, . . . , pm with the center of

mass Ā at the origin 0 of Rn. Then A has principal directions along unit

length eigenvectors v1, . . . , vn well-defined up to a sign. In the orthonormal

basis V = (v1, . . . , vn)
T , any point pi ∈ A has the principal coordinates
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pi ·v1, . . . , pi ·vn, which can be written as a vertical column n×1 denoted by

V pi. The Principal Coordinates Matrix is the n×mmatrix PCM(A) whose

m columns are the coordinate sequences V p1, . . . , V pm. Two such matrices

are equivalent under changing signs of rows due to the ambiguity vj ↔ −vj

of unit length eigenvectors in the basis V . The Principal Coordinates

Invariant PCI(A) is an equivalence class of matrices PCM(A).

For simplicity, we skip the dependence on a basis V in the notation

PCM(A). The columns of PCM(A) are unordered, though we can write

them according to any order of points in the cloud A considered as the

vector (p1, . . . , pm). Then PCM(A) can be viewed as the matrix product

V A consisting of the m columns V p1, . . . , V pm.

Example 3.4 (computing PCI). (a) For any l1 > l2 > 0, let the rectan-

gular cloud RC[l1, l2] consist of the four vertices (±l1,±l2) of the rectangle

[−l1, l1]× [−l2, l2]. Then RC[l1, l2] has the center at 0 ∈ R2 and the sam-

ple 2× 4 matrix P =

(
l1 l1 −l1 −l1

l2 −l2 l2 −l2

)
whose columns are in a 1-1

correspondence with (arbitrarily) ordered points (l1, l2), (l1,−l2), (−l1, l2),

(−l1,−l2). The covariance matrix Cov(RC[l1, l2]) =

(
4l21 0

0 4l22

)
has

eigenvalues λ1 = 4l21 > λ2 = 4l22. If we choose unit length eigenvectors

v1 = (1, 0) and v2 = (0, 1), then PCM(RC[l1, l2]) coincides with the ma-

trix P above. The invariant PCI(RC[l1, l2]) is the equivalence class of

all matrices obtained from P by changing signs of rows and re-ordering

columns.

(b) The vertex set T of the trapezium in the first picture of Fig. 2

has four points written in the columns of the sample matrix P (T ) =(
2 1 −1 −2

−1/2 1/2 1/2 −1/2

)
so that the center of mass T̄ is the origin 0.

Then Cov(T ) =

(
10 0

0 1

)
has eigenvalues 10, 1 with orthonormal eigen-

vectors (1, 0), (0, 1), respectively. The invariant PCI(T ) is the equivalence

class of the matrix P (T ) above. The vertex set K of the kite in the sec-

ond picture of Fig. 2 consists of four points written in the columns of the



9

sample matrix P (K) =

(
5/2 −1/2 −1/2 −3/2

0 1 −1 0

)
so that the center

of mass K̄ is the origin 0. Then Cov(K) =

(
9 0

0 2

)
has eigenvalues 9,

2 with orthonormal eigenvectors (1, 0), (0, 1), respectively. The invariant

PCI(K) is the equivalence class of the matrix P (K) above.

Theorem 3.5 (generic completeness of PCI). Any principally generic

clouds A,B ⊂ Rn of m unordered points are isometric if and only if their

PCI invariants coincide as equivalence classes of matrices.

Proof. Any isometry f : Rn → Rn is a linear map, which maps A to B,

also sends the center of mass Ā to the center of mass B̄. Hence we assume

that both centers are at the origin 0 ∈ Rn, which is preserved by f .

Any isometry f preserving the origin can be represented by an orthog-

onal matrix Of ∈ O(Rn). In a fixed orthonormal basis of Rn, let P (A)

be the sample matrix of the point cloud A. In the same basis, the point

cloud B has the sample matrix P (B) = OfP (A) and the covariance matrix

Cov(B) =
P (B)P (B)T

n− 1
=

Of (P (A)P (A)T )OT
f

n− 1
.

Any orthogonal matrix Of ∈ O(Rn) has the transpose OT
f = O−1

f .

Then Cov(B) is conjugated to Cov(A) =
P (A)P (A)T

n− 1
and has the same

eigenvalues as Cov(A), while eigenvectors are related by Of realizing the

change of basis. If we fix an orthonormal basis of eigenvectors v1, . . . , vn

for A, any point p ∈ A and its image f(p) ∈ B have the same coordinates

in the bases v1, . . . , vn and f(v1), . . . , f(vn), respectively.

Hence PCM(A),PCM(B) are related by re-ordering of columns (equiv-

alently, points of A,B) and by changing signs of rows (equivalently, signs

of eigenvectors). So the equivalence classes coincide: PCI(A) = PCI(B).

Conversely, any n×m matrix PCM(A) from PCI(A) contains the coor-

dinates pi · vj of points p1, . . . , pm ∈ A in an orthonormal basis v1, . . . , vn.

Hence all points p1, . . . , pm are uniquely determined up to a choice of a

basis and isometry of Rn.
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Lemma 3.6 (time complexity of PCI). For a principally generic cloud

A ⊂ Rn of m points, a matrix PCM(A) from the invariant PCI(A) in

Definition 3.3 can be computed in time O(n2m+ n3).

