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Abstract

Ideal symmetry is known to break down under almost any noise. One measure of

asymmetry in a periodic crystal is the relative multiplicity Z ′ of geometrically non-

equivalent units. However, Z ′ discontinuously changes under almost any displacement

of atoms, which can arbitrarily scale up a primitive cell. This discontinuity was recently

resolved by a hierarchy of invariant descriptors that continuously change under all

small perturbations. We introduce a Continuous Invariant-based Asymmetry (CIA) to

quantify (in physically meaningful Angstroms) the deviation of a periodic crystal from

a higher symmetry form. Our experiments on several Crystal Structure Prediction

datasets show that about a half of simulated crystals have high values of CIA, while

all experimental structures in these datasets have CIA = 0. On another hand, many

crystals with high values Z ′ in the Cambridge Structural Database (CSD) turned out

to be close to more symmetric forms with Z ′ ≤ 1 due to low values of CIAs.
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1. Introduction: motivations for a new continuous asymmetry of crystals

Many periodic crystals are highly symmetric, because a globally stable structure is

usually formed by a few energetically favourable interactions, bonds, molecules, or

formula units, which are repeated in R3 by symmetries (Lax, 2001). Though we were

motivated by molecular crystals, our invariant-based approach to asymmetry extends

to all non-molecular crystals and periodic sets in any Euclidean space Rn.

While molecular crystals can contain many molecules in primitive unit cells, they are

often obtained from a smaller number of molecules by symmetry operations preserving

the whole crystal in R3 (Chapuis, 2024). For a non-molecular crystal, the chemical

analogue of a molecule is a formula unit that is an electronically neutral group of atoms

or ions, embedded in R3 and representing their relative numbers in a given compound,

reduced to the smallest integer numbers. For example, table salt has the empirical

formula NaCl with a formula unit consisting of two ions Na+ and Cl−. However, this

pair of ions can be chosen in many geometrically different ways, because ionic bonds

in NaCl do not define a bounded object, such as a molecule. Hence, non-molecular

crystals should be unambiguously split into disjoint geometric blocks, for example,

single ions, or metal blocks and organic linkers in a metal organic framework.

In this paper, a crystal S means a periodic crystal, while Z can be non-integer for

disordered or aperiodic crystals (Senechal, 1996). The multiplicity Z usually denotes

the number of formula units in a primitive unit cell. The relative multiplicity Z

prime was often defined as Z(S) divided by the number of independent general posi-

tions (Steed & Steed, 2015), which makes sense, if S consists of chemically equiva-

lent molecules. For crystals with chemically different molecules (called co-crystals),

(Van Eijck & Kroon, 2000) used another notation Z ′′ for the number of crystallo-

graphically non-equivalent molecules. To cover non-molecular crystals, we define Z ′

below for any periodic point set S ⊂ Rn with a given splitting into geometric blocks.
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Definition 1 (relative multiplicity Z ′). An asymmetric unit is a minimal, closed,

and simply connected subset A of a unit cell of S ⊂ Rb, whose images under all

symmetry operations of S tile the whole space Rn. Let S∩A split into geometric blocks

B1, . . . , BG, which should be chemically different molecules, ions, or other disjoint

blocks for crystals in R3. Let Bi have ni symmetry operations (including the identity)

that preserve both S and Bi, i = 1, . . . , G. The relative multiplicity is Z ′(S) =
G∑
i=1

1

ni
.

Geometric blocks Bi, Bj of S ⊂ Rn are called rigidly equivalent if there is a rigid

motion of Rn that maps S to S and Bi to Bj . If all molecules of a crystal S are rigidly

equivalent, an asymmetric unit A of S contains one molecule B, so Z ′(S) =
1

n
=

Z

N
,

where n is the number of symmetry operations preserving both S and B, whileN = nZ

is the number of symmetry operations preserving S and the motif S ∩ U , which can

permute molecules within a primitive cell U of S. If S ∩A consists of two non-rigidly

equivalent molecules in 2-fold positions, then Z ′(S) =
1

2
+

1

2
= 1. The crystal NaCl

has ions Na+ and Cl− with point groups of order 48, so Z ′(NaCl) =
1

48
+

1

48
=

1

24
.

In about 90% of entries in the Cambridge Structural Database (CSD), an asym-

metric unit includes only one molecule, so Z ′ ≤ 1 (Anderson et al., 2006). However,

the CSD has many crystals with high Z ′ (Brock, 2016), e.g. OGUROZ has Z ′ = 56.

Crystal Structure Prediction (CSP) often starts with simulating Z ′ = 1 crystals

for the most frequent space groups, but a final energy relaxation can produce struc-

tures with Z ′ values up to 36 (Pulido et al., 2017). More importantly, almost any

displacement of atoms or a whole rigid molecule discontinuously changes the size of

a primitive (or reduced) cell and hence arbitrarily scales up Z ′. Fig. 1 shows nearly

identical structures with Z ′ = 1, 2, 3 and similarly applies to any periodic crystal.

Ignoring any noise up to a small threshold ε only shifts the problem from 0 to another

number without guarantees of a continuous change. This sorites paradox (when a heap

of sand stops being a heap while grains are removed one by one) has been known since
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ancient times (sor, 2024). Its rigorous solution requires an invariant that is preserved

by any rigid transformation and continuously changes under perturbations of atoms.

Fig. 1. Almost any noise arbitrarily scales up a primitive yellow cell and discontin-
uously changes the relative multiplicity Z ′ of molecules, which are represented by
black Y graphs whose terminal vertices have initial positions shown by red circles.

While a full hierarchy of such invariants for periodic crystals from the fastest to com-

plete is being finalised by (Anosova & Kurlin, 2025; Widdowson & Kurlin, 2025b), our

continuous asymmetry will be based on the fast invariant PDD (Pointwise Distance

Distribution), which distinguishes all non-duplicate crystals in the world’s largest

databases within two hours on a modest desktop (Widdowson & Kurlin, 2022).

