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Abstract

The Cambridge Structural Database (CSD) played a key role in the recently es-

tablished Crystal Isometry Principle (CRISP). The CRISP says that any real peri-

odic crystal is uniquely determined as a rigid structure by the geometry of its atomic

centres without atomic types. Ignoring atomic types allows us to study all periodic

crystals in a common space whose continuous nature is justified by the continuity of

real-valued coordinates of atoms. Our previous work introduced structural descriptors

PDD (Pointwise Distance Distributions) that are invariant under isometry defined as

a composition of translations, rotations, and reflections. The PDD invariants distin-

guished all non-duplicate periodic crystals in the CSD. This paper presents the first

continuous maps of the CSD and its important subsets in invariant coordinates that

have analytic formulae and physical interpretations. Any existing periodic crystal has

a uniquely defined location on these geographic-style maps. Any newly discovered

periodic crystals will appear on the same maps without disturbing the past materials.
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Introduction: strong motivations for continuous maps

Crystallography traditionally classified periodic crystals almost exclusively in a discrete way

by symmetries. This was a natural approach in the past when only a few crystal structures

were known. The classification of 230 space groups was a great achievement in the 19th

century by Fedorov1 and Schonflies2 in 1891. Due to the important work of Olga Ken-

nard, who established the Cambridge Structural Database (CSD) in 1965, and her numerous

successors,3 the CSD contains now 1.25+ million known materials including more than 830

thousand periodic crystals with no disorder and full atomic geometry. Many more thousands

of crystal structures are computationally predicted even for a fixed chemical composition.4

These big numbers motivate a finer (stronger) classification into infinitely many classes.

For a simple comparison, triangles can be classified by symmetries as equilateral, isosceles,

and generic (nonisosceles). However, geometry did not stop at these three classes and moved

on to a much stronger classification, which is now called the side-side-side theorem. This

SSS theorem from school geometry says that two triangles can be rigidly matched if and

only if they have the same triple of side lengths a, b, c considered up to all permutations.

In Euclidean space Rn, this rigid matching of triangles is called a congruence and can be

obtained as a restriction of isometry, which is any distance-preserving transformation of Rn.

Any Euclidean isometry is a composition of translations, rotations, and reflections, as seen

in Fig. 1. If we exclude reflections, any composition f of translations and rotations is called

a rigid motion because f can be included in a continuous family (motion) ft : Rn → Rn,

t ∈ [0, 1], of isometries such that f1 = f is the given map and f0 is the identity map.

All rigid shapes of triangles form one infinitely continuous moduli space of classes mod-

ulo isometry. The SSS theorem can be rephrased so that the moduli space of triangles

is continuously parametrised by an ordered triple of interpoint distances a, b, c satisfying

0 < a ≤ b ≤ c ≤ a + b, where the last inequality guarantees the existence of a triangle, e.g.

(a, b, c) = (3, 4, 5) uniquely determines a right-angled triangle with side lengths 3, 4, 5.
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Figure 1: Left: one isometry class consists of all triangles isometric to each other. All such
classes form the moduli space of shapes. Right: the moduli space of triangles under isometry
is the cone {0 < a ≤ b ≤ c ≤ a+ b} ⊂ R3 parametrised by 3 interpoint distances a, b, c.

Fig. 1 visualises this moduli space as a triangular cone in R3 with the coordinate axes

a, b, c. The red diagonal {a = b = c} represents all equilateral triangles. Any point in the

yellow section determines a unique triangle under isometry and uniform scaling. The dashed

line in the plane c = a+ b represents degenerate triangles of 3 points in a straight line.

The moduli space of triangles under rigid motion and uniform scaling is the union of two

yellow triangles glued along their common boundaries, where triangles are mirror-symmetric,

which gives a topological sphere S2. This continuous classification of triangles under rigid

motion (or slightly weaker isometry, possibly with uniform scaling) is much finer (stronger)

than the discrete classification by symmetries with only three classes. The classes of all

equilateral and isosceles triangles are low-dimensional subspaces of dimensions 1 (diagonal

line) and 2 (union of two boundary sides) in the infinite 3-dimensional cone, respectively.

Because crystal structures are solid (or rigid) materials, their most natural equivalence is

rigid motion. Indeed, there is little sense in distinguishing crystals related by rigid motion, at

least under the same ambient conditions such as temperature and pressure. Hence the crucial

question “same or different”5 has the initial answer same (rigidly equivalent) if they are re-

lated by rigid motion. The more practical questions are “how to distinguish all different crys-

tals” and “how to continuously quantify their difference”. As shown in Fig. 1, such answers

for triangles were known already to Euclid in 300 BC. For instance, the distance between

any triangles uniquely represented by triples (a, b, c) and (a′, b′, c′) can be quantified in many

continuous ways, the simplest being the Euclidean metric
√

(a′ − a)2 + (b′ − b)2 + (c′ − c)2.
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Can we rigorously answer the fundamental questions “same or different?” and “if dif-

ferent, how much different?” at least for periodic crystals? The 21st century witnessed an

explosive growth of structural databases whose integrity maintenance6 now requires contin-

uous tools that can quickly detect numerous near-duplicates as motivated below.

