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Abstract

With the advent of self-driving labs promising to synthesize large numbers of new
materials, new automated tools are required for checking potential duplicates in
existing structural databases before a material can be claimed as novel. To avoid
duplication, we rigorously define the novelty metric of any periodic material as
the smallest distance to its nearest neighbor among already known materials.

Using ultra-fast structural invariants, all such nearest neighbors can be found
within seconds on a typical computer even if a given crystal is disguised by
changing a unit cell, perturbing atoms, or replacing chemical elements. This
real-time novelty check is demonstrated by finding near-duplicates of the 43 mate-
rials produced by Berkeley’s A-lab in the world’s largest collections of inorganic
structures, the Inorganic Crystal Structure Database and the Materials Project.

To help future self-driving labs successfully identify novel materials, we propose
navigation maps of the materials space where any new structure can be quickly
located by its invariant descriptors similar to a geographic location on Earth.

Keywords: materials space, crystal structure, isometry invariant, continuous metric

1 Introduction: how is the materials space defined?

The chemical space of all possible molecules is often estimated at the scale of 1060 [1].
Similar numbers are quoted for potential materials, though many polymorphs such as
diamond and graphite have the same chemical composition and hence can only be dis-
tinguished by their geometry. When materials are claimed to be novel amongst already
known ones, we need to rigorously define what constitutes two materials being the
“same or different” [2]. The definition of a crystal structure was finalized in the peri-
odic case in [3], so we focus on ideal periodic crystals (briefly, crystals) as formalized
below. When a material is disordered, we consider its closest periodic analogue.

A crystal is usually given by a basis of vectors v1,v2,v3 in Euclidean space R3

and a motif of atoms with chemical elements and fractional coordinates in this basis.
If we forget about chemical elements, the atomic centers p1, . . . , pm can be considered
zero-sized points in the primitive unit cell U = {t1v1 + t2v2 + t3v3 | t1, t2, t3 ∈ [0, 1)}
defined by the basis v1,v2,v3. In dimension 2, the second picture of Fig. 1 highlights
the square cell U with the orthonormal basis v1,v2. Then the underlying periodic
point set of any crystal consists of infinitely many points pi + c1v1 + c2v2 + c3v3 for
i = 1, . . . ,m and integer coefficients c1, c2, c3 ∈ Z. Infinitely many different pairs of a
basis (or a primitive cell) and a motif M generate pointwise identical crystals, see a
detailed discussion of this ambiguity of the traditional definition in [3, section 2].

1



059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Fig. 1 Almost any tiny perturbation discontinuously scales up a primitive cell and makes unreliable
any comparison based on cells or motifs. This discontinuity was resolved without relying on cells [4].

Since atoms always vibrate [5, chapter 1], their fractional coordinates are always
uncertain and will slightly deviate under repeated measurements even on the same
instrument. Almost any displacement of one atom breaks the symmetry and can arbi-
trarily scale up a primitive unit cell as in Fig. 1. This discontinuity of a reduced cell
[6] was experimentally reported in 1965 [7, p. 80] and remained unresolved until 2022
[4] when all periodic crystals in the Cambridge Structural Database (CSD) [8] were
distinguished within two days (now within an hour) on a modest desktop computer.
Several unexpected duplicates with identical geometries (almost to the last decimal
place in all cell parameters and atomic coordinates) but with different chemistry are
under investigation by five journals for data integrity [9, section 6].

Since crystal structures are determined in a rigid form, there is no sense in
distinguishing crystal representations related by a rigid motion (a composition of
translations and rotations in R3), which change a basis and atomic coordinates. On
the other hand, there is no sense to fix any threshold ε > 0 that would allow us to call
crystals the “same” if all their atomic centers (without chemical attributes) can be
matched up to ε-perturbations. Indeed, any periodic point sets can be connected by
sufficiently many ε-perturbations [9, Proposition 2.10], which makes the classification
based on any threshold ε > 0 trivial due to the transitivity axiom saying that if S is
equivalent to Q, and Q is equivalent to T , then S is equivalent to T [3, section 1].

Hence a rigorous way to classify crystals under rigid motion, is to define the crystal
structure as a rigid class of periodic point sets, see [3, Definition 6]. Then any devi-
ations of atomic positions are not ignored but continuously quantified by a distance
metric between different rigid classes. This definition would remain impractical unless
we can efficiently separate rigid classes by quickly computable invariants that are
numerical properties preserved under rigid motion. The chemical composition written
as percentages of chemical elements is such an invariant but is incomplete because
many polymorphs have the same composition but can not be matched by rigid motion.

In the sequel, we will consider the sightly weaker equivalence of isometry (any
distance-preserving transformation in R3), which is a composition of rigid motion
and mirror reflections. Since mirror images can be distinguished by a suitable sign of
orientation, the main difficulty is to classify periodic point sets under isometry.

When comparing crystals as periodic sets of atomic centers without chemical
attributes, it might seem that all chemistry is lost. However, the fact that all (more
than 850 thousand) periodic crystals in the CSD (apart from the investigated dupli-
cates) can be distinguished by isometry invariants in section 2 implies that no
information is lost so that all chemistry under standard conditions such as temperature
and pressure is in principle reconstructable from sufficiently precise atomic geometry.

This Crystal Isometry Principle (CRISP) first appeared in 2022 [9, section 7] and
was inspired by Richard Feynman’s hint in Fig.1-7 [5, chapter 1], which distinguished 7
cubic crystals by their cube size in the first lecture “Atoms in motion”, see Fig. 2 (left).

More importantly, when we consider atoms only as zero-sized points, we can study
all periodic structures in a common space similar to the periodic table of all elements.

In the geographic analogy, the chemical composition can be compared to the alti-
tude (the height above the sea level) of any location on Earth. If our geographic
map is precise enough, we can determine the average temperature or any other prop-
erty at every location. If we know the altitude (chemical composition) in addition to
geographic coordinates (structural invariants), the property prediction will be easier.
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Definition 1 (space of periodic materials). The Crystal Isometry Space CRIS(R3) is
the space of isometry classes of all periodic sets of points without atomic attributes.