2. Generically complete and continuous isometry invariants of crystals

This section recalls isometry invariants, which will be used to define a continuous

invariant-based asymmetry in section 3. Any linear basis v1, . . . ,vn of Rn generates

the lattice Λ = {c1v1 + c2v2 + · · ·+ cnvn | c1, . . . , cn ∈ Z} ⊂ Rn and

the unit cell U = {x1v1 + x2v2 + · · ·+ xnvn | 0 ≤ x1, . . . , xn < 1} ⊂ Rn.

For any finite motif M ⊂ U of atoms (considered zero-sized points) in the unit cell,

a periodic crystal is defined as the infinite set S = Λ +M = {v + p | v ∈ Λ, p ∈ M}

or a finite union ∪p∈M (Λ + p) of shifted lattices with origins at all points of M .

The definition above is widely used for representing crystals in Crystallographic

IUCr macros version 2.1.17: 2023/10/19



5

Information Files (CIFs), but is highly ambiguous in the sense that infinitely many

pairs (basis, motif) represent the same crystal S. This ambiguity motivated us to

distinguish between a crystal S and its structure, defined as the equivalence class of

all periodic sets of atoms that are represented by different CIFs but can be exactly

matched with each other by rigid motion, see Definition 6 in (Anosova et al., 2024).

Any canonical (standard or conventional) choice of a cell for a periodic crystal is

discontinuous under almost any noise, as in Fig. 1, which was experimentally demon-

strated already in 1965, see p.80 in (Lawton & Jacobson, 1965). The new definition

of a crystal structure as a rigid class (consisting of all crystals that can be exactly

matched under rigid motion) has become practical due to the hierarchy of invariants

that uniquely identify any crystal structure independent of its initial representation.

Definition 2 introduces the invariant PDD for any periodic set of points in Rn, which

can be all atomic centres of a crystal in R3, or other points defined by a crystal, for

example, atoms of one specific type, or molecular centres, which form a periodic set.

Definition 2 (Pointwise Distance Distribution PDD). Let S ⊂ Rn be a periodic point

set with a motif M = {p1, p2, . . . , pm}. Fix an integer k ≥ 1. For every point pi ∈ M ,

let d1(p) ≤ · · · ≤ dk(p) be the distances from p to its k nearest neighbours within the

full infinite set S not restricted to any cell. The matrix D(S; k) has m rows consisting

of the distances d1(pi), . . . , dk(pi) for i = 1, . . . ,m. If any l ≥ 1 rows are identical to

each other, we collapse them into a single row and assign the weight
l

m
to this row.

The resulting matrix of k columns and a maximum of m rows with weights, in the

extra (say, 0-th) column, is called the Pointwise Distance Distribution PDD(S; k).

The columns of the matrix PDD(S; k) are ordered because each row consists of

increasing values of distances to neighbours but without their indices. So PDD(S; k)

importantly differs from the matrix of pairwise distances between m points in the

motif M , also because neighbours are not restricted to any (extended) cell of S.
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Since many crystals consist of indistinguishable atoms, we consider all points of S

unordered. Then PDD(S; k) has unordered rows and can be interpreted as a discrete

distribution of rows (or unordered points in Rk) with probabilities equal to the weights

assigned to rows. The Pair Distribution Function is obtained from a single collection

of all interatomic distances (usually normalised by frequencies and then smoothed)

and hence is naturally weaker than PDD(S; k), which splits distances per point and

avoids losing information under smoothing, see the discussion at the end of section 3

in (Widdowson & Kurlin, 2022). This probabilistic interpretation allows one to com-

pare PDDs by many distance metrics on discrete distributions. We usually use the

simplest metric called Earth Mover’s Distance (EMD), which was adapted for com-

paring chemical compositions (Hargreaves et al., 2020). Theorem 4.2 in (Widdowson

& Kurlin, 2025c) proved that PDD(S; k) continuously changes in EMD under pertur-

bations, including those that arbitrarily scale up a minimal cell as in Fig. 1.

The most important result about the PDD is its generic completeness: Theorem 5.8

in (Widdowson & Kurlin, 2025c) proved that PDD(S; k) with a lattice of S and the

number m of points in a motif of S suffice to reconstruct any generic periodic point

set S ⊂ Rn, uniquely under isometry, for a large enough k with an explicit upper

bound. In other words, PDD(S; k) with a few extra invariants provably distinguishes

all crystals, possibly except singular examples that form a subspace of measure 0 within

the continuous space of all periodic crystals. In practice, PDD(S; k) distinguished all

non-duplicate crystals in the world’s major databases within two hours on a modest

desktop, see Table 3 in (Widdowson & Kurlin, 2025c). Theorem 3.7 in (Widdowson

& Kurlin, 2025c) proved that, as k → +∞, the distances in each row of PDD(S; k)

asymptotically approach PPC(S) n
√
k, where the Point Packing Coefficient PPC(S) is

inversely proportional to the point density, as defined below. This fact motivated us to

subtract this asymptotic curve from PDD(S; k) to neutralise the influence of density.
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Definition 3 (invariants PPC(S) and PDA(S; k)). Let S ⊂ Rn be a periodic set with

m points in a unit cell U of S. The Point Packing Coefficient is PPC(S) = n

√
vol(U)

mVn
,

where vol(U) is the volume of U , and Vn is the volume of the unit ball in Rn, e.g. V3 =

4
3π. The Pointwise Deviation from Asymptotic is the matrix PDA(S; k) obtained from

PDD(S; k) by subtracting PPC(S) n
√
j from every distance in columns j = 1, . . . , k.