Discontinuity challenge of traditional crystallography

This section explains the discontinuity of traditional Definition 1 as in section 8.1.4 of ITA.7

Definition 1 (unit cell, lattice, motif, periodic point set, periodic crystal). Any ordered basis

of vectors v1, . . . , vn ∈ Rn defines the unit cell (parallelepiped) U = {
n∑

i=1

tivi | 0 ≤ ti < 1} ⊂

Rn and the lattice Λ = {
n∑

i=1

civi | ci ∈ Z}, as seen in Fig. 2. A motif M ⊂ U is any finite set

of points in U . A periodic point set S = M+Λ is the infinite set of points p+v for all p ∈ M

and v ∈ Λ. In R3, if each point of M is an atom or ion with a chemical element and charge,

then the periodic point set S with these atomic attributes is called a periodic crystal. ▲

Figure 2: Ambiguity of choosing a basis of a lattice Λ ⊂ R2 as introduced in Definition 1.

Any lattice can be generated by infinitely many bases. If (v1, v2) is one basis of a lattice

Λ ⊂ R2, then (Av1, Av2) is another basis of Λ for any 2× 2 matrix A with integer elements

and determinant 1. This ambiguity can be theoretically resolved by a reduced cell.8 In

dimensions 2 and 3, such a reduced cell can have two types: with all angles between basis

vectors acute or with all angles obtuse (non-acute). The hexagonal lattice Λ in Fig. 2 has

the obtuse and acute cells U1, U2, respectively. While we can choose one of them by allowing
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the angle 60◦ and forbidding 120◦, all such choices create the discontinuity under almost any

perturbation, which was reported9 in 1965 and resolved for 2D lattices10 in 2022.

When a motif M is added to a lattice Λ, the ambiguity of this crystal representation

S = M + Λ significantly increases. Firstly, one can shift a motif within a fixed unit cell U ,

which changes all fractional coordinates of atoms in a basis of U , but moves the underlying

periodic crystal only by a fixed vector. For highly symmetric crystals, this ambiguity is

often resolved by fixing atoms at Wyckoff positions but not for generic crystals with the

space group P1. Second, any periodic point set S = M + Λ can be obtained from an

extended motif M ′ in a scaled-up cell (defining a sublattice Λ′ ⊂ Λ) so that S = M ′+Λ′. In

theory, an extended motif and cell can be scaled down to a primitive cell that has a minimum

volume. In practice, a tiny atomic displacement can make an extended cell primitive.

Figure 3: Any primitive or reduced cell arbitrarily extends under almost any perturbation.

So a Crystallographic Information File (CIF) describing a crystal S via a unit cell and

motif as in Definition 1 can be considered a single “photograph” of S. The standard set-

tings carefully developed in the International Tables for Crystallography can be informally

compared with a standardised passport photo, which sufficed in the 20th century.

In 2024, massive data produced by cheap artificial tools11 should be validated by rigorous

methods12 such as biometric passports for humans and DNA-style codes for crystals.

A potential attempt to ignore perturbations up to a small threshold ε > 0 by calling any

ε-close crystals equivalent (pseudo-symmetric) practically shifts13 the discontinuity from 0

to ε and theoretically leads to a trivial classification because any crystals can be connected

through sufficiently many ε-perturbations. All challenges above for experimental crystals

become much worse in simulations because near-duplicates can be easier hidden within big
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data. Any iterative optimisation stops at a close approximation to a local minimum, hence

many differently looking approximations can accumulate around the same local mininum.

Key concepts for identifying near-duplicate structures

A rigorous way to answer the question “same or different” is to define “same” (equivalent)

crystals so that all their physical or chemical properties are equal. We consider only ideal

periodic crystals under the standard ambient conditions such as temperature and pressure.

Because crystal structures are determined in a rigid form, their strongest equivalence in

practice is a rigid motion, which is a composition of translations and rotations. Indeed,

different rigid structures (even different rigid conformations of the same molecule such as a

protein) can have different chemical properties and hence are important to distinguish.

Definition 2 was also proposed in the paper12 discussing past ambiguities and was mo-

tivated by Carolyn Brock’s call14 for “a real-space definition mentioning periodicity”. We

propose to separate the concepts of a periodic crystal (an object fixed in space and repre-

sented by a CIF) and a crystal structure (a class of all rigidly equivalent crystals). The word

crystal refers to a 3D object with chemical attributes, while periodic point sets and their

periodic structures (equivalence classes) are based on indistinguishable points in any Rn.

Definition 2 (periodic structure and crystal structure are classes under rigid motion). In

Rn, a periodic structure is a class of all periodic point sets that can be exactly matched to

each other by rigid motions of Rn. In R3, a crystal structure is a class of all periodic crystals

that can be exactly matched to each other (with all atomic attributes) by rigid motions. ▲

The earlier attempt15 to formalise an equivalence proposed that “crystals are said to be

isostructural if they have the same structure but not necessarily the same cell dimensions nor

the same chemical composition, and with a ‘comparable’ variability in the atomic coordinates

to that of the cell dimensions and chemical composition. For instance, calcite CaCO3, sodium

nitrate NaNO3 and iron borate FeBO3 are isostructural”. While the IUCr online dictionary
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doesn’t have the entry ‘structure’, the definitions of a crystal structure16 (in R3) and a crystal

pattern17 (in any Rn) essentially coincide with a periodic point set and a periodic crystal in

Definition 1, respectively. Then any isostructural crystals should coincide as periodic sets

of atoms with fixed positions in R3 without applying any rigid motion. Even if we interpret

the crystal structure in the sense of Definition 2, Table 1 summarises how many versions of

the above compounds differ by their cell lengths and are not equivalent under rigid motion.

