Available online at www.sciencedirect.com _—
sc.eucg@n.“ﬁ. JOURNAL OF

Algebra

ELSEVIER Journal of Algebra 292 (2005) 184242 e —
www.elsevier.com/locate/jalgebra

Compressed Drinfeld associators

V. Kurlin *

Independent University of Moscow, Bolshoy Vlasyevskiy Pereulok 11, Moscow 121002, Russian Federation
Received 29 November 2004
Available online 23 June 2005
Communicated by Patrick Dehornoy

To my mother

Abstract

Drinfeld associator is a key tool in computing the Kontsevich integral of knots. A Drinfeld associ-
ator is a series in two non-commuting variables, satisfying highly complicated algebraic equations—
hexagon and pentagon. The logarithm of a Drinfeld associator lives in the Lie algejeaerated
by the symbols:, b, c modulo[a, b] = [b, c] = [¢, a]. The main result is a description of compressed
associators that obey the compressed pentagon and hexagon in the qugfient], [L, L]]. The
key ingredient is an explicit form of Campbell-Baker—Hausdorff formula in the case when all com-
mutators commute.
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1. Introduction
1.1. Motivation and the previous results

Let A be a quasi-Hopf algebra [9] with a non-commutative non-associative co-
product A. Roughly speakingan associatoris an elemen € A®3 controlling non-
associativity of the coproduet. Another elemenk € A®? characterizes non-commutativ-
ity of A. V. Drinfeld found the universal Knizhnik—Zamolodchikov associd®¢z, @kz)
by using analytic methods—differential equations and iterated integrals. Also Drinfeld
proved that there is an iterative algebraic procedure for finding a universal formula of an
associator over the rationals. Although this procedure is constructive, it does not give rise
to a closed explicit formula.

The main motivation is the construction of the Kontsevich integral of knots via asso-
ciators, investigated by T.Q.T. Le, J. Murakami [16], and D. Bar-Natan [3]. Other com-
binatorial constructions of the universal Vassiliev invariant are in [7,20]. Recall that the
Kontsevich integral takes values in the algelraf chord diagrams. The LM-BN con-
struction gives an isotopy invariant of parenthesized framed tangles [4] expressed via a
Drinfeld associator that is a solution of rather complicated equations—hexagon and pen-
tagon (the same as mentioned above). Any solution of these equations gives rise to a knot
invariant. Le and Murakami [15] have proven that the resulting invariant is independent
of a particularly chosen associator and coincides with the Kontsevich integral from [13]
providedR = exp(r1?). In other words, if one knew all coefficients of at least one associa-
tor, then one could calculate the whole Kontsevich integral for any knot. Another approach
of Bar-Natan, Le, and D. Thurston has led to a formula for the Kontsevich integral of the
unknot and all torus knots in the space of Jacobi diagrams [5].

A special associator was expressed via multiple zeta values [14], i.e. via transcendental
numbers. Drinfeld computed the logarithm of the same associator in the case when all
commutators commute by using classical zeta values [10]. This result was the starting
point of the present researches. Bar-Natan calculated a rational Drinfeld associator up to
degree 7 in [3]. J. Lieberum [18] determined explicitly a rational associator in a completion
of the universal enveloping algebra of the Lie superalgetgH®3. Up to now a closed
formula of a rational associator is still unknown [19, p. 433, Problem 3.13].

Extreme coefficients of all Drinfeld associators will be calculated in Theorem 1.5(c). It
turns out that they are rational and expressed via the classical Bernoulli numbers

1.2. Basic definitions
Definition 1.1 (associative algebra,,, algebra of chord diagrams$(X)).

(a) For eachn > 2, let the associative algebr, over the fieldC be generated by the
symbolst'/ =/, 1<i # j < n, modulo the relations

[¢7,¢]=0 ifi, j, k, I are pairwise disjoint

[£7,17% + 4% =0 ifi, j, k are pairwise disjoint
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wherethe bra(_:_ke1[_-,.] PAn © Ay — Ay is defined by{a, b] := ab — ba. Observe that
the relationgr¥/, 1/¥ 4 t¥i1 =0 of A,, are equivalent to

[£7,87%] = [t7%, X ) = [(¥,¢"7] for all pairwise disjoint, j, k € {1,...,n}.

The associative algebrd, is graded bythe degreedeqr’/) = 1.

(b) Let us define the same objedt, geometrically. LetX be a 1-dimensional oriented
compact manifold, possibly non-connected and with boundachord diagram onx
is a collection of non-oriented dashed linebdrd9 with endpoints onX. Let A(X)
be the linear space generated by all chord diagrams orodulothe 4T relations

C DDA

The dotted arcs represent parts of the diagrams that are not shown in the figure. These
parts are assumed to be the same in all four diagrams.

If X = X, is the disjoint union of: oriented segmentstfands, thenA(X,,) can be
endowed with a natural product. If in the definition4ofX,,) one allows only horizon-

tal chords with endpoints om vertical strands, then the resulting algelaﬁé’r(xn) is
isomorphic to the algebra,,. Indeed, thinking of’/ as a horizontal chord connecting
theith and jth vertical strands, the relations between ttidbecome the % relations:

sl b e T

Definition 1.2 (Lie algebraL,,, quotientL,,, long commutatoras . . . a]).

(a) The Lie algebrd., is generated by the same generators and relations as the associative
algebraa,, of Definition 1.1. The Lie algebra,, is graded with respect to de§) = 1.

(b) Denote by[L,, L,] the Lie subalgebra of.,,, generated by all commutatofs, 5]
with a, b € L, . Introducethe compressed quotient, = L, /[[Ln, L,1, [Ln, L,]]. Let
Xn, Zn, andL, be the algebras of formal series of elements fram L,,, andL,,,
respectively.

(c) Forelementsas,...,a, of aLie algebral, setlaiaz...ar] = [a1, [az, [...,a;]...]].

For example, the algebrat and L3 contain the series exg?) and Y 52 [(112)¥ 123,
respectively.

Definition 1.3 (operatorsA, andeg, Drinfeld associators and compressed associators)

(a) Lets"/ be the generators of,,. Let Ay : A, — A, 11 forO<k <n+1andg:A, —
A,_1 for 1 <k < n be the algebra morphisms defined by their actiorv'ér(here

i<j):
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i, ifi<j<k,
N i+l ifi <k<j,
Ag(t7) = § b+ if k<i<j,
i 4 gL ifi<j=k,
phd L L i =k <
i, ifi <j<k,
N =1 ifi <k<j,
sk(t”) ={ /Y-l fk<i< g,
0, ifi <j=k,
0, ifi=k<j.

Ao (A,+1) acts by adding a strand on the left (right)), for 1 < k < n acts by doubling
the kth strand and summing up all the possible ways of lifting the chords that were
connected to theth strand to the two daughter strands. The opetatacts by deleting
thekth strand and mapping the chord diagram to O, if any chord in it was connected to
thekth strand.

(b) A horizontal Drinfeld associatofbriefly, a Drinfeld associatoyis an elemen® € Az
satisfying the following equations (here s&¥* := & (r'/, t/%) and® := @129

(symmetry) @ -9%%1=1 inAs, (1.3a)
(hexagon) A1(exp(t1?)) = @312 exp(113) - (0712 exp(123) - 123

in Az, (1.3b)
(pentagon) Ao(@) - Ao(DP) - Aa(D) = Az(P) - A1(P) in Ay, (1.3c)
(non-degeneracy) e1® = e2® =g3® =1 in Ao, (1.3d)
(group-like) ® =exp(p) in Az for some elemenp € Ls. (1.3e)

A geometric interpretation of the hexagon and pentagon is shown below:

I A

(c) If an associatow € Az vanishes in all odd degrees, thénis said to beeven Note
that the symmetry (1.3a) implies(a, b) = —¢(b, a) in L3. By taking the logarithms
of (1.3b) and (1.3c) and projecting them undey— L3 and L4 — L4 one getshe
compressed hexagdi.3b) and pentagor(1.3c), respectivelyA compressed asso-
ciator ¢ € L3 is a solution of(1.3b) and(1.3c), satisfyingg(a, b) = —¢@(b, a) and
9(a,00=¢(0,0)=0
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Definition (1.3b) uses a non-classical normalization. Drinfeld considered the two
hexagons [9]:

12 13 23
Al(exp<:l:%>) — @312, exp(:l:%) (@ H™2. exp(:t%) P12

To avoid huge denominators in future the change of the variables 2:// was made.
Moreover, Bar-Natan has proven that both hexagons above are equivalent to the positive
hexagon (with the sign+") and the symmetry (1.3a), see [3 Proposition 3.7]. The loga-

rithm ¢ = log(®) of any Drinfeld associator projects undes — L3 onto a compressed
associator.

Example 1.4. Bar-Natan calculated an even Drinfeld associator up to degree 7:

B a.by — (4] _ Bl +labab]
¢ (a,b)—< 12 =30
. 961a%] + dla%bab] + 65ab?ab] + 68aba®h] + 4[(ab)3])

90720
— (interchange ofi <> b),

wherea = 112, b = 123, By the above normalization one needs to divide the denominators
at all terms of the degree by 2'. Degree 7 is the maximal achievement of Bar-Natan’s

computer programme. Then Irg one gets:

B a.b) = [ab] 4[a3b]+[abab]+4[b2ab]+[a5b]+[b4ab]+[a3bab]+[ab3ab]
“P="g 360 945 1260
23[a’b?ab)
e 1.4
30240 (14

1.3. Main results

For a seriesf (1, ), let us introduce itevenandodd parts:

SR = f(=2, -
2 ’ )= '

Ever(f(x, 1) 5

Odd(f (1. )
Theorem 1.5 describes all compressed Drinfeld associators.

Theorem 1.5.

(a) Any compressed Drinfeld associatpe fg from Definition1.3(c)is

@(a,b) = Z anld*b'ab], wherea =1'% b=1?3 ay eC. (1.5a)
k.10
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Moreover, the coefficients,; are symmetricoy; = oy for all k,1 > 0.
(b) Let f(x, n) = Zk,l}Oakl)‘k/’L[ be the generating function of the coefficiemts= oy

Then the compressed hexagdrBb) from Definition1.3(c)is equivalent to the equa-
tion

FOG +e f(u,—r— ) +e fFh, —r—p)

1 et—1 e r-1
= + . 1.5b
/\+u( 2 A ) (1.5b)

(c) The general solution of1.5b)is
f G ) =Ever(f (., ) +0Odd(f (., ).

where

At _ o—A—p 2w
1+A,U,~Ever(f(k,u))=e 2(A—:u) (ew_e — +Zh (A, M))

"= (1.50)
A+;L — e
Odd(f (+. ) = (Zﬁnow +Zh (s u))
[n/3]
IO ) =) Bucd® 12 0.+ ¥ ™ =% forn >3,
k=1

Bk € C, w:\/)xz‘f‘)\,u‘f'ﬂz-

Moreover, the compressed pentagn3c) for ¢ € L3 follows from the symmetry
ax = ag. In particular, any honest Drinfeld associator has the extreme coefficients

22k+lBZk+2
0= o o)

for everyk > 0, whereB, are the Bernoulli numbers. The polynomials(x, i) are
defined by the same formulais(x, i), except the coefficiengs, € C are substituted
for B,x. The coefficients,o (for n > 0), Bk, and B, are free parameters fot < k <
[n/3],n > 3.

By Theorem 1.5(c) the differences of all compressed associators form a linear space
generated byg,«, B.x. The projection of any Drinfeld associator is in (1.5c), see Prob-
lem 6.10(a).
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Corollary 1.6. (a, b) There are two distinguished even compressed Drinfeld associators

Q= Z ol [akb[ab] € fg
k,1>0

defined by the generating function of the coeficients

fOw =" arfu!

k,1>0
as follows
Mt — gAi 2w
the first series 1+ Auf' (1, p) = . , =/A2+ 2 2,
+Auf (A, ) 200+ 1) o _gw @ +Ap+p
(1.6a)
A g Al 2\ 21
the second series 1+ 2huf" (h, ) = < -1).
+ 2 f" (A, 1) 20+ 1) pr—— + =
(1.6b)

(c) There are compressed Drinfeld associatgre fg defined by the Drinfeld series
FP0

o0

() AT+ p" =+

1+ aufPn, p) =ex : ,

fPOn. 1) =exp ; . T

where odd zeta valueg2n + 1) are considered as free parameters, see DefiniidnIn
particular, one gets the third distinguished compressed Drinfeld associator

X H2n

29"B
the third series 1+ auf" (A, u) = exp(z 4n(2n2; (A + ) — 22— Mzn))
n=1 ’

(1.6c)
where By, are the classical Bernoulli numbers, see Definitib(b)
1.4. Scheme of proofs
Key points of proofs are listed below.
First key point a behavior of the Bernoulli numbers,( = 0 for each odd: > 3).
Second key pointthe Bernoulli numbers3,, can be extended in a natural way, this ex-

tension gives a compressed variant of CBH formula (Definition 2.4 and Proposi-
tion 2.8).
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Third key point properties of the extended Bernoulli numbéls, and their generating
function C (A, n): a non-trivial symmetryC (&, u) = C(—u, —A) (Lemma 2.10)
and an explicit expression @f(x, 1) (Proposition 2.12).

4th key point the original hexagon equation (1.3b) can be simplified in such a way that it
remains to apply CBH formula in an essential way exactly once (Lemma 3.1).