Another advantage of PDA(S; k) vs original PDD(S; k) is the experimental conver-

gence to 0 of the k-th values from the last column of PDA(S; k) as k → +∞, see

Fig. 4 in (Widdowson & Kurlin, 2025a). This convergence to 0 was formally proved

for any cubic lattice Zn in Example SM3.1 from (Widdowson & Kurlin, 2025c). Then

there is no need to substantially increase the number k of neighbours, because more

distant neighbours bring smaller contributions. We consider k not as a parameter that

seriously affects PDA(S; k), but as a degree of approximation like the number of dec-

imal places on a calculator. The vector ADA(S; k) of column averages in PDA(S; k)

for k = 100 atomic neighbours was sufficient to distinguish all non-duplicate crystals

in the CSD (Widdowson & Kurlin, 2024). The components of this Average Deviation

from Asymptotic vector ADA(S; k) can be used as analytic coordinates on geographic-

style maps of any materials database. Such maps were first developed for 2D lattices

by (Bright et al., 2023b; Bright et al., 2023a; Kurlin, 2024).

3. A continuous invariant-based asymmetry (CIA) of periodic crystals

The discontinuity of Z ′ from Definition 1 under almost any perturbation has been

known for 30+ years. The quote “two fairly unsymmetrical objects can be combined

into a less unsymmetrical structural dimer” from (Wilson, 1993) means that a crystal

with Z ′ = 2 can be geometrically close to a more symmetric crystal with Z ′ = 1.

This section first defines the Earth Mover’s Distance (EMD) between geometric

blocks within a periodic point set S ⊂ Rn by using the isometry invariant PDA(S; k)
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from Definition 3. The continuous invariant-based asymmetry of S will be defined

through EMDs between all blocks in an asymmetric unit of S. The EMD needs a

ground distance between vectors b = (b1, . . . , bk) and c = (c1, . . . , ck) in Rk, such

as rows of PDA(S; k). The simplest choices are the Chebyshev distance d∞(b, c) =

max
1≤i≤k

|bi − ci| and the Root Mean Square (RMS) d(b, c) =

√
1

k

k∑
i=1

(bi − ci)2.

These distances respect the continuity under perturbations as follows. If any bi, ci

are perturbed up to ε, then |bi − ci| ≤ 2ε for i = 1, . . . , k, and both d∞(b, c) ≤ 2ε,

d(b, c) ≤ 2ε. We usually write d without a subscript for brevity. If d∞ is used in

computations, all relevant distances and asymmetry will have the subscript ∞.

For any periodic set in Rn, Definition 4 introduces a distance between geometric

blocks B,C (considered as finite sets of points), which are molecules, ions, or other

well-defined disjoint subsets for crystals in R3. This distance measures how the posi-

tions of B,C differ within a common periodic set S containing both B,C. If B,C can

be exactly matched by a rigid motion of Rn preserving S, then this distance is 0. In

all real examples, any deviation from symmetry should be positive because of noise.

Though the EMD makes sense for distributions of different sizes, our experiments

on crystals will use the EMD only for geometric blocks that are chemically identical

molecules. More generally, we assume that every point in a periodic set S ⊂ Rn has a

categorical label, which is an analogue of an atomic type, such as Na+ and Cl−.

Briefly, the EMD optimally splits and transports objects from one distribution to

another by minimising the overall cost based on a ground distance between objects.

If we need to guarantee matching of points only with the same label (atomic type

for crystals), the ground distance can be adjusted by taking the maximum of d∞ or

d = RMS with a discrete metric that is infinite between points of different labels.

Definition 4 (Earth Mover’s Distance EMD between geometric blocks). Let S ⊂ Rn

be a periodic set of labeled points with an asymmetric unit A. Let B,C ⊂ S ∩ A be
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geometric blocks (finite sets) that have m(B),m(C) points of weights
1

m(B)
,

1

m(C)
,

respectively. For i = 1, . . . ,m(B) and j = 1, . . . ,m(C), let Ri(B), Rj(C) be the rows of

i-th and j-th points in B,C, respectively. The distance below is independent of point

ordering. The Earth Mover’s Distance EMD(B,C) =
m(B)∑
i=1

m(C)∑
j=1

fijd(Ri(B), Rj(C))

is minimised over variable parameters fij ∈ [0, 1] subject to
m∑
j=1

fij =
1

m(B)
and

m∑
j=1

fij =
1

m(C)
for all i = 1, . . . ,m(B) and j = 1, . . . ,m(C), respectively.

The distance EMD(B,C) measures the minimum perturbation of the rows of the

geometric blocks B,C in PDA(S; k) to match (distance-based invariants of) B and C

within the ambient periodic set S. This perturbation matching B and C reduces the

number of geometrically non-equivalent blocks and hence makes S more symmetric.

If an asymmetric unit A of S has only one geometric block B, then S has no

asymmetry because all blocks in S are images of B under symmetry operations of S.

If A has only two blocks B,C, then EMD(B,C) is considered the asymmetry of S. In

more general cases, Definition 5 introduces the continuous asymmetry below.

Definition 5 (Continuous Invariant-based Asymmetry CIA(S)). Let a periodic set

S ⊂ Rn with labeled points have geometric blocks B1, . . . , BG its asymmetric unit. Set

di = max
j=1,...,G

EMD(Bi, Bj) for i = 1, . . . , G. The Continuous Invariant-based Asymme-

try is CIA(S) = min
i=1,...,G

di. The ‘average’ version is CIA(S) =
1

G

G∑
i=1

di.

The matrix of distances EMD(Bi, Bj) describes the relative positions of G blocks

within an asymmetric unit of S in terms of their distances to atomic neighbours

within the full S. For i = 1, . . . , G, the distance di measures how far Bi is from all

other blocksThe standard (min-max) formula of CIA(S) means that the optimal i-

th block Bi serves as a centre minimising its distance EMD(Bi, Bj) to the farthest

block Bj , while CIA(S) averages maximum deviations di from all blocks considered

as centres. The default notation CIA(S) uses EMD based on the ground distance
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d = RMS between rows of PDA(S; k) with k = 100. For the Chebyshev distance d∞,

we keep the subscript ∞ in the notations EMD∞, CIA∞, and CIA∞.