Proof. The computational complexity of finding principal directions [53]

for the symmetric n× n covariance matrix Cov(A) is O(n3). Each of the

nm elements of the matrix PCM(A) can be computed in O(n) time. Hence

the total time is O(n2m+ n3).

Theorem 3.5 requires that clouds A,B are principally generic, which

holds with 100% probability due to noise. If real clouds are close to sym-

metric configurations with equal eigenvalues, to avoid numerical instability,

we should use the slower but always complete invariants from section 5.

4 A metric on principally generic clouds

This section defines a metric on PCI invariants, whose polynomial-time

computation and continuity will be proved in Theorems 4.6 and 4.9. For

any v = (x1, . . . , xn) ∈ Rn, the Minkowski norm is ||v||∞ = max
i=1,...,n

|xi|.

The Minkowski distance between u, v ∈ Rn is M∞(u, v) = ||u− v||∞.

Definition 4.1 (bottleneck distance W∞). For clouds A,B ⊂ Rn of m

points, the bottleneck distance W∞(A,B) = min
g:A→B

sup
p∈A

||p−g(p)||∞ is min-

imized over all bijections g : A → B.

Below we use the bottleneck distance for a matrix P interpreted as a

cloud [P ] of its column-vectors in Rn.

Definition 4.2 (m-point cloud [P ] ⊂ Rn of an n × m matrix P ). For

any n × m matrix P , let [P ] denote the unordered set of its m columns

considered as vectors in Rn. The set [P ] can be interpreted as a cloud of

m unordered points in Rn.

For any n×m matrices P,Q, let g : [P ] → [Q] be a bijection of columns.

Then the Minkowski distance M∞(v, g(v)) between columns v ∈ [P ] and

g(v) ∈ [Q] is the maximum absolute difference of corresponding coordi-

nates in Rn. The minimization over all column bijections g : [P ] → [Q]
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gives the bottleneck distance W∞([P ], [Q]) = min
g:[P ]→[Q]

max
v∈[P ]

M∞(v, g(v))

between the sets [P ], [Q] considered as clouds of unordered points.

An algorithm for detecting a potential isometry A ∼= B will check if

SM(A,B) = 0 for the metric SM defined via changes of signs. A change

of signs in n rows can be represented by a binary string σ in the product

group Zn
2 , where Z2 = {±1}, 1 means no change, −1 means a change.

For instance, the binary string σ = (1,−1) ∈ Z2
2 acts on the matrix

P = PCM(RC[l1, l2]) from Example 3.4 as follows:

σ

(
l1 l1 −l1 −l1

l2 −l2 l2 −l2

)
=

(
l1 l1 −l1 −l1

−l2 l2 −l2 l2

)
.

Definition 4.3 (symmetrized metric SM on matrices and clouds). For

any n ×m matrices P,Q, the minimization over 2n changes of signs rep-

resented by strings σ ∈ Zn
2 acting on rows gives the symmetrized metric

SM([P ], [Q]) = min
σ∈Zn

2

W∞([σ(P )], [Q]). For any principally generic clouds

A,B ⊂ Rn, the symmetrized metric is SM(A,B) = SM([PCM(A)], [PCM(B)])

for any matrices PCM(A),PCM(B) from Definition 3.3.

If we denote the action of a column permutation g on a matrix P as

g(P ), the matrix difference g(P )−Q has the Minkowski norm (maximum

absolute element) max
v∈[P ]

M∞(v, g(v)). Then W∞([P ], [Q]) will be computed

by an efficient algorithm for bottleneck matching in Theorem 4.6.

Lemma 4.4 (metric axioms for the symmetrized metric SM). (a) The

metric SM(P,Q) from Definition 4.3 is well-defined on equivalence classes

of n × m matrices P,Q considered up to changes of signs of rows and

permutations of columns, and satisfies all metric axioms.

(b) The metric SM(A,B) from Definition 4.3 is well-defined on isometry

classes of principally generic clouds A,B and satisfies all axioms.

Proof. (a) The coincidence axiom follows from Definition 4.3: SM([P ], [Q]) =

0 means that there is a string σ ∈ Zn
2 changing signs of rows such that

W∞([σ(P )], [Q]) = 0. By the coincidence axiom for W∞, the point clouds
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[σ(P )], [Q] ⊂ Rn should coincide, hence [Q] is obtained from [P ] by a com-

positions of reflections in the axes xi with σi = −1. The symmetry follows

due to inversibility of σ ∈ Zn
2 and the symmetry of W∞, so SM([P ], [Q]) =

min
σ∈Zn

2

W∞([σ(P )], [Q]) = min
σ−1∈Zn

2

W∞([P ], [σ−1(Q)]) = SM([Q], [P ]).

To prove the triangle inequality SM(P,M) + SM(Q,M) ≥ SM(P,Q),

let binary strings σP , σQ ∈ Zn
2 be optimal for SM(P,M) and SM(Q,M),

respectively, in Definition 4.3. The triangle inequality for W∞ implies that

SM(P,M) + SM(Q,M) = W∞([σP (P )], [M ]) +W∞([σQ(Q)], [M ])

≥ W∞([σP (P )], [σQ(Q)]).