Table 1: Examples of “isostructural” crystals as defined in the IUCr online dictionary. Even
for a fixed composition, cell parameters of CaCO3 vary up to 0.95Å (from c ≈ 16.86Å in
FUTWOI01 to c ≈ 17.81Å in FUTWOI18) among 29 entries in the CSD. All entries in the
ICSD are taken for the same space group (R-3cH), room temperature, and standard pressure.

crystal database references # cell lengths a = b cell length c cell angles
CaCO3 CSD: FUTWOI . . . 29 4.945 ≤ a ≤ 4.992 16.86 ≤ c ≤ 17.81 90◦ 90◦ 120◦

NaNO3 ICSD: 14185, . . . 10 5.071 ≤ a ≤ 5.107 16.82 ≤ c ≤ 16.83 90◦ 90◦ 120◦

FeBO3 ICSD: 34474, . . . 12 4.621 ≤ a ≤ 4.627 14.47 ≤ c ≤ 14.5 90◦ 90◦ 120◦

In Pattern Recognition,18 the pattern means a class under some equivalence. The struc-

ture also deserves a deeper meaning as in Definition 2 because any rotation of a real crystal

changes its CIF (coordinate representation) but preserves the underlying crystal structure.

So crystals are considered same (having the same rigid structure) if they can be exactly

matched by rigid motion in R3. The slightly weaker equivalence is isometry, which is any

distance-preserving transformation. In Rn, any Euclidean isometry is a rigid motion or its

composition with any mirror reflection. If we don’t distinguish mirror images, any non-

mirror-symmetric crystal defines a larger class under isometry than under rigid motion.

If crystals S,Q are isometric (matched by an isometry f of Rn), they are rigidly equivalent

(matched by rigid motion) or S is rigidly equivalent to the mirror image of Q. One can

separate these cases by checking if f preserves the sign of the n× n determinant consisting

of basis vector v1, . . . , vn in Rn. So it almost suffices to classify crystals under isometry.

To distinguish nonisometric crystals that are not related under isometry, we need an

invariant. This concept makes sense for any equivalence, though we consider only isometry.
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Definition 3 (invariant and complete invariant). An isometry invariant I is a function on

periodic point sets from Definition 1 such that if any S,Q are isometric (denoted by S ≃ Q),

then I(S) = I(Q). An isometry invariant is called complete (or injective or separating) if

the converse holds for any periodic point sets, i.e. if I(S) = I(Q), then S ≃ Q. ▲

The centre of mass of a motif is not invariant because shifting a motif within a unit cell

moves the center of mass, so isometric crystals can have different values of any non-invariant.

Only an invariant descriptor can distinguish crystals under isometry because Definition 3

implies that if I(S) ̸= I(Q), then S ̸≃ Q. The motif size (number of points in a primitive

cell) and the primitive cell volume are isometry invariants but they are incomplete. Indeed,

all lattices have motifs of one point and many of them have the same volumes of primitive

cells despite being nonisometric. A complete invariant can be considered a DNA-style code

or a materials genome that uniquely identifies any periodic crystal under isometry in R3.

Standard (or conventional) settings19 for crystal representations were designed to be such

a complete invariant, which worked well in the 20th century while structural databases were

relatively small. In 2024, near-duplicates can be computer-generated in huge numbers and

all represented with very different cells and space groups despite being almost identical. The

perturbations of the hexagonal lattice in Fig. 3 can be similarly applied to any periodic

crystal. Indeed, arbitrarily extend a given cell of any crystal and slightly shift a single atom

within the initial cell, which makes the extended cell primitive. This discontinuity exists

even without extensions for only lattices,10 though examples become more complicated.

A rigorous way to quantify the closeness between near-duplicates is to use a continuous

metric, which is a distance function between invariant values of crystals, as defined below.

Definition 4 (distance metric). A metric on values of an invariant I of periodic point sets

(under isometry) is a function d satisfying the following axioms:

(a) coincidence : d(I(S), I(Q)) = 0 if and only if I(S) = I(Q);

(b) symmetry : d(I(S), I(Q)) = d(I(Q), I(S)) for any periodic point sets S,Q ⊂ Rn;

(c) triangle inequality : d(I(S), I(Q)) + d(I(Q), I(T )) ≥ d(I(S), I(T )) for any S,Q, T . ▲
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The first coincidence axiom in Definition 4 guarantees that d = 0 if and only if I(S) =

I(Q). Without this axiom, even the zero function d = 0 satisfies all other axioms. If the

triangle inequality is allowed to fail with any positive error, one can design a distance d such

that the k-means and DBSCAN algorithms output are predetermined20 and hence are not

trustworthy. Hence any clustering should use a distance d satisfying all metric axioms.

For the invariant I(S) equal to the primitive cell volume of S, the simplest metric is the

absolute difference |I(S)− (Q)|. One can similarly define a distance metric for the complete

invariant I consisting of a conventional representation C(S) including atoms at Wyckoff

positions in a reduced cell. All these cell-based metrics are discontinuous under almost any

perturbation and hence fail to detect the closeness of infinitely many near-duplicates.

A conventional representation C(S) can be used to detect an isometry S ≃ Q and define

a discrete metric such as d(C(S), C(Q)) =

 0 if C(S) = C(Q),

1 if C(S) ̸= C(Q),
but any such metric is

discontinuous. Detecting near-duplicates needs a stronger concept of continuity below.