Lemma 6 (invariance of CIAs). All CIAs in Definition 5 are invariant (remain

unchanged) under any isometry and changes of a unit cell of a periodic point S ⊂ Rn.

Lemma 6 and all further results below are proved in appendix B.

Lemma 7 (inequalities for CIAs). In the notations of Definition 5, CIA ≤ CIA∞,

CIA ≤ CIA∞, and CIA ≤ CIA ≤ 2CIA hold for any periodic point set S ⊂ Rn.

Since Definition 5 is based on the invariant PDA(S; k), the full notation should be

CIA(PDA(S; k)), where PDA(S; k) can be replaced with another “pointwise” invari-

ant, such as the higher-order PDA(h) (Widdowson & Kurlin, 2025b) or complete isoset

(Anosova et al., 2025). In this paper, we use only PDA(S; 100) and write CIA(S) for

brevity. Theorem 8 justifies the continuity of the asymmetry CIA(S) under all small

perturbations of points, including those that arbitrarily scale up an initial cell of S.

Theorem 8 (continuity of CIA under perturbations). Let S ⊂ Rn be a periodic

point set and r(S) denote the minimum half-distance between any points of S. For

any 0 < ε < r(S), let a periodic set Q ⊂ Rn be obtained by perturbing every point

of S up to Euclidean distance ε. Then the CIAs based on the invariant PDA(S; k) for

any k in Definition 5 satisfy |CIA(S)− CIA(Q)| ≤ 4ε and |CIA(S)− CIA(Q)| ≤ 4ε.

4. Fast detection of asymmetric crystals in large simulated CSP datasets

This section visualises several versions of CIA for 50+ thousand simulated crystals

from four CSP datasets reported in (Pulido et al., 2017). At that time, the synthe-

sised crystals predicted by these CSPs substantially extended the small population of

nanoporous crystals in the CSD. However, these predictions took more than 12 weeks

on a supercomputer, also due to predictions of properties, such as gas capture.
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In these cases, all experimental crystals have an asymmetric unit consisting of a

single molecule, hence CIA = 0 for all versions, which confirms the symmetry principle

saying that real crystals tend to be highly symmetric. All simulated crystals in the

four CSP datasets are based on one of the four molecules in Fig. 2.

Fig. 2. T0, T1, T2, and T2E molecules in the four CSP datasets in this section.

Since each molecule has a rigid shape of three symmetric ‘arms’, its position in R3 is

uniquely determined by 3 base points at the ends of these ‘arms’ that are most distant

from the molecular centre. We selected the following 3 base points for each molecule.

T0: mid-points defined by 3 pairs of the most distant carbons from the centre. T1:

three nitrogens. T2 and T2E: three oxygens. All values of CIAs in this section were

computed on periodic sets obtained by replacing each molecule with its three base

points. The alternative option of considering all atoms is slower and unnecessary in

these cases, because three base points per molecule suffice to completely reconstruct

every crystal based on one of the molecules T0, T1, T2, and T2E in Fig. 2.

Fig. 3 has four histograms of the default CIA across four CSP datasets. In each his-

togram, the vertical y-axis shows the number of crystal structures on the log scale (as

powers of 10) whose CIAs fall in a bin of size 0.01Å. The first vertical bin with CIA = 0

represents all crystals with CIA = 0. Since any CIA in Definition 5 is a min-max or

an average of non-negative distances, all versions of CIAs vanish simultaneously.
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Fig. 3. The histograms of CIA for simulated crystals represented by 3 base points at
‘ends’ of molecules in Fig. 2. Row 1: T0. Row 2: T1. Row 3: T2. Row 4: T2E.

All structures in the four CSP datasets were generated with Z ′ = 1. The last stage

of energy minimisation allowed this symmetry to be broken, which explains many

cases of Z ′ > 1 in Table 1. If the generation stage included structures with Z ′ ≥ 2,

optimised crystals might have different distribution of CIAs than in Fig. 3.

In appendix A, Fig. 22 contains histograms of CIA∞ based on the EMD with the

ground metric d∞ in Definition 4. The Chebyshev metric d∞ captures the largest
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deviations, while d = RMS averages over k = 100 adjusted inter-atomic distances,

CIA∞ has a larger range in comparison with CIA, see maximum values in Table 1.

Table 1. Statistics of CIA values for the four CSP datasets from (Pulido et al., 2017). The

last rows contain Person correlations r(x, y) between energy, density, and new CIAs.

CSP datasets T0 crystals T1 crystals T2 crystals T2E crystals
# crystals: all 5645 12524 5679 29908
# crystals: CIA ≥ 0.001 2024 5363 1687 16491
percentage: CIA ≥ 0.001 35.8% 42.8% 29.7% 55.1%
maximum CIA, Å 0.642 0.779 0.605 2.364
r(energy,density) −0.909 −0.639 −0.377 −0.500
r(energy,CIA) −0.394 −0.202 +0.022 −0.026
r(density,CIA) +0.317 +0.148 +0.040 −0.021

CSP datasets are often visualised via energy-density plots, because density is a fast

and continuous invariant. Moreover, density usually indicates stability, because stable

crystals tend to be dense. Figures 4, 5, 6, 7 show these energy-density plots, where

each crystal is represented by a point (density, energy), coloured according to its CIA.

The colour bars on the right-hand side of the plots show the CIA range, with the

bright red colour corresponding to high-symmetry structures with CIA = 0.

Table 1 highlights that large subsets (between 30% and 55%) of each CSP dataset

have CIA > 0. Since all experimental crystals based on these molecules have CIA = 0,

all non-symmetric crystals with CIA > 0 are likely non-ideal approximations to sym-

metric synthesised crystals. Indeed, if all non-red dots are removed from Figures 4, 5, 6,

7, the remaining red dots will still form roughly similar landscapes with all “minimal

spikes” of density represented by only symmetric crystals with CIA = 0 in red.