Since applying the same change σ−1
Q of signs in both matrices σP (P )

and σQ(Q) does not affect the minimization for all changes of signs, the

final expression equals W∞([σ−1
Q ◦ σP (P )], [Q]) and has the lower bound

SM(P,Q) = min
σ∈Zn

2

W∞([σ(P )], [Q]) due to the minimization over all σ ∈ Zn
2

instead of one string σ−1
Q ◦ σP in Zn

2 .

(b) The coincidence axiom follows from Theorem 3.5: A ∼= B are isometric

if and only if PCI(A) = PCI(B) meaning that any matrices PCM(A),PCM(B)

representing the equivalence classes PCI(A),PCI(B), respectively, become

identical after a column permutation g : [PCM(A)] → [PCM(B)] and the

change of signs of rows by a binary string σ ∈ Zn
2 . Indeed, M∞(v, g(v)) = 0

for all columns v in the matrix σ(PCM(A)) means that the matrices

σ(PCM(A)) and PCM(B) become identical after the column permuta-

tion g. The symmetry and triangle axioms for SM(A,B) follow from part

(a) for the matrices P = PCM(A) and Q = PCM(B).

Example 4.5 (computing the symmetrized metric SM). (a) By Exam-

ple 3.4(a), the vertex set RC[l1, l2] of any rectangle with sides 2l1 >

2l2 in the plane has PCI represented by the matrix PCM(RC[l1, l2]) =(
l1 l1 −l1 −l1

l2 −l2 l2 −l2

)
. The vertex set RC[l′1, l

′
2] of any other rectangle

has a similar matrix whose element-wise subtraction from PCM(RC[l1, l2])

consists of ±l1 ± l′1 and ±l2 ± l′2. Re-ordering columns and changing

signs of rows minimizes the maximum absolute value of these elements
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to max{|l1 − l′1|, |l2 − l′2|}, which should equal SM(RC[l1, l2],RC[l
′
1, l

′
2]).

(b) The invariants PCI of the vertex sets T and K in Fig. 2 were computed

in Example 3.4(b) and represented by these matrices from Definition 3.3:

PCM(T ) =

(
2 1 −1 −2

−1/2 1/2 1/2 −1/2

)
,

PCM(K) =

(
5/2 −1/2 −1/2 −3/2

0 1 −1 0

)
.

The maximum absolute value of the element-wise difference of these

matrices is |1 − (− 1
2 )| = 3

2 , which cannot be smaller after permuting

columns and changing signs of rows. The symmetrized metric equals

SM(T,K) = W∞(PCM(T ),PCM(K)) = 3
2 .

Theorem 4.6 (time of the metric SM). (a) Given any n × m matrices

P,Q, the symmetrized metric SM(P,Q) in Definition 4.3 is computable in

time O(m1.52n logn m). If n = 2, the time is O(m1.5 logm).

(b) The above conclusions hold for SM(A,B) of any principally generic m-

point clouds A,B ⊂ Rn represented by n×m matrices PCM(A),PCM(B).

Proof. (a) For a fixed binary string σ ∈ Zn
2 , [54, Theorem 6.5] computes

the bottleneck distance W∞(σ(P ), Q) between the clouds [P ], [Q] of m

points in time O(m1.5 logn m) with space O(m logn−2 m). If n = 2, the

time is O(m1.5 logm) by [54, Theorem 5.10]. The minimization for all

binary strings σ ∈ Zn
2 brings the extra factor 2n.

(b) It follows from part (a) for P = PCM(A) and Q = PCM(B).

Lemmas 4.7 and 4.8 will help prove the continuity of the symmetrizied

metric SM under perturbations in Theorem 4.9. Recall that any n ×
n matrix E has the 2-norm ||E||2 = sup

|v|=1

|Ev| and the maximum norm

||E||∞ = max
j=1,...,n

n∑
k=1

|Ejk|. If the center of mass Ā = 0 ∈ Rn is the origin,

define the radius rA = max
p∈A

|p|.
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Lemma 4.7 (upper bounds for matrix norms). Let A,B ⊂ Rn be any

principally generic clouds of m points with covariance matrices Cov(A)

and Cov(B), respectively. Set u =
nm

n− 1
W∞(A,B)(rA + rB). Then

||Cov(A)− Cov(B)||2 ≤ u and ||Cov(A)− Cov(B)||∞ ≤ u. (1)

Proof. Assume that A,B have centers of mass at the origin 0. Let g : A →
B be a bijection minimizing the bottleneck distance W∞(A,B). Let A

consist of m points p1, . . . , pm. Set p̃i = g(pi) for i = 1, . . . ,m. Let xj(p)

denote the j-th coordinate of a point p ∈ Rn, j = 1, . . . , n. The covariance

matrices can be expressed as follows:

Cov(A)jk =
1

n− 1

m∑
i=1

xj(pi)xk(pi), Cov(B)jk =
1

n− 1

m∑
i=1

xj(p̃i)xk(p̃i).