Fig. 2 Left: the Crystal Isometry Principle says that all chemistry of any real periodic crystal under
standard ambient conditions can be reconstructed from (the isometry class of) the periodic set of
atomic centers given with precisely enough coordinates [4]. Right: most optimization methods output
local optima without exploring the space around. De-fogging this Crystal Isometry Space CRIS(R3)
beyond known or predicted materials will enable a proper navigation across the crystal universe.

Since (the isometry class of) any periodic point set has a unique location in
CRIS(R3), all known materials can be considered ‘visible stars’ in this continuous
universe. Any periodic crystal discovered in the future will appear at a new unique
location like a ‘new star’, while all past crystals remain at the same locations. Until
recently, optimizing complicated energy functions blindly climbed as a mountaineer to
a high peak, illustrated in Fig. 2 (right), and stopping at many (approximations to)
isolated peaks without even any reliable method to continuously measure distances
between these peaks, while the remaining landscape was covered by clouds. Our vision
is to map the full space CRIS(R3) to enable a non-blind discovery of materials [10].

If we do not restrict the motif size, the space CRIS is infinitely dimensional. How-
ever, if we consider all periodic sets with m points in a motif, the resulting subspace
CRIS(R3;m) has dimension 3m+3 due to m triples x, y, z of atomic coordinates and
6 parameters of a unit cell, of which 3 are neutralized by translations along basis vec-
tors. Alternatively, we can define a unit cell by 3 basis vectors with 3 coordinates, of
which 6 are neutralized by 3+3 parameters of translations and rotations in R3.

In the partial case m = 1, CRIS(R3; 1) is a continuous 6-dimensional space of 3D
lattices, which was previously cut in 14 disjoint subspaces of Bravais classes [11] but
is now parametrized by complete invariants [12, 13]. Continuous maps of the simpler
3-dimensional space CRIS(R2; 1) of 2D lattices recently appeared in [14], [15], [16].

The full space CRIS(R3) = ∪+∞
m=1CRIS(R3;m) is a union of infinitely many sub-

spaces for m = 1, 2, 3, . . . such that any periodic set with m points in a cell is
infinitesimally close to infinitely many subspaces of sets with 2m, 3m, . . . points in a
primitive cell. Indeed, perturbations in Fig. 1 arbitrarily extend any given cell and
make the extended cell primitive by a tiny displacement of any atom and all its
translational copies. Crystals should be continuously compared only across multiple
subspaces, not within one subspace CRIS(R3;m) for a fixed number m of atoms. Any
database of periodic crystals is a finite sample from the continuous space CRIS(R3).

The first contribution of this work is the local novelty distance based on generically
complete invariants, which identify closest neighbors of the 43 A-lab crystals in the
Inorganic Crystal Structure Database (ICSD) [17] and Materials Project (MP) [18]
within seconds on a desktop computer. The second contribution is the geographic-style
maps showing how the ICSD and MP populate CRIS(R3) in invariant coordinates.

2 Methods: invariant-based novelty distance metric

This section introduces a new metric LND (Local Novelty Distance) that satisfies
all metric axioms and continuously quantifies in real time a deviation of any newly
synthesized crystal from its nearest neighbor in an existing structural database.
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2.1 Generically complete and continuous structural invariants

Definition 2 reminds us of the Pointwise Distance Distribution (PDD), which suffices
together with a lattice to reconstruct any generic periodic point set S ⊂ R3 up to
isometry by [4, Theorem 4.4] and [19, Theorem 5.8]. Generic means any set apart from
a singular subspace of measure 0, e.g. almost any noise makes every crystal generic.

The PDD is a matrix of inter-point distances and is stronger than the Pair Dis-
tribution Function (PDF) [20] in the sense that PDD can be simplified to PDF but
distinguishes homometric structures [21] that have the same PDF [4, section 3].

Definition 2 (isometry invariant PDD(S; k)). Let S ⊂ Rn be a periodic point set
with a motif M = {p1, . . . , pm}. Fix an integer k ≥ 1. For every point pi ∈ M , let
d1(p) ≤ · · · ≤ dk(p) be the distances from p to its k nearest neighbors within the full
infinite set S not restricted to any cell. The matrix D(S; k) has m rows consisting
of the distances d1(pi), . . . , dk(pi) for i = 1, . . . ,m. If any l ≥ 1 rows are identical to
each other, we collapse them into a single row and assign the weight l/m to this row.
The resulting matrix of maximum m rows and k+1 columns including the extra (say,
0-th) column of weights is called the Pointwise Distance Distribution PDD(S; k).

In Definition 2, any point pi ∈ M can have several different neighbors at the same
distance but the k smallest distances (without any indices or types of neighbors) are
always well-defined. The matrix PDD(S; k) has ordered columns (according to the
index of neighbors) but unordered rows because points of a motif of S are unordered.
The appendix computes a weighted PDD with atomic masses as extra weights of
rows in PDD(S; k). Using only on atomic centers detects duplicates where chemical
elements were artificially replaced without changing geometry, see [3, Table 1].

If the number k of neighbors increases to infinity, the asymptotic behavior of
distances to neighbors is described in terms of the Point Packing Coefficient below.

Definition 3 (Point Packing Coefficient PPC). Let S ⊂ R3 be a periodic point set

with m atoms in a unit cell U . The Point Packing Coefficient is PPC(S) = 3

√
vol(U)

mV3
,

where vol(U) is the volume of U , V3 =
4

3
π is the volume of the unit ball in R3.

The distances in each row of PDD(S; k) asymptotically increase as PPC(S) 3
√
k by

[9, Theorem 13]. This asymptotic behavior motivates the simplified invariants below.

Definition 4 (invariants AMD, ADA, PDA). The Average Minimum Distance
AMDk(S) is the weighted average of the k-th column of PDD(S; k). The Average Devi-
ation from Asymptotic is ADAk(S) = AMDk(S)−PPC(S) 3

√
k for k ≥ 1. The Pointwise

Deviation from Asymptotic is the matrix PDA(S; k) obtained from PDD(S; k) by
subtracting PPC(S) 3

√
k from any distance in row i and column k for i, k ≥ 1.

Fig. 3 The average invariants AMDk and ADAk from Definition 4 for k = 1, . . . , 25 and five simple
crystals from the Materials Project, see more details and perovskite examples in the appendix.