Definition 5 (Lipschitz continuity). An invariant I of periodic point sets is called Lipschitz

continuous in a metric d if there is a constant λ > 0 such that if a periodic point set Q ⊂ Rn is

obtained from S by perturbing every point of S up to any fixed bound ε ≥ 0 in the Euclidean

distance, then the invariants of S,Q are close in the sense that d(I(S), I(Q)) ≤ λε. ▲

Definitions 3, 4, 5 help state the continuous classification problem in crystallography.

Problem 6 (continuous isometry classification). Find a complete, continuous and quickly

computable isometry invariant I of all periodic point sets in Rn. In detail, we need

(a) completeness : any periodic point sets are isometric (S ≃ Q) if and only if I(S) = I(Q);

(b) continuity : I has a Lipschitz continuous metric d in the sense of Definition 5;

(c) reconstruction : any S ⊂ Rn can be reconstructed (uniquely under isometry) from I(S);

(d) computability : for a fixed dimension n, the invariant I, the metric d, and a reconstruction

of any S ⊂ Rn from I(S) can be obtained in polynomial time of the motif size of S. ▲
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The equality I(S) = I(Q) between complete invariants is best checked as d(I(S), I(Q)) =

0 due to the coincidence axiom in Definition 4. The reconstruction in condition (c) is stronger

than the completeness in (a) because the invariant I might be too complicated and unsuitable

for inverse design of crystals. Conditions (a,b,c) in Problem 6 can be easily satisfied by

the abstract invariant I(S) = {all Q isometric to S}. The computability in condition (d)

makes Problem 6 practically meaningful because the invariant I can be used as geographic-

style coordinates on the space of isometry classes of all periodic crystals similar to a, b, c

parametrising the space of triangles in Fig. 1. Problem 6 is even harder for rigid motion.

The progress in continuous classifications of crystals

This section reviews the recent progress in solving Problem 6 for periodic point sets under

isometry, which can be replaced with any types of objects under any equivalence. One simple

extension is to allow compositions of rigid motion or isometry with uniform scaling in Rn.

The early statement of Problem 6 and a partial solution appeared for lattices21 in 2020.

Now Problem 6 is considered a crystallographic example of the general meta-problem in the

new area of Geometric Data Science. The ultimate goal is to continuously parametrise the

spaces of equivalence classes of data objects on a geographic-style map to visualise structure-

property relations and enable an inverse design of new objects by rational exploration.

If our objects are finite sets of unordered points (say, atoms of a molecule) under isometry,

Fig. 1 illustrates the full solution for m = 3 points but the problem for m > 3 was solved

relatively recently: for nonsingular sets22 in 2004 and completely23 in 2023. An analogy is the

human genome and DNA, whose structure is known24 and is considered complete in practice,

at least for identifying humans in court trials, though identical twins exist. However, a living

organism cannot be easily reconstructed from its DNA yet. So an efficient reconstruction of

a periodic set in Problem 6(c) is more challenging than completeness.

For all lattices Λ ⊂ R2, Problem 6 was solved10 in 2022 (also under rigid motion) by
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the complete root invariant RI(Λ) with two slight deviations. First, the extra realizability

condition explicitly described what values of RI(Λ) can be realised by lattices. Second, if

the bound ε on point perturbations is smaller than the minimum quarter-distance between

lattice points, one can prove25 that the perturbed lattice is a translate of the original one,

which easily implies condition (b) in Problem 6. If we perturb not points as in Problem 6(b)

but coordinates of basis vectors of Λ up to ε, the root invariant RI(Λ) changes up to
√
6lε in

the Euclidean metric, where l is the maximum length of basis vectors. The stronger Lipschitz

continuity (with λε instead of
√
6lε) seems unrealistic because the rectangular lattices with

the ε-close bases (l, 0), (0, ε) and (l, 0), (0, 2ε) can substantially differ even by unit cell areas lε

and 2lε whose difference lε can be arbitrarily large if l has no upper bound. For all lattices

Λ ⊂ R3, conditions (a,c) in Problem 6 hold for the more complicated invariant26 whose

continuity is being finalised, based on five Voronoi types27 instead of 14 Bravais classes.28

For general periodic point sets from Definition 1, a strong continuous invariant (the

density fingerprint25) was obtained by extending the point density to k-fold intersections of

balls of a variable radius centred at given points. This density fingerprint was proved to

be complete for nonsingular periodic point sets (in a general position achieved by almost

any perturbation) and Lipschitz continuous in R3, also computable in polynomial time29

in dimensions 2 and 3, but its underlying metric so far has only an approximate algorithm.

Later the density fingerprint was shown to be incomplete30,31 even in dimension 1 for singular

periodic sequences, which were distinguished by the invariants in Definition 7 below.

Definition 7 describes much simpler invariants whose slight modifications will be used as

geographic-style coordinates on continuous maps of the CSD in the next section.

Definition 7 (distance-based invariants PDD). Let M ⊂ U be a motif of m points in a (not

necessarily primitive) unit cell of any periodic point set S ⊂ Rn. Fix an integer k ≥ 1.

(a) For each point p ∈ M , the m × k matrix D(S; k) has one row of k distances d1(p) ≤

· · · ≤ dk(p) to the k nearest neighbours of p in the full set S not restricted to any cell or a

ball of a cut-off radius. If any l > 1 rows of D(S; k) coincide, collapse them into a single
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row and assign the weight l/m. The resulting matrix with the extra first column of weights

is called the Pointwise Distance Distribution 32 PDD(S; k). The Average Minimum Distance

AMDk(S) is the weighted average of the distances to the k-th neighbours, see Fig. 4.