Since the Minkowski distance M∞(pi, p̃i) ≤ W∞(A,B), the upper

bounds |xj(pi) − xj(p̃i)| ≤ W∞(A,B) hold for all i = 1, . . . ,m and j =

1, . . . , n, and will be used below to estimate each element of the n × n

matrix E = Cov(A)− Cov(B) as follows: (n− 1)|Ejk| =

≤
m∑
i=1

|xj(pi)xk(pi)− xj(p̃i)xk(p̃i)|

=

m∑
i=1

∣∣∣xj(pi)
(
xk(pi)− xk(p̃i)

)
+ xk(p̃i)

(
xj(pi)− xj(p̃i)

)∣∣∣
≤

m∑
i=1

(
|xj(pi)| ·

∣∣xk(pi)− xk(p̃i)
∣∣+ |xk(p̃i)| ·

∣∣(xj(pi)− xj(p̃i)
∣∣)

≤ W∞(A,B)

m∑
i=1

(
|xj(pi)|+ |xk(p̃i)|

)
≤ mW∞(A,B)(rA + rB).

If we denote the final expression by w, the required bound is u =
nw

n− 1
.
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Let E1, . . . , En ∈ Rn be the rows of E = Cov(A)−Cov(B). Then ||E||2 ≤

= sup
|v|=1

|Ev| ≤ sup
|v|=1

√√√√ n∑
j=1

(Ej · v)2 ≤ sup
|v|=1

√√√√ n∑
j=1

|Ej |2|v|2 ≤

√√√√ n∑
j=1

|Ej |2

=

√ ∑
j,k=1,...,n

E2
jk ≤

√
n2 max

j,k=1,...,n
E2

jk = n max
j,k=1,...,n

|Ejk| ≤
nw

n− 1
= u.

Finally, ||E||∞ = max
j=1,...,n

n∑
k=1

|Ejk| ≤
nw

n− 1
= u as required.

The result below is quoted in a simplified form for the PCA case.

Lemma 4.8 (eigenvector perturbation [55, Theorem 3]). Let C be a

symmetric n × n matrix whose eigenvalues λ1 > · · · > λn > 0 have

a minimum gap(C) = min
j=1,...,n

(λj − λj+1) > 0, where λn+1 = 0. Let

vi, ṽi be unit length eigenvectors of C and its symmetric perturbation

C̃ such that E = C − C̃ has the 2-norm ||E||2 < gap(C)/2. Then

max
j=1,...,n

|vj − ṽj | = O

(
n3.5µ2||E||∞ + n

√
µ||E||2

gap(C)

)
, where the incoher-

ence µ is the maximum sum of squared j-th coordinates of v1, . . . , vn for

j = 1, . . . , n, which has the rough upper bound n.

Theorem 4.9 (continuity of SM). For any principally generic cloud A ⊂
Rn and any ε > 0, there is δ > 0 (depending on A and ε) such that if any

principally generic cloud B ⊂ Rn has W∞(A,B) < δ, then SM(A,B) < ε.

Proof. Let g : A → B be a bijection minimizing the distance W∞(A,B)

so that M∞(p, g(p)) = W∞(A,B) for p ∈ A, g(p) ∈ B. By Lemma 4.7

the difference E = Cov(A) − Cov(B) has the matrix norms bounded by

u =
nm

n− 1
W∞(A,B)(rA + rB). By Lemma 4.8 with µ ≤ n the maximum

difference of eigenvectors of C = Cov(A) and Cov(B) has the norm

max
j=1,...,n

|vj − ṽj | ≤ O

(
n5.5w

gap(C)

)
= O

(
n5.5

gap(C)

)
mW∞(A,B)

(
rA + rB

)
.

The bijection g : A → B induces a bijection between the columns of

the matrices PCM(A),PCM(B) so that the column represented by any

point pi ∈ A maps to the column represented by p̃i = g(pi) ∈ B. We
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can permute the columns of PCM(B) so that the columns represented by

pi, p̃i have the same index i. Let v1, . . . , vn and ṽ1, . . . , ṽn be unit length

eigenvectors of Cov(A),Cov(B), respectively. Then we estimate

|pi · vj − p̃i · ṽj | = |(pi − p̃i) · vj + p̃i · (vj − ṽj)|

≤ |pi − p̃i| · |vj |+ |p̃i| · |vj − ṽj | ≤ |pi − p̃i|+ rB max
j=1,...,n

|vj − ṽj |.

The final maximum satisfies max
j=1,...,n

|vj − ṽj | ≤ (rA + rB)O
( n5.5m

gap(C)

)
,

where C = Cov(A). Since rB ≤ rA + W∞(A,B), we get the following

upper bound for element-wise difference PCM(A)− PCM(B).

|pi · vj − p̃i · ṽj | ≤ W∞(A,B)

(
1 + rB(rA + rB)O

( n5.5m

gap(C)

))
≤ W∞(A,B)

(
1 +

(
rA +W∞(A,B)

)(
2rA +W∞(A,B)

)
O
( n5.5m

gap(C)

))
.

For any ε > 0, one can choose δ > 0 (depending only on A, not on B) so

that if W∞(A,B) < δ then |pi · vj − p̃i · ṽj | < ε for any i = 1, . . . ,m and

j = 1, . . . , n. Then the i-th columns ui ∈ [PCM(A)] and u′
i ∈ [PCM(B)]

have the Minkowski distance M∞(ui, u
′
i) < ε for all i = 1, . . . ,m. Hence

SM(A,B) < ε by Definition 4.3, as required for the continuity.

5 The complete invariant WMI for all clouds

This section extends the invariant PCI from Definition 3.3 to a complete

invariant WMI (Weighted Matrices Invariant) of all possible clouds.