5th key point the quotientLz = L3/[[L3, L3], [L3, L3]], where a compressed associator
lives, is isomorphic to a Lie algebra with a small basis of commutators (Proposi-
tion 3.4).

6th key point the compressed hexagon equati@r8b) is equivalent to a recursive linear
system for the coefficientg,; (Proposition 3.9 and Lemma 4.1).

7th key point the extreme coefficientsy o of the exact logarithm of any Drinfeld associ-
ator (not only the compressed one) are expressed via the Bernoulli nuBhers
(Lemma 4.2).

8th key point for any compressed associator, the compressed hexagim can be split
into two equations for the even and odd parts of this associator (Lemma 4.5).

9th key point accurate to a certain factor the general solution of the compressed hexagon
(1.3b) is a series (A, p) with the symmetryi (A, 1) = h(A, —A — ) (Lemmas 4.6
and 4.12).

10th key point non-uniqueness of compressed associators is closely related with non-
unigueness of associator polynomials (Definition 4.7 and Lemma 4.9).

11th key point all associator polynomials can be described explicitly: in each degree 2
the family of all associator polynomials dependgey3] free parameters (Propo-
sition 4.10).

12th key point for any compressed associator, the compressed pentagon equaion
follows from the symmetry conditioay; = «;; (Proposition 5.10).

Proposition 5.10 —— |Theorem 1.5¢| +—— Proposition 4.10

Lemma 5.8 Lemma 5.9 Lemmas 4.6, 4.12 Lemma 4.9

Lemma 5.5 Lemma 4.5 Lemma 4.2 Theorem 1.5b

Lemma 5.4 Lemma 4.4 <+—— Lemma 4.1 Theorem 1.5a

I

Lemma 2.11 — Proposition 2.12 Proposition 3.9 <~— Lemma 3.1

SN — —

Lemma 2.2 Lemma 2.10 +— Proposition 2.8 <— CBH (2.3)  Proposition 3.4

Fig. 1.
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The paper is organized as follows. In Section 2 the extended Bernoulli nur@hgrs
are introduced, one deduces a compressed variant of CBH formula in the case when all
commutators commute with each other. In Sections 3 and 4 the compressed hexagon is
written explicitly and solved. Section 5 is devoted to checking the compressed pentagon.
Theorem 1.5(a) is proved in Section 3.2. Theorem 1.5(b) and Corollary 1.6 are checked in
Sections 4.1 and 6.2, respectively. The hexagon and pentagon parts of Theorem 1.5(c) are
verified in Sections 4.3 and 5.3, respectively. In Section 6.3 open problems and suggestions
for future researches are formulated. Appendix contains a lot of explicit formulae discussed
in the paper in their general forms.

In Fig. 1 see the scheme for the proof of Theorem 1.5. Important steps are called propo-
sitions, they are of independent interest, especially Propositions 2.8 and 2.12 together.

2. Campbell-Baker—Hausdor ff formula (CBH)

This section is devoted to an explicit form of CBH formula in the case when all com-
mutators commute with each other, see Propositions 2.8 and 2.12.

2.1. Classical recursive CBH formula

Recall a classical recursive CBH formula (Theorem 2.3) originally proved by J. Camp-
bell [6], H. Baker [1], and F. Hausdorff [11].

Definition 2.1 (Hausdorff serie¢d, Bernoulli numbersB,,, derivativeD = Hlﬁ).

(a) LetL be the free Lie algebra generated by the symiigl®. By L denote the alge-
bra of formal series of elements from The Hausdorff series H = log(exp(P) -

exp(Q)) e L.
(b) The Bernoulli numbers®,, are defined by the generating function:

(c) A derivativeof a Lie algebraL s a linear functionD: L — L such thatD[x, y] =
[Dx, y]+ [x, Dy] for all x, y € L. For an element; € L, denote byD = Hl% the
derivative ofL, which mapsP onto 0 andQ onto H1.

One can verify thatBg = 1, By = —% and that+— + 5 is an even function, which
shows thatB, = 0 for oddn > 3. The first key pointthe function_+— vanishes in almost

all odd degrees, Whilé’x;—1 does not. This fact implies recursive formulae RBy.

Lemma 2.2. For eachm > 1, the Bernoulli numbers,, satisfy the relations

@ Sy ("B, =1,
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(b) SN (") Ba = 15,
© Y, (-1 ("B, =

In particular, the first four relations from the ite@a) are:

2B1=-1, 3B1+3B=-1, 4B1+6By+4B3=—1,
5B1 + 10B2 4+ 10B3 + 5B4 = —1.

Proof. (a) One obtains:

k=1 n=0
o
1 1 B,
m=1 (m+1)' k+n=m+1 ki nl
(")
i.e.
i 1 B, 1
Zm-n+D! nl T (m+ 1!
as required.

(b) SinceBy+1 = 0 for everyk > 1, then

m [m/2]
m+1 m+1
—1=E ( " )Bn:(m+1)31+ E < ok )sz,
n=1 k=1

hence
[m/2]
m+1 1 m—1
By =—1+= )=—-".
];(Zk) 2% +5m ) ==

(c) The desired formula is equivalent to the item (b), sim&g,1 = 0 for each
k>1. O

The following theorem is quoted from [21, Corollaries 3.24, 3.25, pp. 77-79].

Theorem 2.3[1,6,11] The Hausdorff seriefl = log(exp(P) - exp(Q)) is

o0
H:ZHm,

m=0
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where
Ho= 0, Hi=P—-—-[0,P —_— P,
=0 1 510 ]+;(2n)![Q ]
H 1 H 9 (Hy,—1) form>=2
— _ m = 2.
m m 1aQ m—1
2.2. Extended Bernoulli numbets,, and compressed variant of CBH formula

The compressed variard the case when all commutators commute. To get an explicit
form of CBH formula in this setting, one needs to extend the Bernoulli numiers

Definition 2.4 (extended Bernoulli numbers,,,,, generating functio (1, u)).
(a) Introducehe extended Bernoulli numbets,,, in terms of the classical ones:
C]J’l = Bn,

n 1 /n+1
Criin == Cnni1 =~ ;( L )Bkcm,nkH form,n>1(2.4a)

The numberg,,,, are calculated in Table A.2 of Appendix A for +n < 12.
(b) Let us introducehe generating function

COh, )= ZZ Comn ;-1 w1 (2.4b)

vn'
m=1n=1

Formula (2.4a) does not look very naturally. But there is a more natural definition of
Cmn €quivalent to (2.4a), see Proposition 2.8.

Example 2.5. The first few values of the extended Bernoulli numbers are:

C—l Co= C—l C31=0 C—l C—l

Then the generating functiafi(x, n) starts with

1 1 1
Cn, )= —§+—(x W)+ St 2o (1 AAp® = 2 — %) + -

Up to degree 10 the functiofi(A, 1) is computed in Example A.3.
If WisawordinP, Q, then the expressigiv] in a long commutator is regarded as a

formal symbol, i.e[P Q[W]] := [P, [Q, [W]]]. But the symbolW in a long commutator
is considered as the word i, Q, for W = Q" P™ one get§W Q P]:=[Q"P"QP].



V. Kurlin / Journal of Algebra 292 (2005) 184—-242 195

Claim 2.6. Let P, Q be two elements of a Lie algebfa W be a word in the letter®, Q.

(a) In the quotientL = L/[[L, L], [L, L]], for any wordW containing at least one letter
P and at least one lette@, one hag PQO[W]]1 =[QP[W]].

(b) In the quotientL, for any wordW containing exactlyn letters P and exactly: letters
Q,onehagWQP]=[Q"P"QP].

Proof. (a) Sinc_e the elemehW] contain_s at least one commutator, thigh, 01, [W]]1 =0
in the quotient.. The Jacobi identity i implies the item (a):

[Powi] - [epPiwl]=[P.[Q.(WI]]+[Q.[[W]. P]]
=—[[W], [P, Q]]=0.

(b) By the item (a) one can permute the lettersVbf i.e. one may assum@ =
Q"P™. O

Let L be the Lie algebra freely generated by the symiidl®). Recall that the series

H; e L was introduced in Theorem 2.3. Put= L/[[L, L], [L, L]]. As usual byL denote
the algebra of formal series of elements frém

Claim 2.7. In the algebraf, for the derivativeD = H1% and allm,n > 1, one has

- B
[Hy, P]= —](Z;k—'!‘[PQkP]; (2.7)
— B
D[Q"P]=@m-D[Q"2PQP]-)_ k—]‘([Q"_lPQkP]; (2.7b)
k=1 "
D[Q"P"1QP]=(n—D[@"2P"0P] -} %[Q“”‘ZP’" QP]. (27c)
k=1 "

Proof. (a) It suffices to rewrite the formula d@f; from Theorem 2.3 as follows:

* B
HE P+ 2 0kP]

= k!
ad Bi & ac By, k
= [Hy,Pl=—|P. ) S [0°P]|==)  [PO‘P].
k=1 """ k=1 "

Observe that here first key poin{B, = 0 for oddr > 3) was used.
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(b) Induction om. The base: = 1 follows from (a):

e¢]

By,
proP1 %% (Do, P1+ [0, DP] = [Hy, P]%L? - Zk_ (PO*P]
k=1

Induction step (from to n + 1):

p[0"1P] %2 [H1. [0"P]] +[0. D[0"P]]

> B
= [PQ"P]+ @ -D[Q"'POP] - [sz—’f Q”_lPQkP]i|.
k=1

It remains to apply Claim 2.6(a):
[PO"P]+(m—D[0" tPOP]=n[0"*POP].

The item (b) and

D[Qn—lpm—lQP] (Zﬁa) D[Pm_lQ"P] (Zilc) [P, [P, [ o, D[QnP] .. ]]]
T/

imply (c). O

The following result gives a natural definition of the extended Bernoulli numBgys
they give rise to an explicit compressed CBH formule(second key point

Proposition 2.8 (compressed variant of CBH).et L be the Lie algebra freely generated

by the symbol®, Q. Under the natural projectiod — L, whereL = L/[[L, L], [L, L],
the Hausdorff seriesl = log(exp(P) - exp(Q)) maps onto the series

H= P+Q+ZZ Conn Q” tpm=lop]. (2.8)

m=1ln= 1
Proof. By Theorem 2.3 the serigg maps onto the seridg = oo on, where
Ho=0Q, Hl—Hl—P+Z [o"P].
n= l

_ 1 0
Hy 1= —’D’”(Hl) form>1andD = H,—.
m! 00
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It remains to prove the following formula:

o0
Cm n —
D™ (Hy) = %[Q” LpmoPp] foreachm > 1. (2.8,)
n=1 ’

The basen = 1 is completely analogous to the inductive step (frers 1 tom):

m ) > mn n— m— — Cm” n— m—
D”’(H) - D(Z [0" 1P lQP) > - D[o" P toP]
n=1 ! n=1
279 <= Cmn _ n—2 pm _ .- Bir kn—2pm
< 2 - ((n H[o" 2P QP] ;k [0 2P QP]>

_ i Cmnt1 n[Q”_le 0P] Z Z Cinn Bk Qktn—2pm or]
n

!
:O(n+1)' n=1k=1 n

C 1 " C k+1 Br

m,n+ m,n—k—+ n—1pm

= — " P P
nz_l<(n+1)!" k; n—k+ 1) k!)[Q P

(2.43 N o
=y [o"tPmoP]. O

n!
n=1

The seriesH will be calculated up to degree 10 in Proposition A.4.

2.3. Properties of the extended Bernoulli numbers aiid, 1)

Claim 2.9. Under the projectionz — f whereL = L/[[L, L], [L, L]], the Hausdorff
seriesH = log(exp(P) -exp(Q)) maps onto the seridaote thatB; = —%, butCy,; = %):

1
1 1 .
H= P+Q+§1§1m" P"RQM PO, WhereC’llzé,Cinan, (2.9a)
m n

n

1 - (n+1
r/n+l,n = n4+ lci/n,n+1 - n+1 Z ( k )Cikcf/n,n—k+1 form 1 nz 2. (2 9b)
k=1

Proof. Proofis completely similar to the proof of Proposition 2.8. One can use the follow-
ing analogue of Theorem 2.3 [21, the remark after Corollary 3.25, p. 80]: the Hausdorff
seriesH = log(exp(P) - exp(Q)) is equal toH = Y " H,,, where

1 . B
Hy=P.  H{=Q+3[P.01+ ) == [P0,

= (@
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1 0
w=t (ma—P)( ') form>2.

m

Here the derivativeD’ = Hiaip mapsP onto H; and Q onto 0. To get formula (2.9a) it
suffices to apply the equations similar to Claim 2.7, wherg are interchanged:

[H. 0] = QPQ] > =) Z [oPkQ]  (27d)
k= 2 =
D'[P"Q]=m—D[P"20PQ] - Z k—”‘ [P"toPrQ]; (2.75)
D[Pt Q" tPQ)=(m—D[P"2Q"PO] - Ckl”‘[P”” 20"pPQ].  (2.7¢)
k=1

Actually, it remains to deduce bi2.7¢) the formula analogous #2.8),)

o C/
(D')"(Hy) = Z mr:r,l’" [PrtomPQ] foreverym>1 O
n=1 ’

Lemma 2.10. The extended Bernoulli numbers are symmetric in the following sense
Cpn = (=" C,,, forall m,n>1. (2.10)
Hence the generating functiai(x, n) obeys the symmetg(i, u) = C(—u, —1).