Figure 4: Distances to k nearest neighbours in a periodic point set. The lexicographic order
is for convenience. The PDD matrices in Definition 7 are compared with unordered rows.

(b) Let Vn be the volume of the unit ball in Rn. The Point Packing Coefficient PPC(S) =

n

√
vol(U)

mVn

is the average volume per point, measured in original units such as angstroms.

(c) The Average Deviation from Asymptotic ADAk(S) = AMDk − PPC(S) n
√
k has original

units. The Normalised Deviation from Asymptotic NDAk(S) =
ADAk(S)

PPC(S)
is unitless. ▲

Fig. 4 illustrates the PDD computation and highlights the fact that all k neighbours

are not restricted to a finite subset whose change may disrupt the output. For any k ≥ 1,

AMDk(S) is the weighted average of the (k + 1)-st column of PDD(S; k) with the weights

from the extra first column, e.g. AMD1(S) is the average distance to the first neighbour.

Increasing k only adds more columns of distances to PDD without changing the previous

distances. Hence k is considered not a usual parameter that can substantially affect the result

but as a degree of approximation similar to the number of decimal places on a calculator.

The Point Packing Coefficient PPC(S) = n

√
vol(U)

mVn

measures (the n-th root of) the unit

cell volume per point normalised by the unit ball volume Vn. Roughly speaking, PPC(S)
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inversely proportional to the density of points. Theorem 13 in the AMD paper33 proved that

the curve of values AMDk(S) approaches PPC(S)
n
√
k as k → +∞. Hence the limit behaviour

of AMDk(S) is largely determined by density and there is no need to substantially increase k

because the most descriptive information is contained in smaller atomic environments. This

asymptotic motivated the modified invariant ADAk(S) in new Definition 7(c). If a periodic

point set S ⊂ Rn is uniformly scaled by a factor u > 0, all interpoint distances and hence

AMDk(S) and PPC(S) are multiplied by u, which leaves NDAk(S) invariant.

If we collect all distances from PDD(S; k) into a single distribution, we get a raw version

of the Pair Distribution Function (PDF) as a discrete set of all (infinitely many) interatomic

distances. This discrete set can discontinuously change under perturbation when two equal

distances become slightly different. In the past, this discontinuity was addressed by taking a

convolution with a Gaussian kernel, which converts the discrete PDF into a smooth function.

The AMD and PDD invariants resolve this discontinuity at the level of discrete invariants

by using Earth Mover’s Distance without an extra Gaussian deviation parameter.

Writing all distances per point in the Pointwise Distance Distribution makes PDD(S; k)

stronger than PDF, see Example 3.3 in the PDD paper.32 The parameter-dependent smooth-

ing of the raw PDF was introduced to guarantee the continuity under perturbations as in

Fig. 3 when equal distances to neighbours become distinct. For automated comparisons,

the smoothed PDF is often uniformly sampled, which creates the counter-intuitive pipeline:

a discrete set S → smoothed PDF → discretely sampled PDF. To avoid this unnecessary

smoothing, PDD matrices can be continuously compared in a parameter-free way.

Consider PDD(S; k) a discrete probability distribution of unordered rows (vectors in Rk)

with weights whose sum is 1. The simplest metric on such distributions is the Earth Mover’s

Distance (EMD), which came from transportation theory34 and has been already applied

to comparing chemical compositions,35 see Definition 4.1 in the PDD paper.32 Briefly, the

EMD optimally transforms the rows of one PDD matrix into the rows of another PDD.

Fig. 5 illustrates the EMD computation when we perturb the unit square lattice S to S ′
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Figure 5: Under a small perturbation by ε = 0.1, the unit cell quadruples but all interpoint
distances change by at most 2ε = 0.2, which is averaged by EMD to a value under 2ε.

by moving both points in every other pair vertically by 0.1 away from each other. As a result,

all interpoint distances remain in the range [0.8, 1.2]. The only reasonable way to transform

the 1-row PDD(S; 4) into the 2-row PDD(S ′; 4) is to split the single row of PDD(S; 4) into

two halves, which are compared with the two rows of PDD(S ′; 4) by (say) the L∞ metric

measuring the maximum absolute deviation of corresponding coordinates. Then EMD takes

the weighted average of the two L∞ metrics from the row comparisons. Theorem 4.3 in the

PDD paper32 proved the Lipschitz continuity of PDD(S; k) in EMD with constant λ = 2.

More complicated atom-centred descriptors involving angles and higher order atom in-

teractions use a cut-off radius and an order of points for angles that may not guarantee the

invariance under permutations or completeness when near-duplicates can coincide on a large

bounded domain as in Fig. 3. Fig. 5 explains how the discontinuity is resolved by using only

interpoint distances. If a point p has two or more neighbours at the same distance then,

after a small perturbation, a cut-off ball can include any of them, which can discontinuously

affect a finite cluster of points but the k smallest distances always change continuously.

The approach through bounded clusters led to the isoset invariant,36 which was proved

to be complete for all periodic point sets including singular ones in any Euclidean space Rn.