If a cloud A ⊂ Rn is not principally generic, some of the eigenvalues

λ1 ≥ · · · ≥ λn ≥ 0 of the covariance matrix Cov(A) coincide or vanish.

Let us start with the most singular case when all eigenvalues are equal to

λ > 0. The case λ = 0 means that A is a single point. Though A has no

preferred (principal) directions, A still has the well-defined center of mass

Ā =
1

m

∑
p∈A

p, which is at the origin 0 ∈ Rn as always. For n = 2, we

consider m possible vectors from the origin 0 to every point of A− {0}.
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Definition 5.1 (Weighted Matrices Invariant WMI(A) for cloudsA ⊂ R2).

Let a cloud A of m points p1, . . . , pm in R2 have the center of mass at the

origin 0. For any point pi ∈ A − {0}, let v1 be the unit length vector

parallel to pi ̸= 0. Let v2 be the unit length vector orthogonal to v1 whose

anti-clockwise angle from v1 to v2 is +
π

2
. The 2×m matrix M(pi) consists

of the m pairs of coordinates of all points p ∈ A written in the orthonormal

basis v1, v2, for example, pi =

(
||pi||2
0

)
. Each matrix M(pi) is consid-

ered up to re-ordering of columns. If one point p of A is the origin 0, there

is no basis defined by p = 0, let M(p) be the zero matrix in this centered

case. If k > 1 of the matrices M(pi) are equivalent up to re-ordering of

columns, we collapse them into one matrix with the weight
k

m
. The un-

ordered collection of the equivalence classes of M(p) with weights for all

p ∈ A is called the Weighted Matrices Invariant WMI(A).

In comparison with the generic case in Definition 3.3, for any fixed

i = 1, . . . ,m, if pi ̸= 0, then the orthonormal basis v1, v2 is uniquely

defined without the ambiguity of signs, which will re-emerge for higher

dimensions n > 2 in Definition 5.3 later.

Example 5.2 (regular clouds Am ⊂ R2). Let Am be the vertex set of a

regular m-sided polygon inscribed into a circle of a radius r, see the last

picture in Fig. 2. Due to the m-fold rotational symmetry of Am, the invari-

ant WMI(Am) consists of a single matrix (with weight 1) whose columns

are the vectors

(
r cos 2πi

m

r sin 2πi
m

)
, i = 1, . . . ,m. For instance, the vertex set A3

of the equilateral triangle has WMI(A3) =

{(
r −r/2 −r/2

0 r
√
3/2 −r

√
3/2

)}
.

The vertex set A4 of the square has WMI(A4) =

{(
r 0 0 −r

0 r −r 0

)}
.

LetBm be obtained from Am by adding the origin 0 ∈ R2. ThenWMI(Bm)

has the matrix from WMI(Am) with the weight
m

m+ 1
and the zero 2× 4

matrix with the weight
1

m+ 1
representing the added origin 0.

Definition 5.3 applies to all point clouds A ⊂ Rn including the most

singular case when all eigenvalues of the covariance matrix Cov(A) are
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equal, so we have no preferred directions at all.

Definition 5.3 (Weighted Matrices Invariant for any cloud A ⊂ Rn).

Let a cloud A ⊂ Rn of m points p1, . . . , pm have the center of mass at

the origin 0. For any ordered sequence of points p1, . . . , pn−1 ∈ A, build

an orthonormal basis v1, . . . , vn as follows. The first unit length vector

v1 is p1 normalized by its length. For j = 2, . . . , n − 1, the unit length

vector vj is pj −
j−1∑
k=1

(pj · vk)vk normalized by its length. Then every vj

is orthogonal to all previous vectors v1, . . . , vj−1 and belongs to the j-

dimensional subspace spanned by p1, . . . , pj . Define the last unit length

vector vn by its orthogonality to v1, . . . , vn−1 and the positive sign of the

determinant det(v1, . . . , vn) of the matrix with the columns v1, . . . , vn.

The n × m matrix M(p1, . . . , pn−1) consists of column vectors of all

points p ∈ A in the basis v1, . . . , vn, for example, p1 = (||p1||2, 0, . . . , 0)T .
If p1, . . . , pn−1 ∈ A are affinely dependent, letM(p1, . . . , pn−1) be the n×m

matrix of zeros in this centered case. If k > 1 matrices are equivalent up

to re-ordering of columns, we collapse them into a single matrix with the

weight
k

N
, where N = m(m− 1) . . . (m− n+ 1). The Weighted Matrices

Invariant WMI(A) is the unordered set of equivalence classes of matrices

M(p1, . . . , pn−1) with weights for all sequences of points p1, . . . , pn−1 ∈ A.

If Cov(A) has some equal eigenvalues, WMI(A) can be made smaller by

choosing bases only for subspaces of eigenvectors with the same eigenvalue.

Theorem 5.4 (completeness of WMI). (a) Any clouds A,B ⊂ Rn are re-

lated by rigid motion (orientation-preserving isometry) if and only if there

is a bijection WMI(A) → WMI(B) preserving all weights or, equivalently,

some matrices P ∈ WMI(A), Q ∈ WMI(B) are related by re-ordering of

columns. So WMI(A) is a complete invariant of A up to rigid motion.

(b) Any mirror reflection f : A → B induces a bijection WMI(A) →
WMI(B) respecting their weights and changing the sign of the last row

of every matrix. This pair of WMIs is a complete invariant of A up to

isometry including reflections.