Proof. Let us rewrite the recursive formula (2.9b) in a more explicit form:

[n/2]
n 1 1 n+1
C;nJrl,n = n+ 1C:/n,n+l - Ecr/nn T +1 Z < 2% )BZkCI/Tl,nszrl'
k=1

In the same form formula (2.4a) looks like

n 1 1 WA
Cm+1,n = mcm,n+l + Ecmn - l’l——i‘l ; ( 2% )BZka,n2k+l-

If the latter equation is multiplied bg—1)"*", then one obtains

n 1 _
(1) Crpirp = n—H(—1>m+"cm,n+1 - 5(—1>'"+" YCon
[n/2]

1 n+1
- B (1), 0 iy
i () s
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Hence the numberg’,, and (— 1m+n=1c,,, obey the same recursive relation. Since

C}, = (=1)"B, = (=1)"C1, (the firstkey pointfor all n > 1, thenC,,, = (=Dmt=1C,,,
forall m,n > 1. Then formula (2.9a) converts to

ja3 Cinn — _
H_P_Q — Z (_1)m+nflm[Pn lQm 1PQ]

m,n>1

(26) Z ( )m+n Cinn [Qm lpn lQP]

m,n>1
The above formula and (2.8) impty,,, = (-1)"*"C,,, as required. O

The following two assertions show that the extended Bernoulli numbgysare not
too complicated. The numbec,,, can be expressed via binoms and the Bernoulli num-
bersB,.

Lemma 2.11. The extended Bernoulli numbers can be expressed via the classical ones

m—1

m
Cop = Z <k>Bn+k for eachm > 1. (2.11)

k=0

In particular, one gets

Ci, = By, Co =B, + 2Bn+1a C3, =B, + 3Bn+1 + 3Bn+2,
Can =B, +4By1+1+ 6By 2+ 4By 3.

Proof. Multiplying (2.4a) by, one has

n+1 1o (n+1
Cm+l,n = Cm,n+1 - - Z ( )Bkcm,n—k+lv
n ni k

n+1 1o (n+1
Contr=——Coy1n+ > > ( L )Bkcm,n_kﬂ forallm,n>1 (2.4d)
k=1

Equation (2.11) will be checked by induction sn The basen = 1 follows from Defini-
tion 2.4(a). Suppose that formula (2.11) holds#grlet us prove it foin + 1.

(2 10 (- 1)In+n+lC

2.4d) (—1mHntl (1
( = ) T (m+ 1)Cn+1,m + Z Bkcn,mkarl

k=1 k

Cm-i—l,n
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1
(2=10) (_1)m+n+l<m + ( 1)m+n+1c el

1~ (m+1
+ Z Z ( k >Bk(_1)m+n_k+lcm—k+l,n)
k=1

(by hypothesis)

m—k

-1 m
m+ 1<~ (m 1 m+1 m—k+1
= T (k)Bn+k+1+;E (—1)k< )BkE ( ) n+l
k=1 =

k=0

m+1w— m 1« fm+1
= — B —E -1 BB
m <l—1> n+l+mk71( )< k )k "

=1

m—k

1 pf(m+1 m—k+1
*ZZH)( A )BkZ( 1 )Bn+z
k=1 =1
By < 1
= _Z(—l)k(m: )Bk
n k=1

+Z (( (" >+Z( (" ) k<m_l"“)>.

Since by Lemma 2.2(c) the first term is equaBg, then it remains to check the formula

m+1/ m 1 f(m+1 m—k+1 m+1
.- - ~1 B = forallm=>1>1
() e (") (") = (1) e

The left-hand side of the above equation is

(m+1)-(m—1)! m+1)-(m-1 (m—k+1)!
(l—l)!(m—l+l)‘+z<( 1)B k'(m — k + 1)! l!(m—k—l—i—l)!)

m+D-m=D!  m+D-m-D T (m—l+1
(—Dlm— 14D T i — 1+ 1)1 'Z<—1>Bk< ) )

220 (m+1)-(m—1)! <1+m—l>_ (m +1)! _<m+l>
T (A =D(m -1+ 1) ! T Nm—=14+1 1 )

as required. O

Now one can get an explicit expression@®fi, 1), which does not follow immediately
from Definition 2.4 or Proposition 2.8He third key point
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Proposition 2.12. The generating functiod' (x, 1) from Definition2.4(b)is equal to

et —1 At 7
Ch,pn) = . — . 2.12
*. 1) Al <e)‘+/‘ -1 er— 1> (2.12)

Proof. The next trick is applied: to get a non-trivial relation a symmetry is destroyed,

C
mCOLp) = > mr,’:,/\”u’”
mn=1l
(211) m=1 A1 Mm
S (1)) B
n=1m=1 \ k=0

nmk

By " o B
ZZ Z n\(m — k)lk! 1232121 kT k!
n m

k=0n=1m=k+1

9N

m=1 k=0n=1

(ZB ot > Buwk ,k,>

k,n>1

1b 4 A ~
= -1). —-14+C(O, ,
(e =2): (g -1+ Coum)
where
- )\nuk
Cx,p)= Z Bn+km-
kan>1

Since(—l)"+"Bn+k = B4 for n, k > 1 (the first key point then

- . )»k/,Ln )»kll,n -
Clop == ) D" By = 3 Bu oy — = CO. ).
k!n! k!n!
kn>1 k.n>1

One obtains

A ~
(e“—l)-(ek_l—1+C()»,p,))_MLC(A u) )\,uC( W, —A)

=("-1)- (e_;’i 71t C(—n, —A))

=(e-1). <e_;“ 11+ C(x, u)>,
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hence
_ ~ A _ "
V) — (oM _ _ _ A_ _
(e — )T ) = (e 1)(61_1 1) (e 1)(611_1 )
et —1 e —1 _a "
_)Le)"—l—i_ue*“—ldl—e —ev.

By substituting the above formula into the expression@€ (1, w) via C(x, ), one gets

Com=Lt (A (et et (e —et)
) = ) d(e™ —et) ).
’ AL et —1 o —1 Hen e

All quotients are well defined as formal Laurent series. It remains to prove:

w1 -1 by A
)\6’ +M€ :(e_)‘—e“)~< +u _ _ w )’ or

et —1 e h—1 Mt —1 ert—1 et-—-1

et —1 1—¢* At A "
e i = (1 = M) . — — , or
¢ e’\—1+'ue 1—et (1=e") (e“‘”—l et—1 er—1

re* 5 uet
(e —1) + (e _1)6”‘—1

A n
s
:—k_M_(l_e+M).<e)L—_l+eﬂ_1>, or

(eu_l).<ef_1+x>+(ek_1).(eﬂ“_1+u>

A jz
=—A— M _q). , or
,u+(e ) (e)‘—1+e“—1>

rel + pet = (M — o) )L_ 1 + (M — %) e

e et —1’

which is clear. O

3. Compressed hexagon equation

In this section one shall write explicitly the compressed hexagon and prove Theo-
rem 1.5(a).

3.1. First simplification of the hexagon

Lemma 3.1 gives a first simplification of the hexagon (1.3b). Due todthigey poinit
remains to apply CBH formula exactly once.
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Lemma3.1. In A3 the hexagon equatiofi.3b)is equivalent to the following equation
expla+b+c)= exp(lp(c, a)) - exp(w(b, c)) . exp(lﬂ (a, b)), (3.1

wherey (a, b) := log(exp(¢(a, b)) - exp(a)) € Lz, a =112, b =123, ¢ := 113,
Proof. Let us rewrite the original hexagon (1.3b) in a more explicit form:
exp(t13+ tzs) _ eXp((p(tB, t12)) exp(tls) exp( ( 13 23))
x exp(t?3) - exp(p (112, 123)).

Introduce the symbols = 12, b = 1?3, ¢ = 113 and apply the symmetry(b,c) =
—¢(c, b).

exp(b + ¢) = exp(p(c, a)) - explc) - exp(p(b, c)) - exp(b) - exp(e(a, b)).

It remains to multiply the above equation by éxpfrom the right. The element com-
mutes withb + ¢ in L3 by definition. Moreoverg + b + ¢ is a central element df;. O

Recall,fg is the algebra of formal series of elements frbgx= La/[[L3, L3], [L3, L3]].

Claim 3.2.In f3, for the compressed serigda, b) = log(exp(@(a, b)) - expla)), one has

. B -
w(a,b)=a+zﬁ[a"(p(a,b)]
n=0 "

=a+¢(a,b) — }[a @(a,b) +Z az"gb(a,b)]. (3.2)

(2n)'

Proof. Apply Proposition 2.8 for the Hausdorff serigg(a,b) = log(exp(@(a, b)) -
expla)) and Q = a, P = ¢(a, b). Since all commutators included i(a, b)) commute
with each other inLs, then[Q" P] = [a"¢(a, b)] and[Q"~1P"~1QP] =0 for allm > 2,
n>1l 0O

In particular, by Claim 3.2 the serigs(a, b) starts with

a,pla, b)]]

1 1
V(a,b)=a+ @(a,b) — [a ¢(a, b)] 12[ [

_ 7_;0[51, [a,[a.[a, (a B)]]]] +
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3.2. The Lie algebrd.3(1, )
Recall thatLz = L3/[[L3, L3], [L3, L3]] by definition.

Definition 3.3 (Lie algebral3(A, 1)). Let us introduce the linear spatg(i, 1) generated

by a, b, andA¥u![ab] for k,1 > 0, wherex, u are formal parameters. At this moment the
expressiorfab] means a formal symbol, which denotes an elememt4gh, u). Define

in La(x, u) the brackety [a, b] := [ab], [a, A u![ab]] := A¥Lul[ab], [b, A} ! [ab]] =

A1 ab], the other brackets are zero. One can check that this bracket satisfies the Jacobi
identity. Actually, only the following identities (up to permutatier— ») contain hon-zero
terms:

[a, [a, 21! [ab]]] + [a, [* 1 lab], a]] =0,
[a. [b. 21 lab1]] + [b. [1 1" Lab). a]] + [A* 1/ [ab). [ab]] = 0.

Hence the spacks(x, ) becomes a Lie algebra. Now the formal symfdl] is the truly
commutatolfa, b] € L3(x, ). Note that inL3 (%, u) one haga*b'ab] = 1*u'[a, b].
By L3(%, u) denote the algebra of formal series of elements figyth, ().

Recall the notatiofaias ... ar] ;= [a1, [az, [. .., ax]...]] from Definition 1.2(c).

Proposition 3.4.

(a) LetL(a + b+ ¢) C L3 be thel-dimensional Lie subalgebra generated by the element
a+b+c, L(a,b) C L3 be the Lie subalgebra freely generateddyy. Then the Lie
algebraLg3 is isomorphic to the direct suth(a + b + ¢) @ L(a, b).

(b) The quotient.(a, b) := L(a, b)/[[L(a, b), L(a, b)], [L(a, b), L(a, b)]] is isomorphic
to the Lie algebral3(), n) introduced in Definitior8.3.

(c) The quotieniLs = L3/[[L3, L3], [L3, L3]] is isomorphic toL(a + b + ¢) & La(k, w).

Proof. (a) In the settinga := 112, b := 123, ¢ := 13, a + b + ¢ is a central element
of L3. Moreover, the defining relations of the Lie algelra becomela,a + b + ¢] =
[b,a + b+ c] =0. Now the isomorphisniy = L(a + b + ¢) ® L(a, b) is obvious.

(b) By definition the Lie algebrd.(a, b) is linearly generated by, » and all com-
mutators[wab], wherew is a word ina, b. By Claim 2.6(b) the quotienL(a, b) is
linearly generated by, » and commutator§a*b'ab] with k,1 > 0. The only non-zero
brackets of these elementsina, b) are[a, b, [a, a*b'ab] = [a*T1blab], [b, akblab] =
[a*b!tab]. One haq[L3(x, ), L3(x, )], [L3(x, 1), L3(x, w)]]1 = 0. The required iso-
morphismL(a, b) — L3(x, ) is defined by{a*blab] — A*u![a, b].

The item (c) follows from (a) and (b). O

Observe that iig(k, w) any series of commutatofs*b'ab] is (a series in., ) x[a, b].
It turns out that Theorem 1.5(a) follows from conditions (1.3a), (1.3d), (1.3e).
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Proof of Theorem 1.5(a). By condition (1.3d) a Drinfeld associatdr(a, b) (hence also
¢(a,b) =log®(a, b) and@(a, b)) does not contain terms witf, b'. Then by Proposi-
tion 3.4(c) a compressed associafds, b) consists of commutators, i.e.

@(a,b) = Z anla*b'ab], au eC.
k10

The symmetry (1.3a) implieg(a, b) = —¢(b, a), thereforewy; = oy forall k,1 > 0. O

Definition 3.5 (Generating serieg (1, u) andg(x, w)). Let C[A, u] be the set of formal
power series with complex coefficients in the commuting arguments Introduce the
seriesf, g € C[x, u] by the formulae in the algebuag(x, 1)

¢a,by= Y au[a*blab]=f(r, ) -la,b],  Y(a,b)=a+g0,p)-[a,bl,
k,1>0

respectively. Theorem 1.5(a) secures that there is a desired symmetric Sgrigs =
f(u, 1). A seriesg(i, n) exists due to Claim 3.2.