The Lipschitz continuous metric on isosets is approximated with a proved error factor.37
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The strongest theoretical result is the generic completeness and reconstructability for

PDD(S; k) combined with a lattice of S. Theorem 4.4 in the PDD paper32 proved that any

periodic point set S ⊂ Rn in a general position (outside a singular subspace of measure 0)

can be reconstructed uniquely under isometry from a lattice of S, which can be given by

complete invariants10,26 in dimensions n ≤ 3, and PDD(S; k), where k should be large enough

to include all distances up to 2R(S). Here the covering radius R(S) is the minimum radius of

balls that are centred at all points of S and cover the full ambient space Rn. Theorem 5.1 in

the PDD paper32 proved that, for a fixed dimension n, the computational time of PDD(S; k)

depends only near-linearly on the motif size m and the number k of neighbours. The AMD

and PDD invariants improved material property predictions38–40 on some datasets.

The latest implementation of PDD(S; 100) can compare all (more than 830 thousand)

periodic crystals from the CSD (with no disorder and full geometric data) through more

than 345 billion comparisons in under one hour on a modest desktop. This ultra-fast speed

allows us to visualise the CSD in the invariant coordinates on a laptop in real time.

The Crystal Isometry Principle inspired by R. Feynman

Definition 2 of a crystal structure as an equivalence class under rigid motion or (slightly

weaker) isometry implies that all crystal structures can be studied within a common contin-

uous space of periodic structures. Indeed, ignoring all atomic attributes maps any crystal

structure to a periodic structure consisting of only zero-sized points at all atomic centres.

Any slightly nonisometric crystals as in Table 1 are represented by close points (isometry

classes) in the space of all isometry classes of periodic point sets, which is now called the

Crystal Isometry Space CRIS(R3). All periodic sets with at most m points in a unit cell form

a 3m-dimensional subspace CRIS(R3;m). Here 3m is the number of fractional coordinates

of m points, while 6 parameters of a unit cell are counter-balanced by 6-parameter isometries

in R3.
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Is it possible that we lose some information when ignoring atomic attributes? The first

temptation is to keep at least all chemical elements. Traditional chemistry explored this path

for centuries by separately studying organic vs inorganic compounds, and smaller subclasses

(intermetallic, semiconductors, perovskites) to a level of a single composition.

However, fixing chemical elements breaks the continuous space CRIS(R3) into many

thousands of isolated pieces, one for each composition. These disjoint pieces can contain

very different structures such as diamond and graphite, which does not help distinguish

polymorphs that have the same composition but nonequivalent crystal structures.

The AMD33 and PDD32 papers reported several pairs of (near-)duplicates where all

numerical parameters in the CIFs were equal with almost all digits but one atom was replaced

with a different one. For example, the CSD entries HIFCAB41 and JEPLIA42 essentially

differ only by replacing Cd with Mn at the same position without any other changes in

the unit cell parameters or fractional coordinates. The integrity office at the Cambridge

Crystallographic Data Centre (CCDC) checked that their structure factors were also identical

and agreed that the found (near-)duplicates need a redetermination with better precision.

The all-vs-all comparisons of only periodic structures (without chemical attributes) for

the CSD by PDD(S; 100) implied that if real periodic crystals are not isometric, then their

periodic structures are not isometric. So ignoring atomic attributes loses no data, i.e. the

map {real crystal structures} → {periodic structures} is injective modulo isometry

for the CSD. This conclusion confirms our physical intuition that replacing one atom with a

different one should perturb distances to neighbours at least slightly. All-vs-all comparisons

are being finalised for other experimental databases such as COD,43 ICSD,44 and MP.45

The resulting Crystal Isometry Principle (CRISP) says that there should be no theoretical

obstacle to reconstructing atomic attributes such as chemical elements from a periodic set

of only atomic centres if their coordinates are determined with a high enough precision.

The CRISP is inspired by Richard Feynman’s visual hint in Fig. 1-7 of his first lecture

(atoms and motion) on physics,46 which showed that 7 cubic crystals differ by their only
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geometric parameter (the smallest interatomic distance) given up to 0.01Å. Comparing these

7 numbers was the Eureka moment for the last author in May 2021 and motivated us to

complete all-vs-all comparisons of real periodic crystals in the CSD only by their geometry.

The CRISP does not claim that any periodic set of points can be realised as a real crystal

because interatomic distances cannot be arbitrary. Hence Problem 6 can be strengthened by

adding the realisability condition requiring an explicit parametrisation of all values I(S) that

can be realised first by a periodic structure S and then by a real crystal. This realisability has

been achieved for lattices in dimensions two10 and three.26 In the finite case, any numbers

0 < a ≤ b ≤ c are realisable as distances between m = 3 points in Rn if and only if c ≤ a+ b.

However, six interpoint distances between any four points in R2 satisfy a complicated

polynomial equation saying that the tetrahedron on these four points has volume 0 and

hence cannot be easily sampled. For example, six interpoint distances 1 satisfy all triangle

inequalities and are realizable by an equidistant tetrahedron but not by four points in R2.

Because the PDD invariants quickly distinguished all real periodic crystals, any such

crystal already has a uniquely defined location in the continuous space CRIS(R3). So the

CSD can be considered a very big and important discrete subset of CRIS(R3). Any newly

discovered periodic crystal will appear at a new place of CRIS(R3) without disturbing all

known ones.