Proof. (a) As in the proof of Theorem 3.5, let the centers Ā, B̄ coincide

with the origin 0 ∈ Rn. Given an orientation-preserving isometry f :
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Rn → Rn mapping A to B, any ordered sequence p1, . . . , pn−1 ∈ A maps

to f(p1), . . . , f(pn−1) ∈ B. Since f is a linear map preserving all scalar

products and lengths of vectors, we conclude that

f(pj −
j−1∑
k=1

(pj · vk)vk) = f(pj)−
j−1∑
k=1

(f(pj) · f(vk))f(vk).

By Definition 5.3 the isometry f maps the orthonormal basis v1, . . . , vn of

the sequence p1, . . . , pn−1 ∈ A to the orthonormal basis f(v1), . . . , f(vn)

of the sequence f(p1), . . . , f(pn−1) ∈ B. Then any point p ∈ A has

the same coordinates p · vj = f(p) · f(vj), j = 1, . . . , n, in the basis

v1, . . . , vn as its image f(p) ∈ B in the basis f(v1), . . . , f(vn). The ma-

trices M(p1, . . . , pn−1) ∈ WMI(A) and M(f(p1), . . . , f(pn−1)) ∈ WMI(B)

coincide if their columns (equivalently, points of A,B) are matched by f .

By choosing any p1, . . . , pn ∈ A, the isometry f : A → B induces the

bijection WMI(A) → WMI(B) respecting the weights of matrices (equiv-

alent up to re-ordering of columns). So condition (a) holds and implies

(b) saying that some P ∈ WMI(A) and Q ∈ WMI(B) are equivalent.

Conversely, if a matrix P ∈ WMI(A) coincides with Q ∈ WMI(B), let

v1, . . . , vn and u1, . . . , un be the orthonormal bases used for writing these

matrices in Definition 5.3. The isometry f mapping v1, . . . , vn to u1, . . . , un

maps A to B because any point p ∈ A in the basis v1, . . . , vn has the same

coordinates as its image f(p) ∈ B in the basis f(v1), . . . , f(vn).

(b) Let f : Rn → Rn be any orientation-reversing isometry such as a mir-

ror reflection. For any sequence of affinely independent points p1, . . . , pn−1 ∈
A, the matrix MA(p1, . . . , pn−1) from Definition 5.3 describes A in the ba-

sis defined by p1, . . . , pn−1 with a fixed orientation of Rn.

Composing f with a rigid motion moving f(p1), ..., f(pn−1) back to

p1, . . . , pn−1, respectively, we can assume that f fixes each of p1, . . . , pn−1,

while WMI is preserved by part (a). Then f is the mirror reflection A → B

in the hyperspace spanned by the fixed points p1, . . . , pn−1. Since the basis

vector vn is uniquely defined by p1, . . . , pn−1 for a fixed orientation of Rn,

any other point p ∈ A maps to its mirror image f(p) ∈ B, so p and

f(p) have opposite projections to vn. Then the matrix MB(p1, . . . , pn−1)
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describing f(A) = B in the basis v1, . . . , vn differs from MA(p1, . . . , pn−1)

by the change of sign in the last row.

Hence f induces a bijection WMI(A) → WMI(B), where each matrix

changes the sign of its last row and is considered up to permutation of

columns. Conversely, any matrix from WMI(A) whose last row is consid-

ered up to a change of sign suffices to reconstruct A up to isometry.

One can store in computer memory only one matrix M(p1, . . . , pn−1)

from the full WMI(A) whose elements parametrize the isometry class of

A as required by (1.1f). Any such matrix suffices to reconstruct a point

cloud A up to orientation-preserving isometry of Rn by Theorem 3.5. The

full invariant WMI(A) can be computed from the reconstructed cloud.

Lemma 5.5 (time of WMI). For any cloud A ⊂ Rn of m points and any

sequence p1, . . . , pn−1 ∈ A, the matrix M(p1, . . . , pn−1) from Definition 5.3

can be computed in time O(nm+n3). All N = m(m−1) . . . (m−n+1) =

O(mn−1) matrices in the Weighted Matrices Invariant WMI(A) can be

computed in time O((nm+ n3)N) = O(nmn + n3mn−1).

Proof. For a fixed sequence p1, . . . , pn−1 ∈ A, the vectors v1, . . . , vn−1 are

computed by Definition 5.3 in time O(n2). The last vector vn might need

the O(n3) computation of det(v1, . . . , vn). Every point p ∈ A can be re-

written in this basis as p =
n∑

j=1

(p · vj)vj in time O(n). Hence the matrix

M(p1, . . . , pn−1) is computed in time O(nm+n3). Since there are exactly

N = m(m−1) . . . (m−n+1) ordered sequences of points p1, . . . , pn−1 ∈ A,

all matrices in WMI(A) are computed in time O((nm+ n3)N).