Claim 3.6.
(a) The seriesf (A, u) andg(a, u) are related as follows

) = iBAk (h, 1 (—&+k—2—)‘—4+ ) ()
ST L / 2t 720t ) Rk
@1p Af G, )
= —a_1- (3.6a)
(b) In the algebralz (X, ) one has
Y (b,c) =b+g(u, p)-la,bl,
V(c,a)=c+g(p,1)-[a,bl, wherep=—x — u. (3.6b)

Proof. The following calculations imply the item (a):
35) - 3.2
g( wlab] E i (a.b) —a' )Z [d*@(a. b)]
35 B 33
(=>Zok—f[a"f(x,u)[ab]] (=)X(:)k—’;kkf(k,u)-[ab].
k= k=

The item (b) follows from Definition 3.5 and

@b, c) = f(u, p)lab], @(c,a) = f(p, r)lab].
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The latter formula is proved similarly by using (1.2ap] = [bc] = [ca], namely:

@b, c) @5 Z oyl [bkclbc] (23 Z 7% [bk(—a - b)lab]

k, >0 k, >0

3.3 (3.5

= Y aupf (=1 = w'labl = f(u. plabl. O
k1>0

Example 3.7. For the serieg®(a, b) = fB(, u) - [a, b] from Example 1.4, one has:

1 1
*00 = g a1o=0a01=0; 20 = @02 =~ g
1
1=~ 2o azo=oaz1=a12=ag3=0.

Then up to degree 3 the corresponding sefiér, 1) andgB (i, n) are:

1 42+ au+4u?
B
A == - =
=, ) 6 360 ,
1 A A2—au—4u? M3+ 22u+4dau?
Bow=z— 2y K= apn K+ aru
6 12 360 720

Moreover, one can compute the series from Claim 3.6(b) (they will be needed later):

B( )_}_ﬂ_4)hz+7kp,+2u2 4)L2;L+7)L,u2+7p,3+.”
EWP=5" 12 360 720 :
B¢ M_}erru_2)\2+3m+u2_7,\3+14x2;¢+11m2+4u3+m
§WM=8T 1o 360 720 :
hence

GBOu ) =B ) + 8B, p) + 8B (0, 1)
1 A24ap+ p? 3332, — 23
1 ARl " n

2 72 240
B o B B
T2(h, ) :=14+2g"(n, p) — g (A, )
A — 4uB — ap? — 802 — 423
wo A W w n
6 360

=1+

3.3. Explicit form of the compressed hexadgarsb)

The compressed hexagon can be rewritten as an equation in the afgebra). This
simplification ¢the 5th key pointallows to solve completely the compressed hexagon.
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Claim 3.8. For the generatorsa = 12, b = 1%, ¢ =1 of the Lie algebraLs, set
=y (b,c), Q :=Y¥(a,b). Then in the algebrd.3(1, u) one has(seeg(x, u) in De-
finition 3.5):

Proof. By Definition 3.4(a) and Claim 3.6 one gets
[0, P1=[a+ gk, wlabl, b+ g(u, =1 — w)lab]]
= [ab] + g(u, —A — wlaab] — g(, w)[bab].
It remains to use the relatiof@ab] = Alab] and[bab] = ulab] of L3(A, u). O

Proposition 3.9. Let ¢ = Zk,zgo“kl[akblab] be a compressed Drinfeld associator,
ay €C,

fOw =" apru!

k,01>0

be the generating function of the coefficients. Then the compressed hexagdrb) is
equivalent to the following equation in the algelftr, u]:

G, )+ C,p)- T, ) =0,

where
G, w) =g, w)+ g, p)+g(p, 1),
T(h, ) :=1+2rg(, p) —ugh,u), p:=—r—pu. (3.9)

Proof. Let us apply Proposition 2.8 for the Hausdorff series= log(exp(P) - exp(Q)),
whereP =y (b,c) =b+ g(u, p)la, b], O =¥ (a,b) =a+ g(A, u)la, b]. One has

H= P+Q+ZZ Co (o tPtor].

m=1n= 1
Since in the quotient 3 all commutators commute, then formula (3.8) implies
[Q"*P" QP =T ) - [a" " tab] = 2"t 1T (h, ) - a, b1,

hence
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Cm n

e L= G ) - [a, b

H=a+g0.wla, bl +b+ g, pla, b]+ZZ
m=1n=1

(by Definition 2.4(b))
=a+b+ (g, )+ g, p)) - la,b]+CO, T, 1) - [a,bl.
On the other hand, by Lemma 3.1 one las= log(exp(— Ip(c a)) -expla + b+ c)). But

a + b+ cis acentral element df3, henceH =a + b + ¢ — ¥ (c, a). B
Let us take together both above expressiongfand use Claim 3.6(b) fop (c, a):

a+b+ (g, )+ g, p))labl + Cn, T (&, wlab]
=a+b+c—(c+g(p,Mlab))
< (3.9) O

Example 3.10. By Gk,Ck, TB denote the degreg parts of the functionsGB(x, ),
C(h, ), TB(x, ), respectlvely Due to Examples 2.5 and 3.7 one can calculate

Gg()wﬂ)=§, GFO., w) =0, GE(A,M):—T’
3_ a2 3
w>— 31 — A
GBo.py=H "%,
3 (A, w) 240 ;
1 A—p AL
CO(A’“):_E’ Cl(A,M)=T, CZ(A,M)zﬁ,
3 2 2 3
B+ a2 — 42 — A
Ca(h, 1) = :
720
A—p
Go.m=1  TOo.m==—F¢— TG w=0
3 2_ a2 3
T8 ) = B B A
360

Now one can check by hands the first four compressed hexagons:

G8+Co=0, G2+ CoTP+C1=0, GS+CiTE+C2=0,
GS + CoTE + C2TE + C5=0.

4. Solving the compressed hexagon equation

Here one solves completely the compressed hexd@db) = (3.9) from Proposi-
tion 3.9.
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4.1. Further simplifications of the compressed hexagon

Lemma4.l. Let

fOumy =) aui!

k,1>0

be the generating function of the coefficiesmts of a compressed associatgre fg. Then
the compressed hexageh3b) = (3.9) is equivalent to Eg4.1a)and to Eq.(4.1b)in the
algebraCla, uJ:

A (A, 1) wf (i, p) of(p, 1)
1-— A ——(1+XC(A A = 4.1
71 L= rCO W)+ ——=(14+AC0 W) + —2—" + COLw =0, (4.1a)
where
et —1 At n )
pz_)“_lvl/v C()‘"l‘l/): )\4/1« .<€)‘+M—1_eﬂ—1>’

1 (et—1 e
O+ e f(,—h— )+ e Fh, =k — p) = (e £

-1
. (4.1b
A+p\ n R ) (4.1b)

Proof. (a) Let us rewrite Eq. (3.9) as follows:
g, ) (L—pC, )+ g, p)- (L+AC, ) +g(p, 1) + C(h, u) =0.

The above formula and Claim 3.6(a) imply Eq. (4.1a).
(b) By using the formula (2.12) in the form

et -1 A+u 1

CO,p) = : _
(3o 1) A eMr—1 A
one gets
I % e"—1 Xr+pu At
1+AC(A, = . = .
e“—1(+ G ) e“—l( I e)‘ﬂ‘—l) et —1

Now apply the symmetrtige third key point

er—1 —r—pu

Ch,pw)=C(—p,—1) = :
() = C(=p, —1) e en 1

Tk

hence
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X Ao fe =1 A4pu
1—uC(x, = .
er — 1( el M)) er — 1< A e A K — 1)

:1—&_ ey T

=e .
et —1 1—ertr ertrn —1

Then Eq. (4.1a) converts to

At A+ At
eﬂmf()hﬂ)‘l‘mf(ﬂ,ﬂ)—mf(ﬂ,)t)
+e“—l- At _E

A err—1 A
At At A At
mw_- " o~ +u
o/ MWt g S )+ e

prere PACIED)
1 et —1 A4 u

=—|1- . .
A " et —1

One can multiply both sides bfﬁfr‘—;l and obtain

=0, or

k —

1 /M _1 m_1
e f )+ fl, p)+ e fo, 1) = _<€A : )
+u I

Let us swap. andp = —1 — u (in other words one substitutés A — w) for A):

N 1 er—1 et-1
M f(=h—p, )+ f(p,A) +e f()»,—)»—u)=/\+“ T )

To get EqQ. (4.1b) it remains to use the symmefiy, u) = f(u, A). O

Proof of Theorem 1.5(b). It follows from Lemma 4.1(b): the compressed hexagon equa-
tion (1.3b) is equivalent to (4.1b¥ (1.5b). O

An explicit form of the compressed hexag@h3b) is the 6th key point

Lemma 4.2. For the generating functiorf (1, u) of any compressed associator, one has

Ever(f(x,0) = 1 <i +A—1),

2.2\ 2 —1
1 2

. . .. 2k+1
In particular, one obtains the extreme coefficiesis o = % for everyk > 0.
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Proof. Let us solve Eq. (4.1b) explicitly far = O (then sef’“T*lm:o =1). One has

e 4+a—-1
A2 '

-\ _
FL,0 + f(O, =) +e*f(h,—1) = %<1+ ¢ - 1) =

Since
Odd(f(x,—4)) =0,  Odd(f(x,0)+ f(0,—21)) =0, and

Ever(f(0, —1)) =Ever(f(1.0) =Y ax 0%,
k=0

then one obtains

et Ha—1

o
2%k —
22042,(,01 +e M Ever(f(x, —1)) = =

k=0

By substituting(—2) for A and usingeven(f(—A, 1)) = Ever(f (A, —1)), one gets

.- ) er—r—1
2> a0 + S Ever(f(r, —1)) = —

k=0
From the two above equations one deduces

1 2

—~—-—— and
A2 Aer —e)

f(, —1) = Ever(f (%, —1)) =

> a 1 2\ 1 X Bo oo
Bver(f(1,0) = oz or® =5 ( 7 +4-1 =ﬁ2®(2,\) . O
k=0 n=1

Example 4.3. Note that

22k+1B2k+2

Y0 = T o o)

are correct coefficients of the logarithpta, b) of any honest Drinfeld associatdr(a, b)
from Az, not only the compressed one.
This form of the extreme coefficiendsy ¢ is the 7th key point

2B 1 2By 1 _2®Bg 1
HO="5 T T T oy M0T T T osm
2'Bg 1
g0 = —5— = ———

8! 9450
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For the coefficients; of the series

22 =~ .2k
S =)
k=0

similarly to Lemma 2.2 one can find the recursive formula

Yn—k
——— =0 foreachhn > 1, y9=0.
(2% + 1)! Zh
k=0
Hence
2 1 7 31 127

e [y Y Ry £ ity A Sy LR 4.3
er — e 6" T 360 3.7 tTisat T (4.3)

For the generating function of any compressed Drinfeld assogiatak 3, one gets

@ =t Loz 3 e 127 56
76 360 ' 15120 604800

L emma 4.4. Under the conditions of Lemndal, set f (A, ) := 14+ Auf (A, ).

(a) The new functiorf (1, x2) obeys the same symmetf(x, 1) = f (i, A). Moreover, the
function f (1, ) is even(i.e. f(x, u) = f(—x, —w)) ifand only if f (1, ) is even.

(b) The compressed hexaggh3b) = (4.1b) is equivalent to the following equation in
Clr, u:

o+ ) f O ) = e f(p, —h — ) + pe™ f O, =1 — ). (4.4)

Proof. The item (a) follows directly from the definitiofi(x, 1) = 1+ Auf (1, ).
(b) Equation (4.1b) can be rewritten as follows:

<f(/\ )+i>+e“(f( A — )—;)
Y S YN

+e_k(f()\ —A—p) — ;>
’ Wo+w
To get (4.4) it remains to multiply the above equatiomby(x + 1). O

Recall that the even and odd parts of a series were introduced before Theorem 1.5.

Lemma 4.5. In the notations of Lemmé&.4, the compressed hexag@h3b) = (4.4) splits
into the two following equations in the algeb&{x, u]:
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O+ wEver(f(x, w) = re"Ever(f (i, —x — 1)) + pe “Ever(f(r, =2 — p)); (4.5a)

Odd(f (x, w)) + e*Odd( f (11, = — p)) + e~*0dd(f (A, =1 — 1)) =0. (4.5b)

Proof. Letus substituté—u, —2) for (A, ) into (4.4) and us¢ (—u, —A) = f(—A, —u)
—(+ ) f(—h, =) = —pe ™" f(=h, A4 ) — et f(—pu, h+ p).

If one subtracts the latter equation from (4.4), then after dividing by 2 one obtains
Eq. (4.5a). If one adds the latter equation to (4.4), then one has

(v 4 w)Odd( £ (x, w)) = re*Odd( £ (i, =1 — 1)) + pe *0dd( f (., =i — ).
SinceOdd( £ (1, w)) = AxOdd( £ (1, n)), after dividing by (1 + ) one gets (4.5b). O
The splitting of Lemma 4.5 ithe 8th key point
4.2. Explicit description of all even compressed associators
Lemma 4.6. The general solution of E¢4.5a)is

A1 e—k—u

Ever(f(x, 1)) =1+ Au - Ever(f(x, w)) = ez(x%u)h(’\’“)’ (4.6)

whereh (X, u) is a function satisfying the boundary conditiax, 0) = efﬁ_x and the
symmetry relationg (x, u) = h(i, 1) = h(—r, —p) = h(h, —A — ).