The invariants AMDk and ADAk form vectors of length k, e.g. set AMD(S; k) =
(AMD1(S), . . . ,AMDk(S)) and ADA(S; k) = (ADA1(S), . . . ,ADAk(S)). These vec-
tors can be compared by many metrics. The metric L∞(u, v) = max

i=1,...,k
|ui − vi| for

any vectors u,v ∈ Rk preserves the intuition of atomic displacements in the fol-
lowing sense. If S is obtained from Q by perturbing every point up to a small ε,
then L∞(AMD(S; k),AMD(Q; k)) ≤ 2ε by [9, Theorem 9]. Other distances such as
Euclidean can be considered but will accumulate a larger deviation depending on k.
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All invariants above and metrics on them are measured in the same units as original
coordinates, i.e. in Angstroms for crystals given by Crystallographic Information Files
(CIFs). The Point Packing Coefficient PPC(S) was defined as the cube root of the
cell volume per atom (of the same radius 1Å) and can be interpreted as an average
radius of balls ‘packed’ in a unit cell. So PPC(S) is roughly inverse proportional to
the physical density but they are exactly related only when materials have the same
average atomic mass (total mass of atoms in a unit cell divided by the cell volume).

While AMDk(S) monotonically increases in k, the invariants ADAk(S) can be
positive or negative as deviations around the asymptotic PPC(S) 3

√
k. Fig. 4 reveals

geometric differences between the mainly organic databases CSD and Crystallography
Open Database (COD) [22] versus the more inorganic collections ICSD and MP.

Fig. 4 The averages of ADAk and standard deviations (1 sigma shaded) vs
3
√
k for four databases.

The first average of ADA1 ∈ [−0.25,−0.17] in the top images of Fig. 4 can be
explained by the presence of many hydrogen atoms, which have distances smaller
than PPC(S) to their first neighbor in most organic materials. Indeed, hydrogens are
usually bonded at distances less than 1.2Å, while PPC(S) is often larger than 1.2Å
because most chemical elements have van der Waals radii above 1.2Å [23].

For inorganic materials, metal atoms or ions have relatively large distances to their
first neighbors, so the average ADA1 is in [0.58, 0.62] in the bottom images of Fig. 4.

If we increase k, the matrix PDD(S; k) and hence the vector ADA(S; k) become
longer by including distance data to further neighbors but all initial values remain
the same. Hence we consider k not as a parameter that changes the output but as a
degree of approximation similarly to the number of decimal places on a calculator.

The experimental convergence ADAk → 0 as k → +∞ in Fig. 4justifies computing
the distance L∞ between ADA vectors up to a reasonable k. We use k = 100 because
all ADAk for k > 100 are close to 0 (the range of 1 sigma between ±0.2Å) in Fig. 4.

2.2 Novelty distance based on practically complete invariants

This subsection introduces the Local Novelty Distance LND(S;D) of a periodic crystal
S as a distance to the closest neighbor Q of S in a given dataset D. The LND will be
measured as a distance between PDA(S; k) and PDA(Q; k) for Q ∈ D.

We can compare PDD matrices that have the same number of columns and possibly
different numbers of rows by interpreting PDD(S; k) as a distribution of unordered
rows (or points in Rk) with weights or probabilities. Many similarities between discrete

5



291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

distributions such as the Cramer - von Mises distance and the Kullback - Leibler
(KL) divergence fail the axioms of a metric, which are prerequisites for convergence
guarantees. If the triangle axiom fails with any positive error, outputs of widely used
clustering algorithms such as k-means and DBSCAN may not be trustworthy [24].

Though the KL divergence can be symmetrized to the Jensen-Shannon divergence
whose square root becomes a metric [25], these divergences work best for distributions
on the same finitely many discrete values, while PDD matrices of different crystals are
unlikely to share any common rows (points in Rk) consisting of k continuous distances.

We use the Earth Mover’s Distance (EMD) on PDDs, see Definition 7 in the
appendix because EMD is invariant under permutations of rows in PDDs and EMD
satisfies all metric axioms [26, Appendix]. The EMD can be extended to more com-
plicated Wasserstein metrics [27] but the simplest EMD behaves most nicely under
bounded noise, motivated by atomic vibrations. If any point is perturbed up to ε, any
inter-point distance (a value in PDD) can become smaller or larger but only up to 2ε,
which will allow us to prove the same upper bound 2ε for EMD in Theorem 6.

Definition 5 (Local Novelty Distance LND(S;D)). Let D be a finite dataset of
periodic point sets. Fix an integer k ≥ 1. For any periodic point set S, the Local Novelty
Distance LND(S;D) = min

Q∈D
EMD(PDA(S; k),PDA(Q; k)) is the shortest L∞-based

EMD distance from S to its nearest neighbor Q in the given crystal dataset D.

If S is already contained in the dataset D, then LND(S;D) = 0, so S cannot be
considered novel. Conversely, if LND(S;D) = 0 then S highly likely belongs to S,
because PDD(S; 100) distinguished all non-duplicate periodic crystals in the CSD.

Also, for a generic periodic set S (away from a measure 0 subspace), PDD(S; k)
with a big enough k and a lattice of S suffices to reconstruct S uniquely under isometry
in Rn by [4, Theorem 4.4]. LND(S;D) is based on PDAs instead of PDDs because
distances to k-th neighbors in PDD(S; k) asymptotically increase as PPC(S) 3

√
k by

[9, Theorem 4.4]. If crystals S,Q have PPC(S) ̸= PPC(Q), the distance L∞ between
rows of PDDs equals the largest absolute difference of i-th distances, which likely
happens for i = k. So subtracting PPC(S) 3

√
k in Definition 4 makes any metric on

PDAs more informative than on PDDs. If a newly synthesized periodic crystal S is
a near-duplicate of some known Q ∈ D, then LND(S;D) is small as justified below.
The packing radius r(Q) is the minimum half-distance between any points of Q.

Theorem 6. If S is obtained from a crystal Q in a dataset D by perturbing every
point of Q up to ε < r(Q), then LND(S;D) ≤ 2ε. To get S from a crystal Q ∈ D with
LND(S;D) < 2r(Q), some atom of Q should be perturbed by at least 0.5LND(S;D).