6 Exactly computable metrics all clouds

This section introduces two metrics onWeighted Matrices Invariants (WMIs),

which are computable in polynomial time by Theorems 6.3 and 6.6. Since

any isometry f : A → B induces a bijection WMI(A) → WMI(B), we will

use a linear assignment cost [56] based on permutations of matrices.
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Definition 6.1 (Linear Assignment Cost LAC). Recall that Definition 4.3

introduced the bottleneck distance W∞ on matrices considered up to re-

ordering of columns. For any clouds A,B ⊂ Rn of m points, consider the

Linear Assignment Cost LAC(A,B) = min
g

∑
P∈WMI(A)

W∞(P, g(P )) mini-

mized [56] over all bijections g : WMI(A) → WMI(B) of full Weighted

Matrices Invariants consisting of all N = m(m− 1) . . . (m− n+ 1) equiv-

alence classes of matrices.

Lemma 6.2 (LAC on clouds). (a) The Linear Assignment Cost from

Definition 6.1 satisfies all metric axioms on clouds under rigid motion.

(b) Let A′ be any mirror image of A. Then min{LAC(A,B),LAC(A′, B)}
is a metric on classes of clouds up to general isometry including reflections.

Proof. (a) The only non-trivial coincidence axiom follows from Theo-

rem 5.4 and the coincidence axiom of the bottleneck distance W∞: any

clouds A,B are isometric if and only if there is a bijection WMI(A) →
WMI(B) matching all matrices up to permutations of columns, so all cor-

responding matrices have bottleneck distance W∞ = 0.

(b) All axioms for follow from the relevant axioms for LAC(A,B).

Theorem 6.3 (time complexity of LAC on WMIs). For any clouds A,B ⊂
Rn of m points, the invariants WMI(A),WMI(B) consists of at most N =

m(m−1) . . . (m−n+1) = O(mn−1) matrices. Then the metric LAC(A,B)

from Definition 6.1 can be computed in time O(m1.5(logn m)N2 +N3) =

O(m2n−0.5 logn m+m3n−3). If n = 2, the time is O(m3.5 logm).

Proof. By [54, Theorem 6.5], for any matrices P ∈ WMI(A) and Q ∈
WMI(B), the bottleneck distance W∞([P ], [Q]) can be computed in time

O(m1.5 logn m). For N × N pairs of such matrices, computing all costs

c(P,Q) = W∞([P ], [Q]) takes O(m1.5(logn m)N2) time. If n = 2, [54, The-

orem 5.10] reduces the time of all costs W∞([P ], [Q]) to O(m1.5(logm)N2).

Using the same time factor O(N2), one can check if c(P,Q) = 0, which

means that the clouds [P ] ∼= [Q] are isometric. Finally, with all N2 costs

c(P,Q) ready, the algorithm by Jonker and Volgenant [56] computes the

Linear Assignment Cost LAC(A,B) in the extra time O(N3).
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The worst-case estimate N = O(mn−1) of the size (number of matrices

in) WMI(A) is very rough. If the covariance matrix Cov(A) has equal

eigenvalues, WMI(A) is often smaller due to extra symmetries of A.

However, for n = 2, even the rough estimate of the LAC timeO(m3.5 logm)

improves the time O(m5 logm) for computing the exact Hausdorff distance

between m-point clouds under Euclidean motion in R2.

Since real noise may include erroneous points, it is practically impor-

tant to continuously quantify the similarity between close clouds consisting

of different numbers of points. The weights of matrices allow us to match

them more flexibly via the Earth Mover’s Distance [45] than via strict bi-

jections WMI(A) → WMI(B). The Weighted Matrices Invariant WMI(A)

can be considered as a finite distribution C = {C1, . . . , Ck} of matrices

(equivalent up to re-ordering columns) with weights.

Definition 6.4 (Earth Mover’s Distance on weighted distributions). Let

C = {C1, . . . , Ck} be a finite unordered set of objects with weights w(Ci),

i = 1, . . . , k. Consider another set D = {D1, . . . , Dl} with weights w(Dj),

j = 1, . . . , l. Assume that a distance between any objects Ci, Dj is mea-

sured by a metric d(Ci, Dj). A flow from C to D is a k×l matrix whose en-

try fij ∈ [0, 1] represents a partial flow from an object Ci toDj . The Earth

Mover’s Distance is the minimum cost EMD(C,D) =
k∑

i=1

l∑
j=1

fijd(Ci, Dj)

over fij ∈ [0, 1] subject to
l∑

j=1

fij ≤ w(Ci) for i = 1, . . . , k,
k∑

i=1

fij ≤ w(Dj)

for j = 1, . . . , l, and
k∑

i=1

l∑
j=1

fij = 1.

The first condition
l∑

j=1

fij ≤ w(Ci) means that not more than the

weight w(Ci) of the object Ci ‘flows’ into all objects Dj via the flows fij ,

j = 1, . . . , l. Similarly, the second condition
k∑

i=1

fij ≤ w(Dj) means that

all fij from Ci for i = 1, . . . , k ‘flow’ into Dj up to its weight w(Dj).

The last condition
k∑

i=1

l∑
j=1

fij = 1 forces to ‘flow’ all Ci to all Dj .

The EMD is a partial case of more general Wasserstein metrics [57] in
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transportation theory [58]. For finite distributions as in Definition 6.4, the

metric axioms for EMD were proved in [45, appendix]. EMD can compare

any weighted distributions of different sizes. Instead of the bottleneck

distance W∞ on columns on PCM matrices, one can consider EMD on the

distributions of columns (with equal weights) in these matrices.