Proof. Let us swap the arguments in (4.5a). Due tof (1, u) = f(u, A) one gets
O+ wEver(f(x, p)) = pe*Ever(f(h, —x — p)) + re “Ever(f (1, =2 — p)).

By subtracting the above equation from (4.5a) one obtains

A(e” — e_“) . Ever(f(u, -\ — ,u)) + ,u(e_)‘ - e)”) . Ever(f(A, —A—w)=0, or
A=A

~ ~ " _ p—H
Ever(f(u, A —p)): (6 2; ) =Ever(f(A, -1 —p)): (%).

Introduce the function

A —A

h(x, ) = Ever(f(u, =2 — ) : (e —e )

2\

- et — e H
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Then the new function is even and symmet#ic¢i, 1) = h(u, L) = h(—A, —u). Let us

substitute the expressions
~ o — ot
Ever(f(u, —A — ) (T) “h(x, ),

£ ~ et —eH
—A— =(—— ). hr
ver(f (%, n) < m ) h(x, )
into Eq. (4.5a). One has
- et —eH et — e H
_ Iz -
(A + wEver(f(x, n) = (Ae > + e 2 >h(/\,,u)
At ,—A—p
=L howw.

2
So, (4.6) is proved. Let us substituter — ) for 1 into the above equation:

m

Ever(f (A, —A — ) = o =
A= W)= A, A — )= ——F——h(A, —A — ).
2(—p) 21
The last formula and Eq4.6") imply A(A, u) = h(X, —A — u). To obtain the condition
h(r,0) = e,\ffﬂ it remains to substitutee = O into (4.6). Finally, by using:(i, u) =

h(h, =1 —u) =h(u, —A — p) itis easy to check that (4.6) gives a solution of (4.5a)

A ,—A— —A A

67 — liu N
A+ 20 ) h(A, ) = Ae 20 h(w, —A — )
u e euh()\ A )
+ e ﬁ P _Mo D

Observe that the conditions of Lemma 4.6 imply alga.,, —1) = h(A,0) = AZA,A.
. . er—e
This agrees with the formula (4.2):

@2 21

46 s
o —eh

h(h, =2) = 1—=2A2f(r, =)

So, the compressed hexag@h3b) was reduced t@ (A, u) = h(A, —A — ), this isthe
9th key point To describe all series(x, u) with this symmetry one needs to introduce
associator polynomials.

Definition 4.7 (Associator polynomials¥or eachn > 0, a homogeneous polynomial

n
Fy(h, ) = Zakx’m"—" with & € C
k=0
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is calledan associator polynomiaif the relationsF,, (A, u) = F,(u, A) = F,(A, =X — 1)
hold for all A, u € C.

The Drinfeld seriess(A, 1) from Definition 6.1(b) containshe Drinfeld associator
polynomialsFD ;(x, ) = (A 4+ p)® 1 — 221 — ;2+1 They are used in the proof
of Corollary 1.6(c).

Example 4.8. In degrees (2, 4 an associator polynomial is unique up to a factor:
FoOv, ) =1, Fa(h, ) =A%+ hp+ 2,

FaOh, ) = 24+ 2230 + 30202 + 203 + 2.

In each odd degree= 1, 3, 5 there is also exactly one associator polynomial:

Fiuw) =0, F30uw) =2w+au? Fs(up) =2+ 2302+ 223 + o’
Rather surprisingly, that an associator polynomial of the degis@ot unique in general,

for instance, in degree 6. One can check by hands that in degree 6 there is a 1-parametric
family of associator polynomials:

Fo(h, ) =28+ 305 + 8442 + (25 — 5)a3ud + 822u* + 3+ b, secC.
However, in degree 7 there is a unique associator polynomial accurate to a factor:
Fr0Ov, ) = A8 + 3052 + 50413 + 534 + 30215 + aub.
Lemma 4.9. Any seriegi(, ) satisfying the boundary conditions
o
h(.,0) =)y )"
n=0
and the symmetry relatiodigx, u) = h(u, A) = h(h, —A — ) is
o
hOw ) =" yaFaOh, ),
n=0

whereF, (1, ) is an associator polynomial with the extreme coefficle(respectivelyD)
for each everfrespectively odgn > 0.

Proof. It follows from Definition 4.7. The relationFy,1(A, ) = Fop41(X, —A — @)
implies that the extreme coefficient of any associator polynomigl.1(x, ) is al-
ways 0. O
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The non-uniqueness of even compressed associators will follow from the non-
uniqueness of associator polynomiaise( 10th key point see the hexagon part of Theo-
rem 1.5(c) at the end of Section 4.3.

Proposition 4.10.
(a) For eachn > 0, any associator polynomial of the degr@eis

[n/3]

Fou O tt) = ) Buch® pu Ot ) (A2 + e + 1
k=0

2)n=3 (4.10a)

whereg, € C are free parameters fdd < k <[3].
(b) For everyn > 1, any associator polynomidiy, .1 (A, i) has the following form

[(n-1)/3]
5 —3k—-1
ForprGomwy = ) Bud® P04+ (02 + e+ 4%)" 7, (4.10D)
k=0

wherep, € C are free parameters fad < k < ["_51]_

Proof. (a) Induction om. The basea =0, 1, 2 are in Example 4.8.

Induction step goes down fromton — 3.

Suppose that, (1, 1) is an associator polynomial of the degreewith the extreme
coefficientB,o. Then the polynomiaky, (i, 1) = Fa, (., 1) — Bao(A2+ A+ u?)" satisfies
Definition 4.7. The relationgy, (A, ) = F2,(t, X)) = Fo, (A, —A — ) imply

Fau0ny 1) = Baor? 4+ nBuor? L+ -+ nBuoru® "t + Buop?

The polynomial,o(A2 + Au + 4" has the same form. Hence the first two (and the last
two) coefﬂments oszn (A, n) are always zero.

One getsFa, (A, n) = A2u2Fo,_a(r, w) for a polynomial F2,_4(r, 1) of the degree
2n — 4, such thatFo,_a(r, 1) = Fou_a(i, A) and A2u2Fo,_a(h, ) = A2(—1 — p)? x
Fou_a(h, —A — ).

The equationt2F2,_a(A, ) = (A + )2 Fo,_a(X, —1 — ) implies that there is a poly-

nomial F2, (%, u) of the degree 2— 6, such tha# 2, 4(A, 1) = (A + W2F2,_g(A, 10).
Moreover, the new polynomidf,,_g(A, u) satisfies all the conditions of Definition 4.7,
i.e. Fo,_s(X, u) is equal to an associator polynomig, _e(A, ). Hence

Fan Oy 1) = Buo(A2 + e+ Apn)" = K200+ )2 Fan—g (ks ).
The induction hypothesis

[n/3]—-1

Fon60e )= D Buadpn® 04 > (32 + ru+ 1)
k=0

n—3k—3
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implies

Fou (O, 12) = Bao (W2 + A + 112)"
[n/3]-1

S T S R e R O e Y
k=0

)n—3—3k

To get (4.10a) it remains to set

n
Buk+1:=Pn-3x Ffor0O<k < [5] —1

(b) The proof is analogous to the item (a).A4,,1(, 1) is an associator polynomial,
then its extreme coefficientis zero, iy, 1+1(%, 1) = A F2,—-1(, ) for some polynomial
Fo,—1(x, ) of the degree 2 — 1 with the properties

Fon_1(h, 1) = Fou1(, ) and ApFo,—1(h, 1) = A=A — ) Fop—1(A, =4 — ).

The quatiomfzn,l(x, w) = — + ) Fo_1(A, —A — ) implies that th_ere is a poly-
nomial Fo,_»(x, u) of the degree 2— 2, such thatFo,_1 (A, ) = (A + ) Fop—o (X, ).
Moreover, the new polynomiar,,_»(x, 1) satisfies all the conditions of Definition 4.7,

i.e. I?gn,z(x, W) is equal to an associator polynomigl, _2(A, i).
To get (4.10b) it remains to apply the formula (4.10a) for the polynoal 2 (A, 1)
and to seP := fu_1x for 0<k <[5, O

The 11th key pointthe symmetryF, (A, u) = F, (A, —A — ) has led to (4.10a) and
(4.10b).

Example 4.11. By Proposition 4.10 the number of free parameters, on which the family
F2, (A, 1) depends, increases by 1 whernncreases by 3. The first six (starting with 0)
associator polynomials are unique up to a factor, but not the se¥gith.). One gets:

Fo(h, 1) = Bao(32 + it + 1n?)° + Bann2u?(h + )2,

Fo(. 10) = Bao(A? + hpa + 1?)* + BarrPuGu+ w)2(3:2 + au + ?),
Froh, 1) = Bso(A? + At + 1?)° + Bsah®uP(h + )2 (A2 + hpp + 1u2)?,
Fua(h, ) = eo(32 + e+ 1?)° + Berr®u®On + w? (12 + app + p2)°

+ Be2r 1t O+ ™,
Fr, 18) = Paoi(h + 1) (A2 + hpp + 1?)?,
Fo(. 18) = Baokin O+ 1) (A2 + dpp + 12)° + Parr®uGu+ ),

4 -~
+ B33+ w3 (A2 + A+ 1?),

5 ~ 2
+ Ber O+ 103 (A2 e+ 1?)°,

~— ' — ~—

(
F11(k, 1) = Bsohpt O 4 ) (A% + dpe + 1
F13(h, 1) = Beors O+ 1) (A% + A+ 112
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One can check that the paramegaj is related withs from Example 4.8 a8 = 831 + 6.
Up to degree 8 the functiaia(x, 1) from Lemma 4.6 is

1 7 31 127
h(h, ) =1— éFz(k, W)+ o= Fa(h, ) — s— Fe(h, 1) + Fg(x, ).

360 3.7 15.8!
4.3. Description of the odd parts of all compressed associators
Lemma 4.12. The general solution of E¢4.5b)is

A e—k—u

5 R, 0, (4.12)

odd(f (+. ) = -

where/ (1, u) is a function satisfying the relations(, y1) = h(p, A) = h(—x, —p) =
h(A, =X — ).

Proof. It is analogous to the proof of Lemma 4.6. Let us swap the argunientsin
Eqg. (4.5b). Due to the symmetif(x, u) = f(u, ) one gets

Odd(f (x, w)) + €*Odd( f (A, =2 — w)) + e~ Odd(f (i, —1 — 1)) =0.

By subtracting the above equation from (4.5b) one obtains

(e” - e_“) -Odd(f(u, —A— pL)) + (e_)‘ - e)\) 'Odd(f()\., —A— ,u)) =0, or

A_ p—2 K _ oK
odd( £ (u, —x — ) : (6 2e > = Odd(f (A, = — ) : (%)
Introduce the function
_ PSR
h(x, ) == —0Odd(f (i, =2 — p)) : ( > )
et — eI
= —Odd(f(A, —A— u)) : <T> (4.12)

Then the new function is even and symmetii¢a, 1) = h(w, A) = h(—A, —w). Let us
substitute the expressions

et —e ~
Odd(f(uy—k—u))=—< > >~h(k,u),

et —e™H

odd(f (A, =1 —p)) = —( 5

) Rk, )

into Eq. (4.5b). One has
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A_ ,—A w_ ,—
e et —e

AN R R
+e )h(k,u)=

2

h(h, ).

e
odd( f (x, ) = <e” > —

So, (4.12) is proved. Let us substityter — ) for u into the above equation:

w_ -

e e M.
Oodd(f (h, = —p)) = —Th()», e OF
The last formula and4.12) imply (., 1) = h(x, =1, —p). Finally, by usingi (i, ) =
h(h, —A — ) =h(un, —A — ) itis easy to verify that (4.12) gives a solution of (4.5b):

I _ A eh — o
5 h(k,u)+E“Th(M,—k—u)

—l_ G
€ et -

+e 5 h(h,—A —u)=0. O

Thehexagon part of Theorem 1.5(c). By Lemmas 4.6, 4.9, 4.12, and Proposition 4.10(a),
the general solution of the equation (1.58)(4.1b) is f(r, u) = Ever(f(x, n)) +
odd(f(r, u)), where

M phmn f X [n/3]
1+ -Ever(f(r, )= 2004w (Z > BudZ w0+ M)kaznek>,
n=0 k=0

oo [n/3]

e)»—I—M _ e—k—M .
Odd(f (», w)) = 4<Z Z BurZ o, + M)kazn—ek)

2
n=0 k=0

©= /A2 + A+ p2.

Let us substitute. = —2 (thenw = 1) into the former equation and apply Lemma 4.2:

> 4.2 2A
3 Buor? =1-22Ever(f(h. —1) = L hence
et —e

n=0

i 2
3 frow? = — 22
n=0

e(z) — e—w

So, in the formula foEven f (1, 1)) the terms withk = 0 are replaced b_\gwfw?. ]

5. Compressed pentagon equation

This section is devoted to the proof of the pentagon part of Theorem 1.5(c). It turns out
that if all commutators commute, then the compressed pentégdg follows from the
symmetryoy; = oy (the 12th key point see Proposition 5.10.
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5.1. Generators and relations of the quotign
Here one studies the quotiehj, where the compressed pentag@r8c) = (5.9) lives.
Definition 5.1 (alphabefL, algebrad.4 and L4, simple and non-simple commutatars)
(a) Letthe Lie algebrd. 4 be generated by the letters of the alphabet
L= {a = tlz, b= t23, ci= t13, d .= t24, e .= t34, vi= tl4}
and the relations

[a,e]=[b,v]=[c,d]=0 and

x:=la,b]=[b,cl=lc,al, y:=la,dl=Id,v]l=][v,al,
z:=[b,el=le,d]=1[d,b], u:=][c,e]=]e,v]=][v,c].