Theorem 6 is proved in Appendix A. The distance LND(S;D) is called local because
Definition 5 uses the first nearest neighbor of S in D. Another novelty of S can be
characterized with respect to a global distribution of all crystals in D, which we will
explore in a forthcoming work. The local novelty is more urgently needed to tackle the
growing crisis of duplication in experimental and simulated databases, some of which
were publicly rebutted in [28], [29], and [30], [3, Tables 1-2 in section 6], respectively.

2.3 Insufficiency of past invariants and similarities of crystals

This subsection briefly reviews the past approaches to classify crystals. Some widely
used similarities such as the Root Mean Square Deviation (RMSD) [31] deserve their
own detailed discussions in another forthcoming work. Conventional settings were
thoroughly developed to uniquely represent any periodic crystal in a reduced cell [32]
and can be theoretically considered complete under rigid motion but discontinuously
change under almost any perturbation of atoms in practice as shown in Fig. 1.

Indeed, perturbations in Fig. 1 apply to any crystal and can arbitrarily extend
a reduced cell to a larger cell whose size cannot be reduced. Searching for a small
perturbation (pseudo-symmetry) to make a cell smaller [33] inevitably uses thresholds
and leads to a trivial classification due to the transitivity axiom, see [3, section 1].
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The COMPACK algorithm [31] outputs an RMSD quantity by comparing finite
portions of only molecular crystals. Its implementation in Mercury also uses thresh-
olds for acceptable deviations of atoms and angles. Even if these thresholds are ignored
(made large), the algorithm chooses one molecule in a unit cell and 14 (by default) clos-
est molecules around it. The resulting molecular group depends on a central molecule.
Even for simple crystals based on a single molecule as is often the case in Crystal
Structure Prediction [34], the choice of 14 (or any other number of) neighbors can
be discontinuous when a central molecule has 14th and 15th neighbors at the same
distance. Selected clusters of molecules in two crystals require an optimal alignment,
which is a hard problem because atomic sets can contain numerous indistinguishable
atoms, so the optimization must consider many potential permutations. This prob-
lem of exponentially many permutations was resolved in [35] but a choice of a single
atomic environment in a periodic crystal remains discontinuous as shown in Fig. 1.

Other similarities based on all atomic environments such as SOAP [36] and MACE
[37] use a Gaussian deviation and a cut-off radius for interatomic interactions to con-
vert a periodic set of discrete points to a complicated smooth function. This function
decomposes into an infinite sum of spherical harmonics whose truncation up to a finite
order can become incomplete. Appendix A explains why the structure matcher from
pymatgen [38] can classify many near-duplicates as “unique crystal structures”.

The PXRD similarity compares crystals through powder diffraction patterns that
are identical for all homometric structures [21], some of which were distinguished even
by AMD2 in [9, appendix A]. The PXRD as implemented in Mercury [39] also fails
the triangle inequality but runs faster than the RMSD and SOAP similarities.

In summary, the past approaches through conventional representations and
environment-based similarities separately focused on two important complementary
properties: completeness and continuity. The problem of combining these two proper-
ties was first stated in [40] for lattices and then extended in [41] to a complete invariant
isoset of any periodic point set and a continuous metric approximated with a small
error factor by an algorithm whose time polynomially depends on the motif size [42].

3 Results: novelty of materials and navigation maps

This section describes how the 43 materials reported by A-lab can be automatically
positioned relative to the ICSD and MP within the full materials space CRIS(R3).

Among the 43 materials whose CIFs are available in the supplementary materials
in [43], only 32 are pure periodic without any disorder, 10 have substitutional disorder
with one or more sites occupied by multiple atomic types, and one has positional
disorder with an atom occupying any of 4 positions with occupancy 0.5.

Closest neighbors within the ICSD and Materials Project for each A-lab crystal
were found as follows. Using binary search on ADA(S; 100) vectors with the metric
L∞, we found the nearest 100 neighbors for each A-lab crystal within each database.
These neighbors were then re-compared by Earth Mover’s Distance on the stronger
invariants PDA(S; 100). This EMD metric also outputs which atomic types and/or
occupancies were correctly matched and which were not. Since most A-lab crystals
had several nearest neighbors with small distances EMD, we selected the neighbor
with the most similar composition as measured by element mover’s distance [44] in
Tables 2 and 4 below. The local novelty distance of each A-lab crystal is not more
than the Earth Mover’s Distance listed in the column EMD100. All experiments were
run on a desktop computer: AMD Ryzen 5 5600X (6-core), 32GB RAM, Python 3.9,
see the Python code with instructions and examples in the supplementary materials.
Table 1 shows running times, see a linear-time asymptotic of neighbor search in [45].

The GNoME (Graph Network Materials Exploration) [46] was trained on a snap-
shot of the Materials Project database (whose entries are partly sourced from the
ICSD) from 2021 and made public 384,938 crystals. Berkeley’s A-lab attempted to
synthesize 58 of them and reported 43 [43], which were split into 36 “successes” and 7
“partial successes” (less than 50% of the weight of solute versus the weight of solution).
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Stage ICSD (s) MP (s)
Binary search on ADA(S; 100) in the full database 3.023 2.450
PDA(Q; 100) for 100 neighbors Q of S found by ADA 5.272 5.990
EMD on PDAs for 100 neighbors Q found by ADA 0.535 0.742
Elemental Mover’s Distance (ElMD) for 100 neighbors 9.534 9.737

Table 1 Time (seconds) to complete each stage of the process of finding nearest
neighbors in the ICSD and Materials Project for 43 A-lab crystals [43] on a
modest desktop computer. The binary search used 6-cores for multiprocessing.