Lemma 6.5 (time complexity of EMD on distributions of columns). Any

matrix P of a size n×m(P ) can be considered as a distribution of m(P )

columns with equal weights 1
m(P ) . For two such matrices P,Q having the

same number n of rows but potentially different numbers m(P ),m(Q) of

columns, measure the distance between any columns by the Minkowski

metric M∞ in Rn. For the matrices P,Q considered as weighted distribu-

tions of columns, the Earth Mover’s Distance EMD(P,Q) can be computed

in time O(m3 logm), where m = max{m(P ),m(Q)}.

Proof. EMD needs O(m3 logm) time [59] for distributions of size m.

Theorem 6.6 (time of EMD on clouds). Let clouds A,B ⊂ Rn of up

to m points have pre-computed invariants WMI(A),WMI(B) of sizes at

most N ≤ m(m − 1) . . . (m − n + 1) = O(mn−1). Measure the distance

between any matrices P ∈ WMI(A) and Q ∈ WMI(B) as EMD(P,Q) from

Lemma 6.5. Then the Earth Mover’s Distance EMD(WMI(A),WMI(B))

from Definition 6.4 can be computed in timeO(m3(logm)N2+N3 logN) =

O((m2n+1 + nm3n−3) logm).

Proof. By Lemma 6.5, the metric EMD(P,Q) can be computed in time

O(m3 logm). For N × N pairs of such matrices, computing all costs

c(P,Q) = EMD(P,Q) takes O(m3(logm)N2) time. With all costs ready,

EMD(A,B) is computed [59] in the extra time O(N3 logN).

Example 6.7 (EMD for a square and equilaterial triangle). Let A4 and

A3 be the vertex sets of a square and equilateral triangle inscribed into the

circle of a radius r in Example 5.2. PCM(A3) =

(
r −r/2 −r/2

0 r
√
3/2 −r

√
3/2

)

and PCM(A4) =

(
r 0 0 −r

0 r −r 0

)
. Notice that switching the signs

of the 2nd row keeps the PCI matrices the same up to permutation of
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columns. The weights of the three columns in PCM(A3) are
1

3
. The

weights of the four columns in PCM(A4) are
1

4
. The EMD optimally

matches the identical first columns of PCM(A3) and PCM(A4) with weight
1

4
contributing the cost 0. The remaining weight

1

3
− 1

4
=

1

12
of the

first column

(
r

0

)
in PCM(A3) can be equally distributed between the

closest (in the M∞ distance) columns

(
0

±r

)
contributing the cost

r

12
.

The column

(
−r

0

)
in PCM(A4) has equal distances M∞ =

r

2
to the

last columns

(
−r/2

±r
√
3/2

)
in PCM(A3) contributing the cost

r

8
. Finally,

the distance M∞ =
r

2
between the columns

(
0

±r

)
and

(
−r/2

±r
√
3/2

)
with the common signs is counted with the weight

5

24
and contributes the

cost
5r

48
. The final optimal flow (fjk) matrix

 1/4 1/24 1/24 0

0 5/24 0 1/8

0 0 5/24 1/8


gives EMD(PCM(A3),PCM(A4)) =

r

12
+

r

8
+

5r

48
=

5r

16
.

7 Discussion of significance for atomic clouds

Problem 1.1 was stated in the hard case for clouds of unordered points

in any Rn because real shapes such as atomic clouds from molecules and

salient points from laser scans often include indistinguishable points. This

paper complements many past advances by rigorous proofs for all singular

point clouds whose principal directions are undefined in Rn.

The Principal Coordinates Invariant (PCI) should suffice for object re-

trieval [45,60] and other applications in Vision and Graphics, because real

clouds are often principally generic due to noise in measurements. Then,

for any fixed dimension n, Theorem 4.6 computes the symmetrized metric

SM on PCIs faster than in a quadratic time in the numberm of points. The
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key insight was the realization that Principal Component Analysis (PCA)

belongs not only to classical statistics but also provides easily computable

metrics for point clouds under isometry. Though sensitivity of PCA under

noise was studied for many years, Theorem 4.9 required more work and

recent advances to guarantee the continuity of PCI.

The Weighted Matrices Invariant (WMI) completely parameterizes the

moduli space of m-point clouds under isometry. The complete classifi-

cation in Theorem 5.4 goes far beyond the state-of-the-art parameteriza-

tions, which are available for moduli spaces of point clouds only in dimen-

sion 2 [6]. For proteins and other molecules in R3, the moduli space was de-

scribed only under continuous deformations not respecting distances [61].

However, non-isometric embeddings of the same protein can have different

physical and chemical properties such as binding to drug molecules, and

hence should be continuously distinguished by computable metrics.

This paper focused on foundations, so experiments are postponed to

future work. The exactly computable metric on WMIs can be adapted to

the complete isometry invariants of periodic crystals [62], which has been

done only for 1-periodic sequences [63–65]. The earlier invariants [1,44,66]

detected geometric duplicates, which had wrong atomic types but were

deposited in the well-curated (mostly by experienced eyes) world’s largest

collection of real materials (Cambridge Structural Database). Another

problem is to prove the continuity of WMIs under perturbations of clouds

whose subsets are linearly independent. Though the complexity in Theo-

rem 4.6 is practical in dimensions n = 2, 3, it is still important to improve

the complexity of the symmetrized metric SM for higher dimensions.
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