The Lie algebral, is graded by de@) = 1 for any letters € L. By L4 denote the
algebra of formal series of elements frda = L4/[[La4, L4), [La, L4]].

(b) Letw be aword in the alphab&t= {r'/, 1<i < j < 4}. Let,, be the set formed by
the upper indices of the letters included inw. If I,, contains at most three different
indices, then the commutatfw] € L4 is calledsimple otherwise{w] is non-simple

For example, the commutatdisab] and[vad] are simple, bufdab] is not simple.
Claim 5.2. The following relations hold in the quotieft:

@a+b+c,x]1=0,[a+d+v,y]1=0,[b+e+d,z]=0,[c+e+v,ul=0;

(b) [da] + [ea]l + [va] =0, [db] + [eb] + [vb] =0, [dx] + [ex] + [vx] = O;

(©) [dx] = —[cyl = —[cz] = [dul, [ex] = —[ey] = —[az] = [au], [vx] = —[by] =
—[vz] = [bu].

Proof. (a) By Definition5.1(a) one gefa +b+c,al = [c,a]l —[a, b] 12 0 and similarly

[a+b+c,b] G13 0, hencda + b + ¢, x] = 0. The other relations are proved analogously.

(b) By Definition 5. 1(a) onehdggl +e+v,al=(— [a d]l+[v,al) —[a,e] ©13 0 and

similarly [d + e + v, b] 0 hencdd +e+ v, x] =
(c) Definition 5. 1(a) the Jacobi identity (J), a[wh’ 0 are used below:

(5 139 (5.1a)

[dx] [db ] —[bcd] — [cdb] =

—[ez],
[dx] ®2? [dap) 2 —[abd]—[bda] ©2% fazl + by,

[dx] %2?

[ey] %22

lde ] 2 [adc] — [cad] °=® —[cy],

(518

[c va] —[vac] —lacv] =" [vx] + [au],
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51
[ey] 2% [edv] 2 —~[dve] — [ved]

—[dul,
(ez] 22 [ebe] L —[bec] — [ech] 22 [bu] + [ex].

(519

One gets

ldx]=—[cy]l = —[cz] = [du] = [az] + [by] = —[bu] — [ex] = —[vx] — [au],

[bu] = —[dx] — [ex] %22 [wx] and [au] = —[dx] — [vx] %22 [ex].

Similarly, by [ae] = 0 one has:

[ex] 22 [eab] 2 —[abe] — [bea] (Séa) —[az],
laz] °2? [aed] 2 —[eda] — [dae] ®22 [ey].
Then

[ex] = —[az]l=—[ey] and [by]=[dx]— [az]=[dx]+ [ex]=—[vx].

Finally, one has

[du] %22 [dev] 2 —[vde] — [evd] %22 [vz] + [ey]
= [vz]l=[du] — [ey] = [dx] + [ex] = —[vx]. ad

Claim 5.3.

(a) Every simplg(respectively non-simpleommutatoriw] € L4 of degree3 can be ex-
pressed linearly vidax], [bx], [ay], [dy], [bz], [ez], [cu], [eu] (respectively viddx]
and[ex]).

(b) The degree part of Ly is linearly generated by simple commutatorfax], [bx],
[ay], [dy], [bz], [ez], [cu], [eu] and2 non-simple onefldx], [ex].

Proof. (a) The degree 3 part df; contains exactly:

e 12 simple commutators$ax], [bx], [cx], [ay], [dy], [vy], [bz], [ez], [dz], [cu], [eu],
[vu]; and
e 12 non-simple onegdx], [ex], [vx], [by], [cy], [ey], [az], [cz], [vz], [au], [bu], [du].

Due to the relations (5.2a) one can throw out the four simple commutatgrgvy], [dz],
and[vu]. By the relations (5.2c) any non-simple commutator reducdgtd, [ex], and
[vx]. To eliminate[vx] it remains to apply the relation (5.2Q)x] = —[dx] — [ex].

(b) Any element ofL,4 is a sum of simple and non-simple commutators, i.e. we have
@)= (b). O
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Lemmab.4.

(a) For every wordw in the alphabell = {a, b, ¢, d, e, v}, containing at least two letters,
and for any letters, s’ € L, [ss'w] = [s’sw] holds in the quotienL 4.

(b) Letw be any word in the alphabét, containing at least one lettet or ¢. Then in the
quotientL4 the following relations hold

ladx] = [edx], [aex] = [ezx], [awx] = [ewx];

[bdx] = [(—d — e)dx], [bex] = [(—d — e)ex], [bwx] = [(—d — e)wx];
[cdx] = [dzx], [cex] =[dex], [cwx]=[dwx].

Proof. (a) This is a direct analogue of Claim 2.6(a).
(b) Apply the item (a) and Claim 5.2 as follows:

ladx] °2° [adu] °=7 [dau] °=7 [dex] °=7 [edx),
[aex] ®2? [eax] ®Z2 —[ebx] — [ecx] = [e%x];

(bdx] 2% (bdu) 22 [dbu) °2° [dvx] 2 [d(—d — e)x] "2 [(—d — e)dx];
[bex] 927 —[bey] 2 —[eby] 2% fevx] 27 [e(~d — 0)x] 27 [(~d ~ e)ex]:
[edx] ®2 [dex] ©2 —[dax] - [dbx) °2 [d%],

[eex] 927 —[cey] °27 ~[ecy] ©27 [eda].

If a word w in IL contains at least one lettéror ¢, then by the item (a) there is a wond
in L, such thafwx] = [w’dx] (without loss of generality) diwx] = [w’ex]. Then

[awx] = [aw'dx] (521@ [w/adx] (Séb) [w/edx] (5;@ [ew/dx] = [ewx].
The proof in the other cases is similamg

Lemmab5.5.

(@) In each degree: > 2, every simple commutatdw] € Ly is expressed linearly via
4(n — 1) simple onega*b'x], [a¥d'y], [b*e'z], [ckelu), k+1=n—2,k,1 >0.

(b) In each degrea > 3, any non-simple commutatpw] € L4 is expressed linearly via
n — 1 non-simple commutatofg*e¢’x], wherek +1=n — 2, k,1 > 0.

(c) In any degree: > 3, the quotientL, is linearly generated by(n — 1) simple com-
mutators[a¥blab], [a¥d'ad], [b*e' bel, [ckelce] andn — 1 non-simple onefdXelab],
k+l=n—-2k,1>0.

Proof. (a) Let us consider a simple commutafar] not containing upper index 4. Then
the commutatofw] contains only the lettes, b, c. By the relations (5.2dyx] = —[ax] —
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[bx], one can expressv] via the commutatorga®b’x], k,1 > 0. The proof is analogous
for other three types of simple commutators.

(b) Letw = w”s1s5253 be the given word, wherg, s, s3 are the three last letters of.
Since[w] is non-simple, then by Lemma 5.4(a) one can permute the lettarsiofsuch
a way that the commutat@sys2s3] becomes non-simple. By Claim 5.3(b) the commutator
[s15253] is expressed vigdx] and[ex]. Then by Lemma 5.4(dw] = [w”s1s253] can be
rewritten in terms ofdw”x] and[ew” x]. Hence one can apply the induction on the length
of w.

Item (c) follows from (a) and (b). O

5.2. Calculations in the quotierts
Claim 5.6. For all k >0, > 1, in the quotientL4 the following relations hold

(@) [brd'x1=[(—d — e)*d'x], [d*by] = —[d*(—d — &)'x];
(b) [bc'z] =[(—d — e)*d'x], [c*bu] = [d*(—d — e)'x];
(c) [dkely] —[d*e!x], [efd u]l = [ed! x1;
(d) [a* —[ekd'x], [ka'u] = [d¥ e x].
Proof. (a) By Lemma 5.4(b) one has

[bd'x] = [(=d — e)d'x], ie.

[pa'x] = [(~d — e)bd'x] = [(~d - e)d'x]
and soon, i.e.
[¥d'x]=[(~d —e)*d'x] holdsforallk >0, I > 1.

Similarly,

(5.20) (5.2b)

[by] "= —[vx] = —[(—d — e)x]
= [p?y]=—[b(—d —e)x] 2" [
= [ty]=-[(-d-o'x]
= [d*'b'y]=—[d*(~d —e)'x] forallk>0, 1> 1.

(—d — e)zx]

The items (b)—(d) are proved analogously to (a). Apply the following formulae:

(2] 2 —fax] = [¢] = —[edx] 27 ~[d%]
= [dz] =—[d'x]
=

[bicls] = —[b*a'x] 22 —[(—d — e)td'x] forallk>0, 1>1.
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[bu] ©2°
=
=
=
=
[ey] %27 —[ex] =
=
[du] %2 [dx] =
()] %27 —[dx] =
=
=

Finally, one has

[au] 629 [ex] =

=

V. Kurlin / Journal of Algebra 292 (2005) 184—-242

[wx] %27 [(—d — e)x]
[b2u] = [b(—d — e)x] ®2° [(=d — &)%]
[b'u] =[(—d - e)'x]
[cb'u] = [c(—d — &)/ x] ®2” [d(~d — e)'x]
[*b'u] =[d"(~d —e)'x] forallk >0, 1> 1.
[®y]==[] = [ey]=—[x]
[a*e'y] = —[d*¢'x], k>0,1>0.
[d'u]=[d'x] = [éd'u]=[e"a'x] forallk>0,1>1
[c2y] = —[cdx] 2 —[d2x]
[c'y]==[d'x] = [ac'y]=—[ad'x] °2” —[ed'x]
[a"c!y] = —[efd'x] forallk>0,1>1.

[azu] = [aex] (5éb) [ezx] = [alu] = [elx]

[calu] = [celx] (2.4 [delx] = [ckalu] = [dkelx]. O

Claim 5.7. For anyk > 0, in the quotient_4 one has

@) [(b + d)*x] = [b*x] — [(—=d — e)*x] + [(—=e)*x], [(b + d)}y] = [d*y] + [d*x] —

[(—e)*x];

(b) [(B + o)zl = [Prz] + [(—d — e)fx] — [(—=e)*x], [(b + )*u] = [Fu] — [d*x] +

[(—e)kx];

(©) [(d+e)*yl=[d*y1+[d*x]1—[(d + e)*x], [(d + e)*ul = [eFul — [e*x]+[(d +e)*x];
(d) [(a+ o)yl =[a*y]+[e*x] - [(d + e)*x], [(@ + o) ful = [c*ul — [d*x] + [(d + e)Fx].

Proof. (a) For eactk > 0, one obtains

[0+ d)x] = [b*x] +

= [t -

— (0] -

k

Oy ] B0

j=1

k
[(—d - e)kx] + |:Z <];> (—d — e)k_jdjx:|
Jj=0

[(=d —&)fx] +[(d —d — e)x],
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k
[(b+ad)y] [Z( , )bkjdjy:|
G6a r k - 1 k—
[a*y Z ( —d—effTdix
ko o
)| 3 (4ot
; J
j=0

= [d*y] + [d*x] - [(—=d — e + d)*x].

Items (b)—(d) are proved analogously to (a). The following formulae are used:

[(b+0)z] - [b*z] = > (’;) [priciz] 2 - Xk: (2‘) [(—=d—e)*7Taix]

j=1

[(b+ 0] — [chu] = ;(") [ el <56b>2(> d— o) Tdix]
=—[a"x]+[(o)'x],
[ +ey] = [dy] = z:(’;) [d"Tely] 52 _é(’;) [d*Telx]

= [dkx] — [(d + e)kx]

225
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Lemma5.8.
(a) Forall k, >0, in the quotientL4 one gets

{ la* (b +d)ab+d)] = ([a*b'x] + [a*d'y]) + [e*d!x] — [¢* (—d — e)'x],

5.8
[+ O)kel (b + c)e] = ([bFe'z]1 + [cFelu]) — [d¥elx] + [(—d — e)kelx]. (>-82)

(b) Forall k,1 > 0, in the quotientL4 one has

[(a + c)k(d + e)l(a +c)(d+ e)] = ([akdly] + [ckelu]) + [ekdlx] — [dkelx].
(5.8b)
Proof. (a) One haga, b + d] ©1a x+y,[b+c, el (e z+u.Forallk>0,l>1, one
gets
[d"b+Dab+d)] = [dG+d)x]+["b+a)y]
13 ([akblx] - [ak(—d — e)lx] + [ak(—e)lx])
+ ([akdly] + [akdlx] — [ak(—e)lx])

54b ([a*b'x] + [a*d'y])+[e*d'x] — [F (—ad — &)'x].

Observe that the above equations holdifer0 also. Similarly, one gets

12

[(b+ kel (b + c)e b+ c)kz] + [el b+ c)ku]

I ([elbh2] + [¢!(—d — e)¥x] - [€ (—er'x])
+ ([e'cFu] — [e'a¥x] + [ (—e)*x])
= ([e'bFz] + [¢'ctu]) — ['d*x] + [¢'(—d — o) x].