A-lab name ICSD ID ICSD composition EMD100 Site mismatches
Ba2ZrSnO6* 181433 In0.5Nb0.5BaO3 0.003 Zr0.5Sn0.5 ↔ Nb0.5In0.5
Ba6Na2Ta2V2O17 97524 Ba6Na2Ru2V2O17 0.092 Ta ↔ Ru
Ba6Na2V2Sb2O17 97524 Ba6Na2Ru2V2O17 0.081 Sb ↔ Ru
Ba9Ca3La4(Fe4O15)2* 72336 Ca3La4Fe8Ba9O30 0.192 (Ca0.43La0.57)2Ba ↔

Ca0.33La0.67(Ca0.5Ba0.5)2
CaCo(PO3)4 300027 Co2P4O12 0.172 Ca ↔ Co
CaFe2P2O9 79735 CaV2P2O9 0.073 Fe ↔ V
CaGd2Zr(GaO3)4* 202850 Ca0.95Zr0.95Gd2.05

Ga4.05O12

0.123 GaZrGdCa ↔
Ga0.52Zr0.48Ca0.32Gd0.68

CaMn(PO3)4 412558 MnP2O6 0.132 Ca ↔ Mn
CaNi(PO3)4 37136 NiCoP4O12 0.204 Ca ↔ Co
FeSb3Pb4O13* 65839 CrSb3Pb3.93O13 0.086 Fe0.25 ↔ Cr0.25
Hf2Sb2Pb4O13 84759 W4.48Sn11.5Pb15.8O51.9 0.086 SbHf ↔ Sn0.72W0.28
InSb3(PO4)6 72735 Sb2P3O12 0.193 In ↔ Sb
InSb3Pb4O13 49531 Pb2Ru2O6.5 0.147 SbIn ↔ Ru
K2TiCr(PO4)3 40307 K2P3Ti2O12 0.098 Cr ↔ Ti
K4MgFe3(PO4)5 263040 Fe4K4P5O20 0.139 Mg ↔ Fe
K4TiSn3(PO5)4 79650 KPSnO5 0.094 Ti ↔ Sn
KBaGdWO6 60499 WCaBa2O6 0.009 GdK ↔ CaBa
KBaPrWO6 60499 WCaBa2O6 0.053 PrK ↔ CaBa
KMn3O6* 261406 K0.463MnO2 0.016 K0.5 ↔ K0.695
KNa2Ga3(SiO4)3 411328 SiNaGaO4 0.27 SiGaK ↔ GaSiNa
KNaP6(PbO3)8* 182501 KNaP6Pb8O24 0.005
KNaTi2(PO5)2 68705 KPTiO5 0.157 Na ↔ K
KPr9(Si3O13)2* 153272 KSi6Pr9O26 0.16 (K0.1Pr0.9)2 ↔

PrK0.25Pr0.75
Mg3MnNi3O8 40584 MnNi6O8 0.020 Mg ↔ Ni
Mg3NiO4* 109086 TaLi3O4 0.000 Mg0.75Ni0.25 ↔ Li0.75Ta0.25
MgCuP2O7* 69576 Co0.92Mg1.08P2O7 0.218 Mg0.5Cu0.5 ↔ Mg0.54Co0.46
MgNi(PO3)4 37137 NiZnP4O12 0.132 Mg ↔ Zn
MgTi2NiO6 171584 NiTiO3 0.047 Mg ↔ Ni
MgTi4(PO4)6 419418 MnTi4P6O24 0.133 Mg ↔ Mn
MgV4Cu3O14 164189 Cu2V2O7 0.146 Mg ↔ Cu
Mn2VPO7 20296 Mn2P2O7 0.21 V ↔ P
Mn4Zn3(NiO6)2 625 MgCu2Mn3O8 0.186 MnZnNi ↔ MgCuMn
Mn7(P2O7)4 67514 Fe7P8O28 0.126 Mn ↔ Fe
MnAgO2 670065 MnAgO2 0.097
Na3Ca18Fe(PO4)14 85103 FeNa3P14Ca18O56 0.153 FeCa2Na ↔

Ca0.5Fe0.5Na0.17Ca0.83
Na7Mg7Fe5(PO4)12 200238 Na2Fe3P3O12 0.229 POMg2 ↔ Na3Fe
NaCaMgFe(SiO3)4* 172120 NaCaMgCrSi4O12 0.075 (MgFeNaCa)0.25 ↔ MgCr-

NaCa
NaMnFe(PO4)2 200238 Na2Fe3P3O12 0.242 POMn2 ↔ Na2Fe2
Sn2Sb2Pb4O13 49533 PbNb2Tl0.9O6.45 0.209 SbSnPb ↔ NbTl
Y3In2Ga3O12 185862 Y3Ga5O12 0.104 In ↔ Ga
Zn2Cr3FeO8 196119 ZnCr2O4 0.022 Fe ↔ Cr
Zn3Ni4(SbO6)2* 180711 Ti0.18Zr0.33ZnO2 0.162 Ni0.66Sb0.33 ↔

Ti0.17Zn0.5Zr0.33
Zr2Sb2Pb4O13 65054 TiSbPb1.97O6.5 0.12 SbZr ↔ Ti0.5Sb0.5

Table 2 Close neighbors of each A-lab crystal in the ICSD. The ICSD entry with the smallest
element mover’s distance [44] was selected from the list of 100 nearest neighbors by ADA100.
Disordered crystals are marked with an asterisk *.

Table I in [28] summarized four types of issues for the 36 “successes”, where only 3
were marked as already reported structures. Table 2 lists geometric close matches that
were automatically found in the ICSD for all 43 A-lab crystals within a few seconds.

Two A-lab crystals were found to already exist in the ICSD with the same com-
position: KNaP6(PbO3)8 matched ICSD 182501 reported in 2011 [47], and MnAgO2
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matched ICSD 670065 reported as a hypothetical structure in 2015 [48]. In particular,
MnAgO2 was one of three crystals that the later rebuttal said was synthesized suc-
cessfully [28], and they go on to state that the material was first reported in 2021 [49]
(ICSD 139006), after the snapshot used to train the GNoME, and so was not included
in the original training data and could be considered a success. Our findings show this
crystal did in fact exist in the ICSD prior to the 2021 snapshot. The pre-existing ver-
sion of this crystal was not found by [28] using a unit cell search because the unit cell
of ICSD 670065 significantly differs from that of the A-lab version or ICSD 139006,
with the former listing its space group as A 2/m and the latter two having space
group C 2/m, see Fig. 5. Such cell-based search can always miss near-duplicates as
in Fig. 1, while continuous invariants independent of a unit cell find near-duplicates
despite disagreement on a space group, which breaks down under almost any noise.

Fig. 5 Left: MnAgO2 synthesized by A-lab. Middle: ICSD entry 670065 with the same composition
and EMD = 0.097Å found by structural invariants in Table 2, though its unit cell is very different
from the cell of MnAgO2. Right: another ICSD entry 139006 from 2021 matched by [28] and found
by unit cell search, but is more distant from MnAgO2 by EMD = 0.368Å on invariants PDA(S; 100).