The Pearson correlation r(energy, density) in Table 1 reflects the inverse dependence

on density, because denser crystals tend to be more stable and have lower energies.

This inverse correlation is the strongest with r = −0.909 for crystals based on the

smaller molecule T0 and is still noticeable for crystals based on the larger molecules

T1, T2, and T2E. The new asymmetries CIA and CIA∞ are independent of density

and energy due to their low correlations, especially for the T2 and T2E datasets.
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All experimental crystals based on these molecules have CIA = 0, but their closest

simulated analogues may not have the lowest energies as for the nanoporous T2-γ.

Fig. 4. Energy vs density for simulated T0 crystals, coloured by their CIA.

Fig. 5. Energy vs density for simulated T1 crystals, coloured by their CIA.
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Fig. 6. Energy vs density for simulated T2 crystals, coloured by their CIA.

Fig. 7. Energy vs density for simulated T2E crystals, coloured by their CIA.
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Fig. 8. CIA vs density for simulated and experimental T0 crystals in the CSD.

Fig. 9. CIA vs density for simulated and experimental T1 crystals in the CSD.
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Fig. 10. CIA vs density for simulated and experimental T2 crystals in the CSD.

Fig. 11. CIA vs density for simulated and experimental T2E crystals in the CSD.

Figures 8, 9, 10, 11 show experimental crystals by red marks of various shapes in the

coordinates (density, CIA), and indicate their apparent independence. In each figure,
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the top right corner includes a zoomed-in image containing experimental crystals that

are closest by density. Though many simulated crystals are symmetric with CIA = 0,

all non-symmetric crystals form noisy clouds with variable energies. The visible gaps

between these clouds and the horizontal axis CIA = 0 confirm a local version of the

symmetry principle saying that a nearly symmetric structure likely converges to a

higher symmetry version with CIA = 0.

Figure 12 shows the average running times vs the number Z of molecular compo-

nents in a unit cell. This number Z goes up to 36 and coincides with G, because all

finally optimised crystals are saved in the simplest translation group P1.

Fig. 12. Average running times (in seconds) of CIA on four CSP datasets vs the
number G of molecules in asymmetric units, performed on a modest machine with
CPU 13th Gen Intel(R) Core(TM) i7-1355U (1.70 GHz) and RAM 16GB.

5. Continuous asymmetries of all experimental crystals in the CSD

This section describes a large-scale analysis of asymmetries in the whole CSD. Each

crystal is represented by a periodic set of all its atoms. We considered all periodic

crystals with complete 3D geometry, no disorder, and based on a chemically unique

molecule. Though Definition 5 can be applied to geometric blocks of different sizes,

we postpone the more complicated case of co-crystals to future work.
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Fig. 13. The histogram of integer numbers G for all 69,196 periodic crystals in the
CSD that have G ≥ 2 chemically equivalent blocks in their asymmetric units.

Fig. 14. The histogram of Z ′ with bin size 0.5 for all 69,196 periodic crystals in the
CSD that have G ≥ 2 chemically equivalent blocks in their asymmetric units.

The snapshot of the CSD on 12th November 2025 contained 1,394,755 entries,

including 907223 crystals without disorder. Among them, 69,196 crystals have asym-

metric units containing G ≥ 2 molecules that all have the same composition, where G

was computed by the CSD Python API as the number of components in the list

crystal.asymmetric unit molecules. Some crystals with the highest Z ′ values from

https://zprime.co.uk/database, such as OGUROZ (Z ′ = 56), TMESNH (Z ′ = 32),
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IDOSID (Z ′ = 24), and VIFXEQ (Z ′ = 24), were excluded because of disorder.

Fig. 15. The histograms of CIAs on the log scale with bin size 0.01Å for all 69,196
periodic crystals in the CSD that have G ≥ 2 chemically equivalent molecules in
asymmetric units. Row 1: CIA. Row 2: CIA. Row 3: CIA∞. Row 4: CIA∞.

Figures 13, 14, and 15 show the histograms of G,Z ′, and four CIAs for this subset

of the CSD, respectively, where Z ′ was computed as crystal.z prime by the CSD

Python API. The number Z[CIF] of molecules in the full motif was taken from lines

“ cell formula units Z” in CIFs from the CSD, which sometimes differs from Z[CSD],

computed as the number of components in the list crystal.molecule. CSD Python API.
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Table 2 shows all four versions of CIAs for the most extreme crystals in the CSD:

five crystals with the lowest Z ′ ≤ 0.33 and five crystals with the highest Z ′ ≥ 28.

Table 2. CIAs of the crystals with the lowest and largest relative multiplicities in the CSD.

The numbers Z and G count molecules in a unit cell and an asymmetric unit, respectively.

CSD id Z[CIF] G blocks Z ′[CSD] CIA, Å CIA, Å CIA∞, Å CIA∞, Å
VESWEZ 2 2 0.083 0.204 0.204 0.580 0.580
ELIQIZ02 3 2 0.083 0.226 0.226 0.807 0.807
ZOKYEH01 16 2 0.167 0.086 0.086 0.241 0.241
RARTEK 16 2 0.17 0.125 0.125 0.332 0.332
ZAVJOV 2 2 0.33 0.090 0.090 0.241 0.241
QILJII01 112 28 28 0.168 0.185 0.397 0.426
LOFRAD 116 29 29 0.149 0.183 0.420 0.499
LOFRAD01 116 29 29 0.149 0.185 0.434 0.506
JIPTIL09 32 32 32 0.104 0.109 0.266 0.282
JIPTIL10 32 32 32 0.102 0.109 0.265 0.282

In Table 2, crystal VESWEZ has G = 2 components CN2 in geometrically non-

equivalent positions: in one CN2, both nitrogens are linked to two carbons; in another