(b) Analogously to the item (a), for all, / > 0, one obtains

[(@+0)fd+e)@+c)d+e)]

@+ @+l y] + @+ d +e)u]

.79 [(a + c)kdly] + [(a + c)kdlx] — [(a + c)k(d + e)lx] + [(a + c)kelu]

— [(a + c)kelx] + [(a + c)k(d + e)lx]

(623,43 [d'(a+ o) y] + [d' (=b)x] + [l (a+ o)u] — [¢! (—b)Fx]

CTOL ([a'aky] + [dle*x] — [d' @ + o)Fx])
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+ ([elcku] - [eldkx] + [el(d + e)kx]) + [(—b)k(dl - el)x]
LB ([akdly] + [chelu]) + [éd'x] — [a*ex] + (¢! — ') (d + &)*x]
+[(@+e)(a' = e')x]
([(=»)* (@ — e)x] d+e)f(d' — e')x] was usell
= ([a*a'y] + [c*e'u]) + [e*d'x] — [a*e'x].

(5.4b) [

Note that the relatiof(—b)* (d! — ¢!)x] G4 14+ e)(d' —eHx]holds foranyl >0. O

5.3. Checking the compressed pentaghBc)

Lemma 5.9. For any compressed associat@re ng, the compressed pentagoh 3c) is
equivalent to the following equation in the algebra:

ob,e)+pla+c,d+e)+¢la,b)=¢(a,b+d)+ @b +c,e). (5.9
Proof. Let us rewrite explicitly the pentagon (1.3c) for a compressed asso«ﬁa{&g:
exp(@(b, ) -exp(¢(a +c,d +e)) -exp(@(a, b)) =exp(g(a,b+d)) -exp(g(b +c, e)).

Since in the quotient, all commutators commute, then the sepgs, ), p(a+c,d+e),

@(a,b), ¢(a,b+d), and@(b + ¢, ¢) commute with each other ih4. Hence, taking the
logarithm of both sides of the above pentagon, one needs to apply the simplest case of
CBH formula (2.3): logexp(P) - exp(Q)) = P + Q provided thatP, Q commute. O

Proposition 5.10. Let f(A, u) = kaoaklkku’ be the generating function of the coeffi-

cientsay; = oy of a compressed Drinfeld associat@re fg. Then in the algebrea the
compressed pentagon equatidn3c) = (5.9) follows from the symmetiy; = oy

Proof. By Lemma 5.8(b) the left-hand side of (5.9) is

> au([bre'be] + [(a+ o) (d +e) (a+c)(d +e)] + [a*bab])
k,1>0

= Zoakz([bkelZ] +([d"d'y] + [c"e'u] + [e"a'x] - [a"e'x]) + [a"b'x]).

Similarly by Lemma 5.8(a) the right-hand side of (5.9) is

Z Olkl([ak(b +d)*a(b + d)] + [(b +o)ke(b + c)e])
k>0
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53 Z Otk[ kbl [ kdly] + [ekdlx] — [ek(—d — e)lx])

+ ([pre'z] + [Fe'u] — [d*e'x] + [(—d — e)Fe'x])).

The difference is

Z akl([ek(—d — e)lx] - [(—d — e)kelx]) 42 0 ifay =ox. O

k>0

The pentagon part of Theorem 1.5(c) follows from Proposition 5.10.

6. Drinfeld series, zeta values, and problems
In this section one shall check that the Drinfeld sefi€gx, ) from Definition 6.1(b)
(a compressed associator expressed via zeta values) is contained in the general fam-
ily (1.5c¢).
6.1. Riemann zeta-function of even integers

Definition 6.1 (Riemann zeta functiof(n), the Drinfeld series(%, w)).

(@) Lett(n) =32, ki bethe classical Riemann zeta functidtut

L)
(/=D
(b) Set
s(m)r"
S(A 1" =
@®= Z Zn(nJ_].)”
and

L) A A - A"
Ap)=8SA)+S(w) —SA+up) = . .
sCu ) = S0 + S() W X:; - T

Due to the changé’ — 2¢/ in the hexagon (1.3b)/"ds missing in the denominators of
s (%, u). The following theorem is quoted from [12, Chapter XIX, Remark 6.6(b), p. 468].

Theorem 6.2 [10]. There is a compressed Drinfeld associator

@°(a.by= Y _ ap[d‘b'ab]

k,1>0
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defined by the Drinfeld series

PO =" ek,

k>0
where
FPO ) = 1424 fP(h, ) = exp(s (., ). (6.2)
The Drinfeld series (), ) leads to the well-known formula for even zeta values [8,17].

Lemma 6.3. For eachn > 1, one has

2nan B nil(zn)Zn
2 2N @ =CEDTaa s

2n0y, = By, .

Proof. Lemma 4.2 says that

1 2

f()"_}\)zﬁ_m.

By Definition 6.1(b) one has
o0
SO =2 =2 02,07,
n=1

Let us substitutee = —2 in formula (6.2):
> 21
2n _ 7 _ 2 _
2;92”1 =log(f(r, —1)) =log(1—A2f(r, —1)) = Iog(m) (6.3)
Taking the first derivative of the above equation with respegt twne obtains

et —e P — At +e ) A 1 2 > o1
: =--1- =23 (@np) 2L,
< (er —e™)2 > (e)‘ — e_)‘> A e —1 r;.( 21)

Multiply the resulting equation by and use the definition of the Bernoulli numbers:

> 2\ e B>,
2 b)Y =1 —h— —— =Y 202,
;( 2n) =1 ;(2»@!( )

Hence

21620 = = 5 o)
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It remains to use the formula from Definition 6.1(a):

(@) ¢(2n)
o= 2n(w/—1)2 2nmw’

Example 6.4. By Lemma 6.3 and Table A.2 one can easily calculate:

= (-1"

0, —_ L 0, — L O 2 o L Groe —E .

2= 47 360 ®~ T 5670 8~ 75600 10~ 7935550
7.[2 7.[4 7.[6 7.[8 10

(2 = 5 4 = 90’ 2(6) = 945 (@) = 9450 (10 = 93555

6.2. Odd zeta values can be considered as free parameters in Theorem 6.2

Claim 6.5. Any series (A, 1) obeys the following relations

Ever(exp(s(x, n))) = exp(Ever(s(x, u))) - Ever(exp(Odd(s (1, )))),  (6.5a)
Odd(exp(s(x, n))) = exp(Even(s(x, u))) - Odd(exp(Odd(s (%, w)))).  (6.5b)

Proof. Actually, one has

Ever(exp(s(k, ,u)))
_ OXPs(h, ) + eXpis(—A, —p))

2
_exp(Ever(s(, p)) +Odd(s (1, ))) + exp(Ever(s (i, w)) — Odd(s (1, 1))
o 2
~exp(Odd(s (A, 1)) + exp(—Odd(s (A, 1))

= exp(Ever(s(A, /,L)))
& (6.59).

2

Formula (6.5b) is proved absolutely analogously

Claim 6.6.
(a) For the seriesS(p), one has

ep — e_p
20

exp(—2Ever(S(p))) = (6.6a)

(b) For the Drinfeld series (A, i), one has

eri — e=A—1 2 2u
E = . . . .
exp(Ever(s(x, u))) \/ 20T 0 gy ra— (6.6b)
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Proof. (a) By Definition 6.1(b), one obtairsven(S(p)) => 2 62, p2". SO, one needs to
get

i el — P
25 —ioo( £557),
n=1

2p

This follows immediately from formula (6.3).
(b) Apply the item (a) and Definition 6.1(b):

exp(Ever(s(h. 1)) 2" exp(Ever(S(1))) - exp(Ever(S(w))) - exp(—Ever(S(x + w)))

(6.60) \/ 2 \/ 2u ertit — e=hmi
T Ve —e AV et —e 200+ )

N e 2 21
o 2(A 4+ 1) et —eh et — ek’

Lemma 6.7. Take any values(2n + 1) € C and put

b L@+l
2T o ;Y21

Set

o0
00, ) ==Y Oam1Fp 1 (0, 1)
n=1

e ¢]

_ CD"@n+D)  onra i1 L2001
=L G iy e G,

Then there exist series

0 % M At ph _ p—h o
h(l,M):(Z(@(K,M)) )z\/e’ A e A elﬁ’ (6.73)

= (@0 20+ ) 21 2u
~ (=0, ))Zk+l , eI — =i b =k el — g ht
h(h, ) = (Z el R T
(6.7b)

such that, for some coefficiensy, B« € C, the seriesi (i, ), h(x, 1) have the form
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(n/3]
2w > —3k
hOo i =———+ ) Y Bud®u® Ot ™ (32 4o+ 1%,
n=3 k=1
oo [n/3] -
h(h, u) = Z Z B dZ (0 + M)Zk()\z +Au+ MZ)'F ,

n=0 k=0
® =1/ A%+ A+ p.

In other words, the coefficiengs, Bux Of the seriesi (1, w), h(x, 1) can be expressed via
02,41 in such a way that Eqg6.7a)and (6.7b)hold identically.

Proof. Associator polynomials form an algebra. The right-hand gigé., 1) of (6.7a) is
a well-defined series since both factors are units. A&ts@\, 1) is unchanged under the
transformations. <> u andu <> (=1 — p). Lemma 4.9 and Proposition 4.10(a) imply

oo [n/3]
W) =Y 3 Bud® W 0o > (32 + o+ 02"
n=0 k=0
for someg,; € C, n > 3k > 0. Wheni + = 0 one gets

o (O(h, =A%\ et —eh emh — ek 21
h(h—%>=<2 2! )\/1 2 2 e —e

k=0

Hence

2w

oW — e’

o
Y Buo(A® + a4 p?)" =
n=0

From Eg. (6.7a) the other coefficiemts, can be expressed by even degree monomials in
02141

Similarly, the right-hand sid&; (), 1) of (6.7b) is well defined since both factors are
units multiplied by (A + ). Also R, (%, u) has the symmetrieB, (A, u) = Rp(u, A) =
Ry(A, —A — ). By Lemma 4.9 and Proposition 4.10(b) one has

oo [(n—1)/3]

~ 5 3k
R S I e e O N e e Y
n=1 k=0

for someg,; € C. From (6.7b) the coefficieni8,; can be expressed via odd degree mono-
mials in6y, 1. O
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Claim 6.8. Equationg6.7a)and (6.7b)are equivalent t¢6.8a)and (6.8b) respectively

ew_e w

M — g 2w
204w

+Zh (A, M)) = Ever(exp(s(x, n))), and (6.8a)

n=3

k+u_e A—p
M ———— (Zﬂnoa) +Zh O, M)) = Odd(exp(s(x, 1)), (6.8b)

where
[n/3]
oG i) = ) Bud® p® 04 0~ forn >3, 0 =/32+ Au+ p2.
k=1

The pqunomializ,,(x, ) are defined by the same formula/agx, ), except the coeffi-
cientsg,; € C are substituted fop,,; € C.

Proof. It follows from Claims 6.5, 6.6, the formula@dd(s (A, 1)) =0 (A, ), and

>, 6% (1,
Ever{exp(Odd(s(x, 1)))) = Z %

k=0 ’

2, 6%+,
Odd(exp(Odd(s (1, 1)) = > _ ﬁ

k=0

Proposition 6.9. In Theorem6.2 odd zeta valueg (2n + 1) can be considered as free
parametersfor any valueg (2n + 1) € C, the seriesfP (1, ) is a compressed associator.

Proof. Starting with arbitrary values(2n + 1) € C Lemma 6.7 provides the parameters
Buk, Bk SuUch that Eqgs. (6.8a) and (6.8b) hold identically. By Theorem 1.5(c) the series
s(A, n) from Claim 6.8 gives rise to the generating series

expis(r, ) —
P01 _ exps@.p) —1
A
Proposition 6.9 supports the long standing conjecture in the number theory: odd zeta
values are algebraically independent over the rationals [8]. Proposition 6.9 will be reproved
explicitly up to degree 7 in Claim A.6.

Proof of Corollaries 1.6(a), (b). (a) The first series' (A, ) is obtained from the gen-
eral formula (1.5c) by taking,x = .« = 0. This solution is related with the associator
polynomialsFy (A, 1) = (A2 + Ap + pu2)".
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(b) The second serieg" (1, 1) appears due to the associator polynomials

A 2n )\2?1 2n
FZH,,()»,H)=( T —iZ_ tH , n>1

Actually, lety, be the coefficients of the series
2 >
_ 2%
S =2
k=0

see (4.3). Then the series- "2, v« F)) (., ) plays the role of the functioh(x., x1) from
Lemma 4.6. It remains to compute:

Mt — o= hn e R Ry Ry
14 o= (143 n

20+ 1) Pt 2
_ M A ] 201+ ) N 2\ N 21 1
20+ ) 2\ erti —e=A—lt " oh— =k e — i

=373 200 + )
& (1.6b). O

1 1 eMh_eAu 2\ 2
e (A oy —1)
et —e~ el —eH

Proof of Corollary 1.6(c). The proof follows from Proposition 6.9 since all odd zeta val-
ues¢(2n + 1) can be considered as free parameters in the Drinfeld series

05y — O 0) — 1

The associator (1.6c) is obtained froff (1, i) by using Lemma 6.3 ang(2k + 1) =0,
k>1. 0O

6.3. Conjectures and open problems

Theorem 1.5 describes only compressed associators. This is a first step in the general
problem to find a complete rational associator. Theorem 1.5(c) gives a hope to describe
Drinfeld associators up to triple commutators.