Continuous geographic-style maps of the CSD

This section presents the first maps of the CSD as a subset in the Crystal Isometry Space

CRIS(R3) in pairs of invariant coordinates. Big datasets of simulated crystals were often

visualised as a structure-energy landscape, which was a scatter plot with two coordinates

(density and energy), so the structure was represented by a single invariant. We complement

this physical density (g/cm3) by the Point Packing Coefficient PPC(S) in Definition 7(b).

Fig. 6 shows that the physical density and PPC(S) differ. A periodic crystal S with a
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unit cell U containing atoms whose total mass is mass(U) has the physical density

ρ(S) =
mass(U)

vol(U)
=

1

Vn

mass(U)

m

mVn

vol(U)
=

ATM(S)

Vn

PPCn(S), where ATM(S) =
mass(U)

m

is the average atomic mass (invariant of a chemical composition) of S. If we fix a chemical

composition of S for n = 3, so ATM(S) and V3 =
4

3
π are fixed, then ρ(S) is inversely

proportional to PPC−3(S), which is confirmed by all carbon allotropes (crystals consisting

of pure carbon) whose points (ρ(S),PPC(S)) lie on a cubic hyperbola in Fig. 6.

We zoomed in the central part of all images and excluded outliers beyond the visible

ranges, e.g. all crystals with physical densities higher than 4.5 g/cm3 are removed in Fig. 6.

Figure 6: Scatter plot of 208 carbon allotropes over the whole CSD heatmap. The lower dense
arc represents compositions H2CO, H5C2NO2, H6C3NO3 with close values of the average
atomic mass ATM(S). We zoomed on the densest part in the scatter plot in Fig. 7.

The scatter plot in Fig. 7 further zooms the highest density (black) region from Fig. 6.

All maps were produced by our Crystal Geomaps app, which already covers the well-
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Figure 7: Scatter plot of the densest region in the CSD heatmap from Fig. 6 shows how the

physical density ρ(S) =
3

4π

ATM(S)

PPC3(S)
depends on the Point Packing Coefficient PPC(S).

known databases CSD, COD, ICSD, MP, GNoME, and we can include your data by request.

The app is not yet public due to the ongoing IP commercialisation discussions with the

CCDC. We are also open to collaboration with other partners in industry and academia.

The supporting information of this paper contains more maps produced by the Crystal

Geomaps app, which allows one to interactively explore the major databases (CSD, COD,

ICSD, MP, GNoME), individual CIFs or user-uploaded datasets of simulated crystals.

Because the average distance AMDk to the k-th neighbour increases with respect to k,

the maps with coordinates x, y from the list AMD1 ≤ AMD2 ≤ AMD3 ≤ . . . are restricted

to the half-plane x ≤ y. To avoid this artificial restriction, we subtracted the limit curve

PPC(S) 3
√
k from AMDk(S) to get the less restrictive invariants ADAk(S) in Definition 7(c).

Fig. 10 shows that projections of the CSD to the pairs of invariant coordinates (ρ,PPC)

and (ADA1,ADA2) are very different and hence represent different structural data.

Some intermetallic compounds can have close geometries and might appear close neigh-
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Figure 8: The clusters separated by a gap of AMD1 ∈ [1.2, 1.3] are explained by the presence
and absence of hydrogens that make AMD1 smaller and larger, respectively, see Fig. 9.

Figure 9: After removing hydrogens, the CSD becomes one large cluster, see Fig. 8 in the
same coordinates (ρ,AMD1). All dark spots represent groups of many (near-)duplicates.

bours in the space CRIS(R3) but we conjecture that all of them can be distinguished if we

know the atomic coordinates precisely enough under the same ambient conditions as always.
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Figure 10: CSD heatmap in the new coordinates PPC,ADA1,ADA2 and ADA3.
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Conclusions: explore a continuous universe of crystals

When Olga Kennard established the Cambridge Structural Database (CSD) nearly 60 years

ago, the crystallographic world was much smaller both in terms of people and crystals. Today,

crystals are determined by many more methods and produced by artificial tools,47 alongside

‘paper mills’48 claiming new materials without sufficient evidence.49 The integrity of major

databases50 including the CSD6 can now be validated by AMD33 and PDD invariants.32

Fig. 3 illustrated how tiny perturbations can disguise any periodic crystal by making

any extended cell primitive and pushing any symmetry down to the translation group P1.

Because these changes can only slightly affect interatomic distances, then replacing chemical

elements with similar ones may not raise any alarm. In November 2023, Google published11

the GNoME database of 384,398 CIFs that were claimed to be ‘stable’ materials generated

through DFT computations. All-vs-all comparisons will be discussed in another work but

anyone right now can check that the four CIFs with IDs 4135ff7bc7, 6370e8cf86, c6afea2d8e,

e1ea534c2c are identical texts. The GNoME contains 43 such triples, 1089 pairs, and many

more thousands of numerical duplicates12 that differ only by chemistry, not by geometry.

All images in this previous section are similar to usual geographic maps because they

are deterministic projections of the infinite-dimensional Crystal Isometry Space CRIS(R3)

to pairs of coordinates that are invariant under isometry and rigid motion. All these coor-

dinates have analytic definitions and physically meaningful units such as Angstroms. This

interpretability is a key advantage of the new maps in comparison with the past approaches.

For example, many algorithms of dimensionality reduction such as t-SNE51 and UMAP52

are stochastic so that they can produce different outputs by running at different times and

on other computers. Even the deterministic algorithms such as regression53 and PCA54 have

data-dependent coordinates and can be discontinuously affected by noise. In 2016, mathe-

maticians proved55 that any function Rm → Rn for all m > n (reducing the dimension from

m to n) is either discontinuous (makes close points distant) or collapses an unbounded region
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to one point (loses an infinite amount of data) similar to the projection (x, y) 7→ x.