CN2, the two nitrogens are linked to 2 and 3 carbons, see Fig. 16. Crystal ELIQIZ02

has molecules C6H6 and C2H2, and its asymmetric unit consists of G = 2 geometrically

different carbons: one from C6H6 and another from C2H2. Crystal ZOKYEH01 consists

of a big molecule of C60 with extra tails, but its asymmetric unit was also split into

G = 2 blocks C10O2, which apparently have non-isometric positions within the full

crystal. Crystal RARTEK and ZAVJOV similarly consist of big molecules based on

G = 2 blocks in asymmetric units, whose positions can not be matched by isometry

preserving the whole crystal. The last three cases show that molecular crystals will

benefit from quantifying asymmetry at the level of full molecules, because asymmetric

units may not split into uniquely defined molecules or geometric blocks of atoms.
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Fig. 16. The crystals with the lowest Z ′ from Table 2 shown without hydrogen atoms.
1st: VESWEZ. 2nd: ELIQIZ02. 3rd: ZOKYEH01. 4th: RARTEK. 5th: ZAVJOV.

Table 3. CIAs of the well-known polymorphs of artemisinin (QNGHSU01), pyridine

(PYRDNA04), para-chlorophenol (α-form CLPHOL12 and β-form CLPHOL13), and the

famous ROY molecule (R05 polymorph QAXMEH31 and R18 polymorph QAXMEH57).
CSD id Z[CIF] G blocks Z ′[CSD] CIA, Å CIA, Å CIA∞, Å CIA∞, Å
QNGHSU01 4 4 4 0.357 0.379 1.093 1.096
QAXMEH31 2 2 2 0.440 0.440 1.098 1.098
QAXMEH57 2 2 2 0.807 0.807 1.602 1.602
CLPHOL12 2 2 2 0.790 0.790 2.594 2.594
CLPHOL13 2 2 2 0.575 0.575 1.132 1.132
PYRDNA04 4 4 4 1.971 2.096 2.756 2.861

Fig. 17. Six famous polymorphs whose CIAs are listed in Table 3. From left to right:
QNGHSU01, QAXMEH31, QAXMEH57, CLPHOL12, CLPHOL13, PYRDNA04.

Table 4 lists the 10 crystals from with the lowest values of CIAs. The first three

crystals have CIA = 0 with 3 decimal places, so their Z ′ ≥ 2 might be corrected.
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Table 4. Ten crystals with the lowest CIA among 69,196 periodic crystals in the CSD that

have Z ′ ≥ G ≥ 2 chemically equivalent blocks in their asymmetric units.

CSD id Z[CIF] G blocks Z ′[CSD] CIA, Å CIA, Å CIA∞, Å CIA∞, Å
IYIWIY 8 8 8 0.000 0.000 0.000 0.000
GLYCIN81 2 2 2 0.000 0.000 0.000 0.000
YOSNEZ05 2 2 2 0.000 0.000 0.000 0.000
GIBVOG 2 2 2 0.000 0.000 0.001 0.001
GLYCIN82 3 3 3 0.001 0.001 0.002 0.002
KAVXUE 1 2 2 0.002 0.002 0.005 0.005
ADUWED 64 2 2 0.002 0.002 0.006 0.006
CINMAC13 2 2 2 0.002 0.002 0.010 0.010
XOTRAB 4 2 2 0.003 0.003 0.007 0.007
COTZES 6 2 2 0.003 0.003 0.009 0.009

The value CIA = 0 means that all molecules are geometrically equivalent, i.e. can

be exactly matched by isometry that preserves the whole crystal. In this case, an

asymmetric unit should contain only one molecule (G = 1), so Z ′ ≤ 1 is expected.

Fig. 18. Ten crystals (some shown without hydrogen atoms) from Table 4 with very
low CIA ≥ 0. Top from left to right: IYIWIY, GIBVOG, GLYCIN81, YOSNEZ05,
GLYCIN82. Bottom: CINMAC13, KAVXUE, ADUWED, XOTRAB, COTZES.
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One explanation is a potentially wrong space group (Henling & Marsh, 2014). For

example, IYIWIY has the space group P1, but looks more symmetric in the first pic-

ture of Fig. 18. Both structures IYIWIY and YOSNEZ05 were obtained from powder

data, so their space groups might need re-checking. Since all CIAs continuously change

under atomic perturbations by Theorem 8, there is no need to search for a higher sym-

metry group, which drops to the simplest group P1 under almost any noise anyway.

The values of Z[CIF] can be corrected for all entries with Z < G in Tables 4 and 5,

because a unit cell should not have fewer molecules than in an asymmetric unit.

Table 5. Almost symmetric crystals with high values Z ′ ≥ 5 but low CIA ≤ 0.021Å.

CSD id Z[CIF] G blocks Z ′[CSD] CIA, Å CIA, Å CIA∞, Å CIA∞, Å
TEGBEP 1 6 6 0.010 0.011 0.030 0.032
HOGKAR 12 6 6 0.010 0.011 0.032 0.034
GINHIX 6 6 6 0.011 0.012 0.034 0.039
EVIWUE 12 6 6 0.012 0.014 0.051 0.059
LEMWOR 2 6 6 0.013 0.013 0.040 0.043
YIVHER 10 5 5 0.015 0.016 0.053 0.058
IFOFAN 10 5 5 0.020 0.020 0.070 0.077
EDUCAL 12 6 6 0.020 0.022 0.062 0.071
ROTSAY 18 9 9 0.021 0.023 0.060 0.067
CIDHAB 1 12 12 0.021 0.023 0.067 0.071

In conclusion, the relative multiplicity Z ′ discontinuously changes under almost any

perturbation, the proposed CIA in Definition 5 is continuous by Theorem 8. For the

CSP datasets in section 4, about a half of all 50K+ simulated crystals have CIA > 0,

while all experimental crystals have CIA = 0, see Table 1. Moreover, these continuous

and fast asymmetries are not correlated with density and energy. The large-scale

experiments on the CSD show that many non-symmetric crystals with high Z ′ have

low CIAs in Table 5 and hence are geometrically close to more symmetric forms. This

work was supported by the Royal Society APEX fellowship ”New geometric methods

for mapping the space of periodic crystals” (APX/R1/231152) of the last author.