Problem 6.10. (a) Is it true that any compressed Drinfeld associator is the projection
under23 — [[fg, Z3], [fg, fg]] of the logarithmg(a, b) of an honest one from Defini-
tion 1.3(b)?

(b) Describe all Drinfeld associators up to triple commutators. In other words, solve the
hexagon and pentagon in the quoti&ay[L5, [L5, L5]], whereL; = [L3, L3].
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——

= [ab]H [aab]
oat] o) = !
Fig. 2.

A compressed associat@fa, b) already contains a lot of information. One may try to
pass through the LM—BN construction [3,16] to get a well-defined invariant of knots in
a quotient of the algebrd of chord diagrams. One wants to factorizein such a way
that the LM—BN construction leads to a knot invariant in this quotient. Roughly speaking,
the LM-BN construction maps chord diagramsrowertical strands onto chord diagrams
on the circle. LetY be a sum of commutators in the symbels$, c¢. Definethe closure
¥ =0 as the relatior® = 0 in the algebrai of chord diagrams. Formally, one draws the
relation X = 0 on 3 vertical strands and assume that these strands are three arcs of a circle.
For instance, the & relation from Definition 1.1(b) is the closure af = [a, b] — [b, c].
Sincelabab] = [baab] holds inL3, then at the stage of chord diagrams the first non-trivial
relation is the closure of

[lab], [aab]] = [ab] - [aab] — [aab] - [ab].

In Fig. 2 the relation was drawn briefly by using STU relations from [2].

After Vassiliev's paper [22] one usually uses another definition of Vassiliev invariants
via chord diagrams [2]. A Vassiliev invariant of framed knots is the composition of the
Kontsevich integral and weight functioron A4, i.e. a linear function on chord diagrams,
satisfying the 4 relations, see Definition 1.1(b).

Definition 6.11 (Compressed algebr& of chord diagrams, compressed Vassiliev invari-
ants)

(a) For a wordwy,; containing exactly lettersa and exactlyl lettersh, put
Z(wi) = [wiab] — [a*blab], k1> 1.

Let A be the quotient of the classical algebtaf chord diagrams on the circle by the
ideal generated by the relatioﬁgw\kl) =O0forallk,[>1.

(b) A compressed weight functiés a linear function on the compressed algelran
other words, a Vassiliev invariant tdmpressedf the corresponding weight function
satisfiesE/(w\;d) =0forallk,! > 1.The compressed Kontsevich integrat of a knot
K is the image of the classical Kontsevich integfat under the natural projection
A— A.

Vassiliev invariants of degrees 2, 3, 4 are compressed ones, i.e. the theory is not empty.
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Problem 6.12. (a) Check carefully that the LM-BN construction [3,16], for a compressed
Drinfeld associator, gives rise to a well-defined knot invariant in the compressed algebra
Does the resulting invariant depend on a particularly chosen compressed associator?

(b) Which quantum invariants are compressed Vassiliev invariants?

(c) Describe all compressed Vassiliev invariants (as linear functions on the algebra

(d) Compute the compressed Kontsevich integral for non-trivial knots, e.g., torus knots.

(e) Which knots can be classified via compressed Vassiliev invariants?
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Appendix A. Explicit formulae

Claim A.1. For eachn > 1, the following formulae hold

C2.2q = Con,2= Bon,
C22n+1=—C2n112=2Bou+2,
C3.20 = —C2,,3=3B2,12 + B,
C3.2141 = C21+1,3 = 3B2on 2,
Ca2n = C2y,4=6B2 12+ B2y,
Ca2u+1=—C2n+1,4=4B2y14 + 4By 12,
Cs.2n = —C2y,5 = 5B2+4 + 10B2, 12 + B2,
Cs204+1 = C2441,5 = 10B2; 14 + 5B2; 12,
Cé,20 = C2n,6 = 15B2; 14 + 15B2, 12 + By,
Ce,20+1=—C2116 =6B2; 16+ 20B2,14 + 682, 2.
Proof. It follows from Lemma 2.11 anthe first key pointBy,.1 =0foreachh > 1. 0O
By Claim A.1 one can easily compute the numb&ys, for m +n < 12.
By Table A.2 one can calculate the functi@i(i, «) up to degree 10, see Defini-
tion 2.4(b).

Example A.3. Up to degree 10 one has
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Table A.2
Extended Bernoulli numbeig,;,,,
m\n 1 2 3 4 5 6 7 8 9 10 11
1 -1 z 0 -4 0 > 0 -3 0 & 0
2 _1 1 _1 _1 1 1 _1 _1 5 S
6 6 15 30 21 42 15 30 33 66
3 0 £ -1 10 e e T
4 1 _1 __4 23 __4 _ 37 28 139
30 30 105 210 105 210 165 30
5 0 -1 1 4 _3 16 13
21 14 105 14 231 22
6 -1 1 8 37 16 305
42 42 105 210 231 462
7 0 e -
8 1 1 32 139
30 30 165 330
0 N
10 -3 N
11 0
COu ) = 1+1(x )+1x
w=-3 W+ S
+ 1 22 1 23
720”“ 180 I 180" * 7~ 720
L2, 1,
1440" “ 1 360 u 1440 w
W4 Aia, o3 4 W
+ (a2 A ad—
7'< g tHit 3l ) ==
N 1/2%u  A%u? N 23}\3 3, A2ut n Au®
7\ 1 2 24 2 12
1/ 1 1 425, Lisa L
(= —aub 4+ —2 —
+7(24o“+30“+45 O T AT
4 5.2 1 6 1 7
2 38— ——»
25" " 730" T 240
1(1.7 2,6 2, 37,53, 344 335
S 4 S8 205,84 A S
8!(60 T A T - T

2,206, 1,7
—A —A
+15M+60,U«

1/ 25
+ 13 (F + EASM + 327 1% + 56513 + 32(2%ut — A%u®)

25 °
56)\3/_L6—32)L2/L7— 3)‘/1“8_ %)
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Mi(5 g g AMutan’ 139 6 5 Lo g
+ <12(A+u)+ sa g FHTHAR)

305
+39(A°13 + A3u%) + ?)f‘u‘l).

Proposition A.4. Let L be the Lie algebra freely generated by the symhlg®. Under
L — L/[[L,L],[L,L]]the Hausdorff seriedl = log(exp(P) - exp(Q)) maps onto

H=(P+Q)+ }[PQH (i[PZQ] - i[QPQJ) - i[PQPQ]
2 12 24

12
N <[Q3PQ]—[P4Q] N [PQZPQ]—[PZQPQ]>
720 180
N ([P?’QPQ] +[PQ3PQ] N [P2Q2PQ]>
1440 360
1/1 4 32 4. 2 3
+7'< [Pe0]+([P*0PO]+ [P 0°PQ] - 3[P 0°PQ]

~[po*Po] - —[QSPQ])
- a(galreeral+ lrterra) + SP0%r o) + 5[ P0* P o)

el 5

+ 12[PQ PQ])

3<[P8Q] —[07PO1  [PPQPOI-[PQ°PO]
7!

240 30

4
+llrPerra] - [P2e°r ) )
[P4Q3P Q] - [P2Q*P Q]
+ 15. 7!
[P7QPQ]+[PQ7PQ]
8.( Z0 + 1 ([P 0°PQ]+ [PZQGPQ]))

Proof. The coefficient of the teriP”~10™ 1P Q]in H coincides with the coefficient of
the termy*~1”~1in C(x, n). Hence Proposition A.4 follows from Example A.30

Proposition A.5.

(a) The even part of any compressed Drinfeld associatar, b) is
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[ab] 4[a3b]+[abab]+4[b2ab] [a®b] + [b%ab]
6 360 945

(ﬂal + %) ([a®bab] + [ab%ab]) + (2,331+ ;f’) [ab%ab)]

B [a’b] + [bBab]

Ever(¢(a,b)) =

9450
+ (@ + Ba1— i) ([aSbab] + [absab])
6 4200
113
( P31+ 3Ba1— m) ([a*p2ab] + [a®bab))
947\ 3.3 [a®] + [bBab]
(ﬁ31+4,341— W)h b%ab] + ~ 93555
+ (higher degree terms

(b) Up to degreed the odd part of any compressed Drinfeld associgtat, b) € fg is

0dd(@(a, b)) = Boo([a®b] + [bab]) + (510 + ’3°°> ([a*b] + [p3ab))
+ 2,310+—> ([a®bab] + [ab®ab))

+ ( B0+ Pro + @>([a6b] + [b%ab])

6 120

+

2; P
3B20+ 3ﬁ10+ %) ([a*bab] + [ab®ab))

(
¢
(
+ (SFa0+ gso+ 52 (2] [oP9ab)
(Ao
(
¢
(

i (B P20y B0, @)([asb] T [vab))

6 120 7!

+

5. P, B
4B30+ 6,320+ % + 7—;%) ([a®bab] + [ab®ab))

+ ( Ba1+ 9B30+ 2820+ ,310+ﬁoo)([a5b2ab]+[a2b5ab])

240

3Ba1+ 13630+ 320 +5 510 + @> ([a*b3ab] + [a®p*ab)).

* 144
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Proof. It follows from Theorem 1.5(c) by using routine computations. The degree 6 part
of the seriesp®(a, b) from Example 1.4 is obtained from Proposition A.5(a) ¥ =

8
—37- U

Claim A.6.

(a) The even part of the Drinfeld serig® (i, ) from Theoren6.2 starts with

1 22+u? apn A+t 9 1
Ever(f°(, uw))=--2"2 _~% 20210 2 N30+l
P m)=5-"90 ~ 360" 048 +<23+1260>( pot )
23 A6+ ub
992 32,2 —
3 ) 9450

3, 61
45.7!

)()L4M2 I )»ZM4)

(

+ <159395 -~ %) (Ao + Ap®)
(
(

3 499
600305 + 02 — —> 4.

2 5.9

(b) Up to degree7 the odd part of the Drinfeld serieg® (i, ) from Theoren®.2is
%
Odd(fP(x, w)) = =3930 + p) — 505(23 + %) — (1095 + 53> (A2 + A
5 5 S 03 4 4
—767(2° + p°) — 2197+605— 30 (A4 an®)

-~ (3597 20— ﬁ) (A3u? +2213) — 9 (1" + 1)

3 24
— 3699+ =67 — =+ — (A A
( 9+ 507 18+315>( 1w+ au®)
—(263+8M9+ 07— =+ =) (r A
(23+ ot 3% 8+180)( HE )

27 35 7 93 4 3 3 4
— (263 + 12699 + 267 — — 65+ — | (43 + 23u%).
(23+ ot 5" 365+144>( A

Proof. Rewrite formula (6.2) in a more explicit form:

FPOn, ) = —202 — 303(h + p) — 404(A® + u?) + (205 — 604) A1 — 505(23 + u®)
+ (60203 — 1095) (A2t + Apu®) — 606(1% + %)

9
+ <§9§ + 86204 — 1596) ()»3/L + )»,ug)
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4
+ (—5923 + 903 + 120204 — 2096> 2% = 767(3 + 1°)
+ (100265 + 120304 — 2167) (%1 + 1)
—602603 -+ 209205 + 309304 — 3597) (A3u? + A2>) — 805(1°8 + 1)
+ (129206 + 150305 + 895 — 280g) (A2 + Ap°)

+

+ (300206 + 459365 -+ 2402 — 96,603 — 892604 — 5808) (14112 + 2%1%)

—~

+

7N

2
ée — 189203 — 120504 + 409206 -+ 609305 + 3467 — 7098),\%3
+ (140267 + 189306 + 209465 — 3609) (ASpe + Au®) — (A7 + 1)

+

N

9
—240,63604 — 5933 — 100205 + 420,67 + 639305 + 700405 — 8409>

27
+ (46365 — 60020364 — ?933 — 200565 + 700267 + 1036

N

+ 1209405 — 12699> (A4;L3 + )‘3,“4) 4.

It remains to substituté,, from Example 6.4 and split the even and odd parts. Observe
that the Drinfeld seriegP (1, u) is obtained from Proposition A.5 for the parameters

9, 8 3, 44
=—05 — ——, = 159306, (%)
B31 >3~ 3 Ba1 305 — 43+45 T
~ ~ 03 ~ 5 7
= —303, = 505+ =, = 707+ 05 — ——03,
Boo 3 B10 5+ > B20 7+ 6% — 12072
7 7 31 ~ 9 03
= -9 67 — —6 03, =933 —
Bso 9+67 725+7 B31 503 9+630

The above formulae reprove explicitly Lemma 6.7 and Proposition 6.9 up to degree 7.

Example A.7. The compressed associators from Corollary 1.6(a), (b) are defined by the
series:

1 M24+ap+4u? AM4+u* 20 13
| 3 3 2 2
a o)== — A A =
@ f*w=g 360 + 945 +4_7,( m+ u)+7! 0
9450 4200  45-7! 5.0
A8+ 8

93555
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1 4/\2+/w+4u2+/\4+u4 53

18
® few=g 360 oas B M) = At
_ - A A2t — 2
9450 11200~ 90. 7 * W HAH) — 5
)\(8_,_ 8
711/ +...
93555
This follows from Proposition A.5 foBs1 = fa1 = 0 andfa1 = — 25, fa1 = 525
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