Aside from the two structures above, all other A-lab crystals were found to have
a geometric near-duplicate in the ICSD with a different composition. Many of these
near-duplicates involve the substitution of only one atom, replacing a disordered site
with a fully ordered one or adjusting the occupancy ratios of atoms at a site.

These structural analogues of A-lab’s reported materials are not surprising as the
GNoME AI [46] used atomic substitution on existing crystals to generate potential new
ones without substantially changing the atomic geometry. The fact that pre-existing
structures in the ICSD were missed by the later rebuttal [28] suggests that a more
robust method is needed for comparing structures in the aid of materials discovery.

The Materials Project contains many theoretical structures, many of which are
obtained by substituting atoms in experimental structures with plausible alternatives,
a strategy also employed by the GNoME which generated the crystals later synthesized
by Berkeley’s A-lab. Despite the substitution patterns used by GNoME being tuned
to prioritize discovery and not repeat data, 42 of the 43 A-lab crystals were found to
already exist in the Materials Project, all of which predate the March 2021 snapshot
used to train the GNoME and hence were part of its training data.

As the Materials Project does not model disorder, no match was found for the
positionally disordered KMn3O6. However, its nearest neighbor was found in the ICSD
with a change in occupancy. So all 43 A-lab crystals had already been hypothesized
or synthesized prior to the beginning of the GNoME project, see Table 3.

The rebuttal paper [28] said that the crystal Y3In2Ga3O12 in Table 3 was one of
the three new crystals to have been synthesized and provided the reference for this
crystal to 2022 [56], again leading to the conclusion that the crystal was novel from the
perspective of the GNoME AI trained on data from 2021. We found that the crystal
Y3In2Ga3O12 was reported in 1964 and uploaded to the Materials Project no later
than 2018, and so would have been part of GNoME’s training data.

The 10 substitutionally disordered A-lab crystals had matches in the Materials
Project where disordered sites were replaced with multiple fully ordered sites of atoms
in the same ratio; e.g. FeSb3Pb4O13 matching mp-1224890 had a site Fe0.25Sb0.75
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A-lab name Matching database entries Source and date
Ba6Na2Ta2V2O17 mp-1214664, Pauling file sd 1003187 [50], 2003
Ba6Na2V2Sb2O17 mp-1214658, Pauling file sd 1003189 [50], 2003
CaGd2Zr(GaO3)4 mp-686296, ICSD 202850 [51], 1988
KNa2Ga3(SiO4)3 mp-1211711, Pauling file sd 1707156 [52], 1982
KNaP6(PbO3)8 ICSD 182501 [47], 2011
KNaTi2(PO5)2 mp-1211611, Pauling file sd 1414297 [53], 1991
Mn2VPO7 mp-1210613, Pauling file sd 1322766 [54], 2000
Y3In2Ga3O12 mp-1207946, Pauling file sd 1704376 [55], 1964

Table 3 The eight reportedly new crystals synthesized by the A-lab found to
already have been synthesized and uploaded to various databases.

A-lab name MP ID MP composition EMD100 Site mismatches
Ba2ZrSnO6* 1228067 Ba2ZrSnO6 0.025 Zr0.5Sn0.5 ↔ ZrSn
Ba6Na2Ta2V2O17 1214664 Ba6Na2Ta2V2O17 0.029
Ba6Na2V2Sb2O17 1214658 Ba6Na2V2Sb2O17 0.021
Ba9Ca3La4(Fe4O15)2* 1228537 Ba9Ca3La4Fe8O30 0.136 Ca0.43La0.57 ↔ Ca3La4
CaCo(PO3)4 1045787 CaCoP4O12 0.090
CaFe2P2O9 1040941 CaFe2P2O9 0.114
CaGd2Zr(GaO3)4* 686296 CaGd2ZrGa4O12 0.069 Ga ↔ Zr
CaMn(PO3)4 1045779 CaMnP4O12 0.163
CaNi(PO3)4 1045813 CaNiP4O12 0.151
FeSb3Pb4O13* 1224890 FeSb3Pb4O13 0.027 Fe0.25Sb0.75 ↔ FeSb3
Hf2Sb2Pb4O13 1224490 Hf2Sb2Pb4O13 0.012
InSb3(PO4)6 1224667 InSb3P6O24 0.011
InSb3Pb4O13 1223746 InSb3Pb4O13 0.029
K2TiCr(PO4)3 1224541 K2TiCrP3O12 0.009
K4MgFe3(PO4)5 532755 K4MgFe3P5O20 0.076
K4TiSn3(PO5)4 1224290 K4TiSn3P4O20 0.014
KBaGdWO6 1523079 KBaGdWO6 0.006
KBaPrWO6 1523149 KBaPrWO6 0.012
KMn3O6* 1223545 KMn2O4 0.439 Not a match
KNa2Ga3(SiO4)3 1211711 KNa2Ga3Si3O12 0.022
KNaP6(PbO3)8* 1223429 KNaP6Pb8O24 0.174 Na0.25K0.25Pb0.5 ↔

NaKPb2
KNaTi2(PO5)2 1211611 KNaTi2P2O10 0.012
KPr9(Si3O13)2* 1223421 KPr9Si6O26 0.009 K0.1Pr0.9 ↔ KPr9
Mg3MnNi3O8 1222170 Mg3MnNi3O8 0.029
Mg3NiO4* 1099253 Mg3NiO4 0.002 Mg0.75Ni0.25 ↔ Mg3Ni
MgCuP2O7* 1041741 MgCuP2O7 0.093 Mg0.5Cu0.5 ↔ MgCu
MgNi(PO3)4 1045786 MgNiP4O12 0.018
MgTi2NiO6 1221952 MgTi2NiO6 0.009
MgTi4(PO4)6 1222070 MgTi4P6O24 0.075
MgV4Cu3O14 1222158 MgV4Cu3O14 0.060
Mn2VPO7 1210613 Mn2VPO7 0.125
Mn4Zn3(NiO6)2 1222033 Mn4Zn3Ni2O12 0.054
Mn7(P2O7)4 778008 Mn7P8O28 0.123
MnAgO2 996995 MnAgO2 0.098
Na3Ca18Fe(PO4)14 725491 Na3Ca18FeP14O56 0.031
Na7Mg7Fe5(PO4)12 1173791 Na7Mg7Fe5P12O48 0.028
NaCaMgFe(SiO3)4* 1221075 NaCaMgFeSi4O12 0.026 (MgFeNaCa)0.25 ↔