References

(2024). Continuum fallacy within the sorites paradox. https://en.wikipedia.org/wiki/
Sorites paradox#Continuum fallacy.

IUCr macros version 2.1.17: 2023/10/19



25

Anderson, K. M., Afarinkia, K., Yu, H.-w., Goeta, A. E. & Steed, J. W. (2006). Crystal growth
& design, 6(9), 2109–2113.

Anosova, O. & Kurlin, V. (2025). Geometric Data Science.
arXiv:2512.05040

Anosova, O., Kurlin, V. & Senechal, M. (2024). IUCrJ, 11, 453–463.

Anosova, O., Widdowson, D. & Kurlin, V. (2025). Pattern Recognition, 171(112108).

Bright, M. J., Cooper, A. I. & Kurlin, V. A. (2023a). Chirality, 35, 920–936.

Bright, M. J., Cooper, A. I. & Kurlin, V. A. (2023b). Acta Crystallographica Section A, 79(1),
1–13.

Brock, C. P. (2016). Acta Cryst B, 72(6), 807–821.

Chapuis, G. (2024). Z and Z′ in the IUCr Online Dictionary of Crystallography. https://
dictionary.iucr.org/Z and Z’.

Edelsbrunner, H., Heiss, T., Kurlin, V., Smith, P. & Wintraecken, M. (2021). In Proceedings
of Symposium on Computational Geometry, vol. 189, pp. 32:1–32:16.

Hargreaves, C. J., Dyer, M. S., Gaultois, M. W., Kurlin, V. A. & Rosseinsky, M. J. (2020).
Chemistry of Materials, 32, 10610–10620.

Henling, L. M. & Marsh, R. E. (2014). Acta Crystallographica Section C, 70(9), 834–836.

Kurlin, V. (2024). Foundations of Computational Mathematics, 24, 805–863.

Lawton, S. L. & Jacobson, R. A. (1965). The reduced cell and its crystallographic applications.
Tech. rep. Ames Lab., Iowa State Univ. of Science and Tech., US.

Lax, M. (2001). Symmetry principles in solid state and molecular physics. Courier Corporation.

Pulido, A. et al. (2017). Nature, 543(7647), 657–664.

Senechal, M. (1996). Quasicrystals and geometry. CUP Archive.

Steed, K. M. & Steed, J. W. (2015). Chemical Reviews, 115(8), 2895–2933.

Van Eijck, B. P. & Kroon, J. (2000). Acta Cryst B, 56(3), 535–542.

Widdowson, D. & Kurlin, V. (2022). Advances in Neural Information Processing Systems
(NeurIPS), 35, 24625–24638.

Widdowson, D. & Kurlin, V. (2024). Crystal Growth and Design, 24, 5627–5636.

Widdowson, D. & Kurlin, V. (2025a). Scientific Reports, 15, 27588.

Widdowson, D. & Kurlin, V. (2025b). arXiv:2509.15088.

Widdowson, D. & Kurlin, V. (2025c). SIAM Journal on Applied Mathematics.

Wilson, A. (1993). Acta Cryst A, 49(6), 795–806.

Appendix A
Extra experimental results for simulated crystals

This appendix contains extra plots for other versions of CIAs.
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Fig. 19. The histograms of CIA for simulated crystals represented by 3 base points at
‘ends’ of molecules in Fig. 2. Row 1: T0. Row 2: T1. Row 3: T2. Row 4: T2E.
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Fig. 20. The histograms of CIA∞ for simulated crystals represented by 3 base points
at ‘ends’ of molecules in Fig. 2. Row 1: T0. Row 2: T1. Row 3: T2. Row 4: T2E.
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Fig. 21. The histograms of CIA∞ for simulated crystals represented by 3 base points
at ‘ends’ of molecules in Fig. 2. Row 1: T0. Row 2: T1. Row 3: T2. Row 4: T2E.

Table 1. Statistics of CIA,CIA∞,CIA∞ for the four CSP datasets from (Pulido et al., 2017).

The last rows contain Person correlations r(x, y) between energy, density, and new CIAs.

CSP datasets T0 crystals T1 crystals T2 crystals T2E crystals

maximum CIA∞, Å 1.748 0.902 2.352 4.882
r(energy,CIA) -0.393 -0.196 +0.035 -0.020
r(energy,CIA∞) −0.398 −0.196 +0.016 −0.019
r(energy,CIA∞) -0.399 -0.186 +0.032 -0.014
r(density,CIA) +0.315 +0.144 +0.036 -0.021
r(density,CIA∞) +0.322 +0.133 +0.037 −0.033
r(density,CIA∞) +0.323 +0.131 +0.032 -0.022
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Fig. 22. The histograms of CIA∞ for simulated crystals represented by 3 base points
at ‘ends’ of molecules in Fig. 2. Row 1: T0. Row 2: T1. Row 3: T2. Row 4: T2E.
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Fig. 23. CIA vs energy plot for simulated T0 crystals, coloured by their density

Fig. 24. CIA vs energy plot for simulated T1 crystals, coloured by their density
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Fig. 25. CIA vs energy plot for simulated T2 crystals, coloured by their density

Fig. 26. CIA vs energy plot for simulated T2E crystals, coloured by their density

Figures 23, 24, 25, and 26 plot the CIA (Å) and CIA∞ (Å) vs lattice energy

(kJ/mol) for T0, T1, T2, and T2E simulated crystals, respectively. Similar to Fig-
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ures 8-11, the crystals are coloured with different density (g/cm3) values. The colour

bar for density is shown at the right side of each plot. Similar to the figures 8- 11, the

colour gradient in these figures also indicate most of the crystals having lower energy,

i.e., are stable, are often associated with higher density values compared to the crystals

having higher energy which are mostly associated with lower density. While symmet-

ric crystals exist across the full range of energies and densities, crystals with higher

energies have larger asymmetries. High-density structures are observed with both zero

and non-zero asymmetry, indicating that density alone does not determine symmetry.

and higher asymmetry. -178.09 kJ/mol for T1, -123.7 to -223.7 kJ/mol for T2, and

-121.26 to -221.26 kJ/mol for T2E predicted structures.

experimental structure SEMFAU. The CIA (Å) and CIA∞ (Å) is zero for the struc-

ture, indicating symmetry. Since the structure is nano-porous and has a low-density,

the PPC of the structure is comparatively higher high average radius of balls ’packed’

inside the unit cell. ADA1 (Å) and ADA2 (Å) representing how much AMD1 and

AMD2 from the closest and second closest neighbour, respectively, deviate from the

PPC, scaled for number of neighbours.