This ‘no-free-lunch’ result implies that a similarity analysis for any high-dimensional data

can be justified only by distance metrics in the original high-dimensional space, e.g. by Earth

Mover’s Distance (EMD) on invariants PDD(S; k) with k up to 100, while low-dimensional

projections help visualise data but cannot confirm that any given objects are close.

All crystals whose simplest invariants fall into a single pixel in the maps of Figures 8 and

9, can be visualised with further invariant coordinates ADA2(S),ADA3(S) and so on. This

gradual expansion (or zooming in) guarantees that all crystals eventually become distinct

because the vector AMD(S; 100) distinguished all periodic crystals in the CSD.

Because all maps used only two of many available invariants, we cannot claim that crystals

at close positions such as (PPC(S),ADA1(S)) are always similar. However, these invariants

quickly filter out dissimilar crystals so that if S,Q have distant values of ADAk(S), then S,Q

can not be made identical by a small perturbation of atoms. Due to the Lipschitz continuity,

any value of Earth Mover’s Distance δ = EMD(PDD(S; k),PDD(Q; k)) > 0 means that we

need to shift all atoms by at least by δ/2 on average to fully match the crystals S,Q.

In conclusion, we motivated studying periodic crystals under much stronger equivalences

(rigid motion and isometry) that distinguish many crystals that were previously considered

similar or isostructural as in Table 1. In the 20th century, the symmetries importantly helped

to determine many 3-dimensional structures from their diffraction patterns, especially for

highly symmetric crystals. In 2024, the ultrafast PDD invariants allowed us to move beyond

the 230 space groups in R3 toward the continuous universe containing all known periodic

crystals (already visible ‘stars’ on our maps) and also all not yet synthesised ones.

Visualising important properties such as energy as mountainous landscapes on these maps

will help distinguish between shallow local minima and more stable materials in deeper

‘wells’ surrounded by energy barriers. Now all crystal structures at least in the CSD are

fully discriminated by a series of Lipschitz continuous PDD invariants. This solution of the

discriminative problem justifies a generative approach to explore new PDD matrices, which

23



are always guaranteed to be realisable by at most one real crystal whose properties are

unique. Further work will continuously quantify the novelty of any newly discovered crystal

by a distance metric to its closest structural neighbour across all experimental databases.

The Crystal Isometry Principle and underlying invariants were presented at the IUCr

congresses 2021 and 2023, European Crystallographic Meeting 2022, British Crystallographic

Association meetings 2022-2024, MACSMIN 2021-2023 (Mathematics and Computer Science

for Materials Innovation), SIAMMathematical Aspects of Materials Science conferences 2021

and 2024, and many MIF++ seminars at the Materials Innovation Factory in Liverpool, UK.

This work was supported by the second author’s Royal Academy of Engineering Fellow-

ship ‘Data Science for Next Generation Engineering of Solid Crystalline Materials’ at the

Cambridge Crystallographic Data Centre (IF2122/186), the EPSRC New Horizons grant ‘In-

verse design of periodic crystals’ (EP/X018474/1), and the Royal Society APEX fellowship

‘New geometric methods for mapping the space of periodic crystals’ (APX/R1/231152).

The supplementary information describes the functionality of the Crystal Geomaps app

and continuous maps of some CSD subsets of crystals with specific chemical compositions.
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Supporting information with continuous maps of some CSD subsets

Fig. 11 shows two parts of the interactive menu in the Crystal Geomaps app. Hovering

the mouse over any pixel in a heatmap shows the coordinates x, y and the number of crystals

at this position (x, y). Hovering the mouse over any dot (x, y) in a scatter plot shows the

database reference, composition, and space group number of the crystal at (x, y).

Figure 11: The images on the left and right show two parts of a user menu with choices for
coordinates (density, PPC, ADAk, NDAk) and display options. A scatter plot represents any
crystal from a selected subset by an individual dot and can also be plotted over a density
heatmap of chosen databases. A subset can be selected by chemical elements, space groups,
e.g. 195-230 for the cubic crystal system, or database reference names.

Fig. 11 implies that the total number of ideal periodic crystals (with no disorder) in the

four major databases is more than 1,433,000, though many of them are (near-)duplicates

often deposited from the same publication. These overlaps between different databases will

be analysed in another work. The displayed number of crystals is slightly smaller because

some outliers are outside the visible ranges that can be adjusted by the slider “Axis bounds”.

Other sliders control sizes of dots and pixels. In any scatter plot, all crystal dots can be

coloured by a database name, 7 crystal systems, 230 space groups and invariant values.
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Figure 12: Top: the densest rectangular region of 44102 crystals from the CSD in the
coordinates (ρ,PPC). Bottom: the same subset is differently projected to (ADA1,ADA2).
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Figure 13: 1453 crystals containing carbon and sulfur, all coloured by their crystal systems.
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Figure 14: Top: the scatter plot of 208 carbon allotropes in the CSD. Bottom: the scatter
plot of 345 carbohydrates in the CSD, all coloured by their crystal systems.
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Figure 15: 86 crystals of ACSALA (aspirin) and HXACAN (paracetamol) in the CSD.
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Figure 16: 28 crystals containing only C, O, H, N, all coloured by CSD refcode families.
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