MgFeNaCa
NaMnFe(PO4)2 1173592 NaMnFeP2O8 0.032
Sn2Sb2Pb4O13 1219056 Sn2Sb2Pb4O13 0.025
Y3In2Ga3O12 1207946 Y3In2Ga3O12 0.008
Zn2Cr3FeO8 1215741 Zn2Cr3FeO8 0.014
Zn3Ni4(SbO6)2* 1216023 Zn3Ni4Sb2O12 0.092 Ni0.67Sb0.33 ↔ Ni2Sb
Zr2Sb2Pb4O13 1215826 Zr2Sb2Pb4O13 0.025

Table 4 Close neighbors of each A-lab crystal in the Materials Project (MP). In each case, the MP
entry with the smallest element mover’s distance [44] was selected from the list of 100 nearest
neighbors by ADA100. Disordered crystals are marked with an asterisk *.

with multiplicity 4 replaced with FeSb3. For completeness, this is noted in the site
mismatches column of Table 4, listing all nearest neighbors in the Materials Project.

One pair of note is CaGd2Zr(GaO3)4 & mp-686296, which have one atom swapped
(Ga↔ Zr). This Materials Project entry originates from ICSD 202850, listed in Table 2
as the closest neighbor in the ICSD. The ICSD entry has disorder on the sites where
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atoms were swapped, whereas the A-lab and Materials Project versions have no disor-
der. We conclude that this crystal is not new, as these atoms could have been swapped
to match the A-lab crystal with a different ordering of the disordered ICSD entry.

Fig. 6 shows 2D projections (heat maps) of the ICSD and MP to pairs of analyt-
ically defined (data-independent) invariant coordinates, see continuous maps of the
CSD and its subsets in [57]. The color of any pixel with coordinates (x, y) indicates the
number of crystals whose continuous invariants coincide with (x, y) after discretiza-
tion to pixels. To better visualize hot spots, we excluded some outliers, e.g. all crystals
with densities higher than 21 g/cm3. Subspaces of highly symmetric (cubic or primi-
tive orthorhombic) crystals are visible as straight lines due to linear dependencies of
inter-atomic distances in these subspaces. The projections in Fig. 6 can be considered
universal maps of the continuous space of all crystal structures because any newly dis-
covered crystal will appear at its unique location without affecting all known crystals.

Fig. 6 A-lab crystals are in cyan over the heat map of ICSD and MP in invariant coordinates.

4 Conclusions: fast navigation in the materials space

Definition 1 formalized the materials universe as the Crystal Isometry Space CRIS
containing all known and not yet discovered crystals at unique locations determined
by sufficiently precise geometry of atomic centers. Definition 5 introduced the Local
Novelty Distance (LND) based on generically complete invariants of periodic point
sets. The ultra fast LND quantifies the novelty of any synthesized material as a contin-
uous distance to the nearest crystal structure (independent of chemical composition)
from the world’s largest databases within seconds on a modest desktop computer.

Tables 2 and 4 showed that structural near-duplicates of all A-lab crystals existed
before the GNoME project and were seemingly part of its training data but were tar-
geted for synthesis. As with car driving, navigation maps based on structural invariants
in Fig. 6 are needed to guide synthesis without getting lost in the materials space.

The next step in exploring the materials space is to understand the structure-
property relations by visualizing property values like mountainous landscapes in
Fig. 2 (right). The invariant coordinates PDD (generically complete under isometry)
helped predict properties of organic and inorganic materials [58–60] including synthe-
sizability [61]. Similar maps of the protein universe used linear-time invariants [62],
which detected thousands of unexpected duplicates in the Protein Data Bank [63].

Authors’ contributions. VK developed Definitions 1 and 5 and wrote the paper. DW
implemented the code and produced all tables. Both authors reviewed the manuscript.
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[22] Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quiros, M.,
Serebryanaya, N.R., Moeck, P., Downs, R.T., Le Bail, A.: Crystallography open
database (cod): an open-access collection of crystal structures and platform for
world-wide collaboration. Nucleic acids research 40(D1), 420–427 (2012)

[23] Batsanov, S.: Van der Waals radii of elements. Inorganic mat. 37, 871–885 (2001)

[24] Rass, S., König, S., Ahmad, S., Goman, M.: Metricizing the euclidean space
towards desired distance relations in point clouds. IEEE Transactions on Infor-
mation Forensics and Security 19, 7304–7319 (2024)

[25] Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE
Transactions on Information theory 49(7), 1858–1860 (2003)

[26] Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

[27] Givens, C.R., Shortt, R.M.: A class of wasserstein metrics for probability
distributions. Michigan Mathematical Journal 31(2), 231–240 (1984)

[28] Leeman, J., Liu, Y., Stiles, J., Lee, S.B., Bhatt, P., Schoop, L.M., Palgrave, R.G.:
Challenges in high-throughput inorganic materials prediction and autonomous
synthesis. PRX Energy 3(1), 011002 (2024)

[29] Chawla, D.S.: Crystallography databases hunt for fraudulent structures. ACS
Central Science 9, 1853–1855 (2024) https://doi.org/10.1021/acscentsci.3c01209

[30] Cheetham, A.K., Seshadri, R.: Artificial intelligence driving materials discovery?
perspective on the article: Scaling deep learning for materials discovery. Chemistry
of Materials 36(8), 3490–3495 (2024)

[31] Chisholm, J., Motherwell, S.: Compack: a program for identifying crystal struc-
ture similarity using distances. J. Applied Cryst. 38, 228–231 (2005)
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Appendix A Extra examples and navigation maps

This appendix includes extra examples of invariant computations for 5 perovskites
in addition to 5 simple crystals in Fig. 3, see corresponding entries from the MP
in Table A1, instructions for running the Python code for all invariants, and high-
resolution navigation maps. The zip folder with supplementary information includes
the Python code and tables with PDD and PDA matrices for the 5 + 5 example
crystals.