Appendix B
Detailed proofs of mathematical results

Proof of Lemma 6. We prove the invariance of CIA(S). The proof for other versions is

almost identical. Since PDA(S; k) consists of inter-point distances, which are invariant

under any isometry, CIA(S) is also invariant. If a unit cell U of S is transformed to

another cell U ′ by a matrix from SL(Z, n), there is a 1-1 correspondence between all

points in the original motif S ∩U and the new motif S ∩U ′ that respects all distances

to neighbours. Then PDA(S; k) and hence CIA(S) remain invariant. If a unit cell U
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is scaled up by an integer factor c, the original motif M = S ∩ U transforms into the

c-times larger motif Mc containing c isometric copies of M . The scaled-up asymmetric

unit contains c times more blocks B1, · · · , BcG, which can be considered as c copies

of the original blocks. For each fixed i = 1, . . . ,m, the matrix of pairwise distances

EMDs between cG blocks consists of c × c copies of the original matrix G × G of

distances. The distances to the farthest units dij = max
j=1,...,cG

EMD(Bi, Bj) are obtained

by concatenating c copies of the original vector (di1, . . . , diG). Then the maximum and

average values for each vector remain the same, so CIA(S) is invariant.

Proof of Lemma 7. The inequalities CIA(S) ≤ CIA∞(S) and CIA(S) ≤ CIA∞(S)

hold, because the RMS distance d is bounded from above by the Chebyshev dis-

tance d∞. The inequality CIA(S) ≤ CIA holds, because CIA(S) = min
i=1,...,G

di ≤

1

G

G∑
i=1

di = CIA(S). To prove the inequality CIA(S) ≤ 2CIA(S), let Bi minimise

di = max
j=1,...,l

EMD(Bi, Bj) = CIA(S). For j, k = 1, . . . , G, the triangle inequality

EMD(Bk, Bj) ≤ EMD(Bk, Bi) + EMD(Bi, Bj) ≤ 2di = 2CIA(S)

implies that dk = max
j=1,...,G

EMD(Bk, Bj) ≤ 2CIA(S) for each k = 1, . . . , G. Then

CIA(S) =
1

G

G∑
k=1

dk ≤ 2CIA(S).

Proof of Theorem 8. By Lemma 4.1 in (Edelsbrunner et al., 2021), if periodic point

sets S,Q ⊂ Rn are related by an ε-perturbation, then S,Q have a common lattice.

Since CIA is invariant under changes of a unit cell by Lemma 6, we can assume that

S,Q have the same number m of points in a common unit cell and equal Point Packing

Coefficients PPC(S) = PPC(Q) in Definition 3. By Lemma SM3.4 in (Widdowson &

Kurlin, 2025c), all corresponding elements of PDD(S; k),PDD(Q; k) differ by at most

2ε, which generalises the basic fact that perturbing any two points up to ε changes the

distance between them up to 2ε by the triangle inequality. The same upper bound of

2ε holds for differences between all corresponding elements of PDA(S; k),PDA(Q; k)
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in Definition 3 due to PPC(S) = PPC(Q). For both ground distances (Chebyshev

and Root Mean Square) between rows of k distances, the upper bound of 2ε between

corresponding distances |bi − ci| ≤ 2ε, i = 1 . . . , k, guarantees the same upper bound

for d∞ = max
i=1,...,k

|bi − ci| ≤ 2ε and d =

√
1

k

k∑
i=1

(bi − ci)2 ≤
√

1

k

k∑
i=1

(2ε)2 = 2ε.

Let B1, . . . , BG be all geometric blocks in an asymmetric unit of S. Denote by

C1, . . . , CG the corresponding blocks in an asymmetric unit of Q so that each Ci is an

ε-perturbation of Bi for i = 1, . . . , G. By the argument above, all mi corresponding

points of Bi and Ci have 2ε-close rows in PDA(S; k) and PDA(Q; k), respectively,

for i = 1, . . . , G. Then d(Rj(Bi), Rj(Ci)) ≤ 2ε for j = 1, . . . ,mi, where the ground

distance d is Chebyshev or RMS. In the notations of Definition 4, if we set fjj =
1

mi

for j = 1, . . . ,mi, else 0, then EMD(Bi, Ci) ≤ 2ε. The triangle inequality implies that

EMD(Bi, Bj) ≤ EMD(Bi, Ci) + EMD(Ci, Cj) + EMD(Cj , Bj)| ≤ EMD(Ci, Cj) + 4ε.

Swapping the B-blocks and C-blocks, we similarly get EMD(Ci, Cj) ≤ EMD(Bi, Bj)+

4ε and |EMD(Bi, Bj) − EMD(Ci, Cj)| ≤ 4ε, so the corresponding elements of the

matrix of EMDs differ by at most 4ε. Then the maximum distances di in Definition 5

and hence the minima and averages over j = 1, . . . , G differ by at most 4ε.

Synopsis

The new continuous invariant-based asymmetry quantifies a deviation of any periodic crystal
from its closest higher symmetry neighbour where all molecules are geometrically equivalent.
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