Fig. A1 and Table A2 compare unweighted (based on atomic centers) and weighted
versions (including atomic masses) of invariants. The atomic masses generally increase
EMD distances but the geometry of atomic centers already captures chemistry.
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simple crystals rock salt rutile zincblende fluorite antifluorite
composition NaCl TiO2 ZnS CaF2 Mg2Si
MP entry id 22862 2657 10695 2741 1367
perovskites cubic hexagonal tetragonal double Ruddlesden-Popper
composition SrTiO3 SrIrO3 CaTiO3 Cs2AgBiBr6 Sr2TiO4
MP entry id 5229 17097 3442 1078250 5532

Table A1 Names, compositions and IDs of 5+5 crystals whose invariants are in Fig. 3 and A1.

Fig. A1 The invariants AMDk and ADAk from Definition 4 and their weighted versions taking into
account atomic masses for five perovskites from MP in Table A1. Left: unweighted. Right: weighted.

The instructions below will reproduce the distances between the structures in
Fig. 5, whose CIFs are publicly available at these URLs:

� icsd 670065.cif: https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=670065&
DatabaseToSearch=Published

� icsd 139006.cif: https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=139006&
DatabaseToSearch=Published

� MnAgO2.cif: Under Supplementary-Data\Structure_Files in the supplementary
data at https://www.nature.com/articles/s41586-023-06734-w#Sec14

The supplementary materials also include the script compare_MnAgO2.py for the
distances. With Python 3.9+, install average-minimum-distance (1.5.3) [64] with

pip install average-minimum-distance==1.5.3

Run the script with
python compare_MnAgO2.py

The expected output is:
>> EMD(PDA(MnAgO2, 100), PDA(icsd_670065, 100)) = 0.0975A

>> EMD(PDA(MnAgO2, 100), PDA(icsd_139006, 100)) = 0.3675A

The GNoME paper used the Pymatgen structure matcher [38], which cannot filter
out near-duplicate structures according to the quoted steps below.
“1. Given two structures: s1 and s2
2. Optional: Reduce to primitive cells.
3. If the numbers of sites do not match, return False.”
These steps are followed by several heuristic steps which involve finding deviations
between atoms in the reduced unit cell. If step 2 above is optionally missed, step 3
can output False (no match) for identical crystals given with different non-primitive
cells. If step 2 is enforced, step 3 will output False (no match) for any nearly identical
crystals, whose primitive cells can arbitrarily differ due to a tiny atomic displacement
as in Fig. 1. For the above reasons, our findings show that this method of comparing
structures was insufficient to filter out existing duplicates from materials databases,
resulting in the AI silently reproducing near-duplicates from the training set.
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Fig. A2 Distances in Angstroms between 5 simple crystals and 5 perovskites from Table A1. Upper
triangle: EMDs on weighted wPDA(S; 25). Lower triangle: EMDs on unweighted PDA(S; 25).

Definition 7 can use arbitrary weights of points so that the total weight within a
unit cell is 1 after normalization. When all equal rows of PDD(S; k) are collapsed to
a single row, the discontinuity in Fig. 1 is properly resolved. The unweighted version
of EMD on PDAs below uses zero-sized points at atomic centers with equal weights,
which can be multiplied (before normalization) by atomic masses or ionic radii.

Definition 7 (Earth Mover’s Distance EMD [26]). Consider any matrix PDA(S; k)
as a distribution of rows Ri(S) with weights wi(S) for i = 1, . . . ,m(S) such

that
m∑
i=1

wi = 1. The Earth Mover’s Distance EMD(PDA(S; k),PDA(Q; k)) =

min
fij

m(S)∑
i=1

m(Q)∑
j=1

fijL∞(Ri(S), Rj(Q)) is minimized for all real fij ≥ 0 (called flows)

subject to the conditions
m(S)∑
i=1

fij ≤ wj(Q),
m(S)∑
j=1

fij ≤ wi(S),
m(S)∑
i=1

m(Q)∑
j=1

fij = 1.

The first condition
m(Q)∑
j=1

fij ≤ wi(S) means that not more than the weight wi(S)

of the component Ri(S) ‘flows’ into all components Rj(Q) via ‘flows’ fij for j =

1, . . . ,m(Q). The second condition
m(S)∑
i=1

fij = wj(Q) means that all ‘flows’ fij from

Ri(S) for i = 1, . . . ,m(S) ‘flow’ into Rj(Q) up to the maximum weight wj(Q). The

last condition
m(S)∑
i=1

m(Q)∑
j=1

fij = 1 forces to ‘flow’ all rows Ri(S) to all rows Rj(Q).
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Proof of Theorem 6. Let S be obtained from a periodic point set Q ⊂ Rn by perturb-
ing every point of Q up to Euclidean distance ε, which is smaller than a minimum
half-distance between any points of Q. Then S,Q have a common lattice by [65,
Lemma 4.1] and hence the same number m of points in a common unit cell, and equal
Point Packing Coefficients PPC(S) = PPC(Q) from Definition 3.

Since Definition 4 uses the L∞ metric on rows of PDAs, the Earth
Mover’s Distance is unaffected by subtracting the same term PPC 3

√
k,

so EMD(PDD(S; k),PDD(Q; k)) = EMD(PDA(S; k),PDA(Q; k)). Then [9,
Theorem 4.3] implies that EMD(PDA(S; k),PDA(Q; k)| ≤ 2ε. The minimum for all
sets Q in a finite dataset D can not be larger, so LND(S;D) ≤ 2ε by Definition 5.

Conversely, assume that S is obtained from Q ∈ D by perturbing every atom of Q
up to Euclidean distance ε < 0.5LND(S;D) < r(Q). The previously proved inequality
implies that LND(S;D) ≤ 2ε < LND(S;D), which is a contradiction.

Fig. A3 A-lab crystals in cyan over the ICSD and MP heatmap in the coordinates (density, ADA1).

Fig. A4 A-lab crystals in cyan over the ICSD and MP heatmap in the coordinates (PPC, ADA1).
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Fig. A5 A-lab crystals in cyan over the ICSD and MP heatmap in the coordinates (ADA2, ADA3).

Fig. A6 A-lab crystals in cyan over the ICSD and MP heatmap in the coordinates (ADA4, ADA5).
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Fig. A7 A-lab crystals in cyan over the ICSD and MP heatmap in the coordinates (ADA1, ADA20).

Fig. A8 A-lab crystals over the ICSD and MP heatmap in the coordinates (ADA20, ADA100).
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