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Abstract Let a point cloud be a noisy dotted image of a graph on the plane. We present a
new fast algorithm for reconstructing the original graph from the given point cloud. Degrees
of vertices in the graph are found by methods of persistent topology. Necessary parameters
are automatically optimized by machine learning tools.
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1 The problem of a graph reconstruction

We build up on the methods for a graph reconstruction in [1]. Our goal is to reduce
the number of arbitrarily chosen or manually adjustable parameters and to avoid
any ad hoc preprocessing when there is no metric graph structure on the data.

Let us consider a black-and-white dotted image or a collection of black pixels on
a white background. We assume that a point cloud C of black pixels represents a
noisy image of a graph Γ ⊂ R2. Each edge is a polygonal line of straight arcs.

We prove that our algorithm reconstructs the graph Γ with a high probability
under reasonable restrictions on Γ and a point cloud C ⊂ R2 sampled around Γ.

2 Methods of persistent topology

Persistent topology is a new branch of computational topology that studies topo-
logical features (homology groups) of a filtration (a collection of spaces). Starting
from a point cloud C ⊂ R2, let us define the filtration of graphs {C(ε)} as follows.

Figure 1: some graphs C(ε) for the point cloud C of 5 points (0, 0), (1, 0), (2, 1), (2, 3), (0, 5)



The vertices of any graph C(ε) are all points from the cloud C. For a threshold
distance ε ≥ 0, if two points p, q ∈ C are at distance not more than ε, we connect
p, q by an edge in the graph C(ε). Hence, for any small enough ε ≥ 0, the graphs
C(ε) consist of only isolated vertices at the points of the cloud C, see Fig. 1.

However, when ε is increasing, we add more edges and eventually C(ε) becomes
a complete graph where any two vertices are connected by an edge. The resulting
filtration {C(ε)} characterizes relative positions of points in the original cloud C.

Now we can compute topological invariants of C(ε) (for example, the number
of connected components or the number of independent cycles) and analyze how
they change as the parameter ε increases. For instance, if the graphs C(ε) have two
connected components over a long range of ε, then the original cloud C is likely to
have two clusters. Similarly, counting cycles in C(ε) may reveal that the point cloud
C looks like a topological closed loop. See [2] for a much more general discussion.

3 First stage: split points by degree

In the first stage of the algorithm, we split a given point cloud C into several parts:

• collections of edge points, which will form edges of a future reconstructed graph G;

• collections of vertex points, which will form vertices (of different degrees) in G.

To put each point p ∈ C into one of the collections above, we find a number
degC(p) that resembles the degree of a vertex in a graph. Recall that the degree of
a vertex v in a graph Γ is the number of arcs attached to v, see Fig. 2. Points on
edges between vertices of Γ can be considered as trivial vertices of degree 2.

Figure 2: finding a degree of a point p, points of potential degree 2 are green, others are red

We can not count arcs attached to a point p in a cloud C and adapt another way
of finding degrees. If a sufficiently small neighborhood U(v) ⊂ Γ of a vertex v ∈ Γ
is a ‘star with k rays’, then deg v = k. For each point p ∈ C, we consider all points
from the cloud C within the neighborhood Uδ(p) with center p and radius δ.

The authors of [1] count the number of small clusters of C ∩ Uδ(p) near the
boundary of Uδ(p) to get the potential degree degC(p). We add the boundary circle
to Uδ(p) and count ‘holes’ (independent cycles in the first homology) in the ‘wheel’
C ∩ Ūδ(p), which seems more resilient to the noise than counting small clusters.

So we convert the small cloud C ∩ Ūδ(p) into the filtration of 2-dimensional Rips
complexes R(ε), which are triangulated subsets of the plane. Namely, the vertices
of R(ε) are all points of the small cloud. Two vertices are connected by an edge



if the distance between them is not more than ε. If any two edges intersect, then
we drop one of them. Three vertices span a triangle in R(ε) if they are pairwise
connected. The number of independent cycles in the small triangulation R(ε) can
be found fast and equals the number of ‘holes’ whose diameter is more than ε.

The resulting number degC(p) depends on a radius δ and a threshold distance ε.
We shall later show that under certain conditions on Γ and C the degree degC(p)
remain stable when δ and ε vary over long enough intervals for many points p ∈ C.
So our algorithm automatically learns the parameters δ and ε for any point p ∈ C.

4 Second stage: vertex clusters and edge clusters

After finding potential degrees degC(p) for all points p ∈ C, we split C into several
smaller subclouds Ck by the degree k. Our next aim is to divide the subcloud C2

of all points p with degC(p) = 2 into clusters that represent edges of the graph G.

We consider the filtration of graphs C2(ε), where the vertices are all points p ∈ C
with degC(p) = 2. Two vertices of the graph C2(ε) are connected by an edge if the
distance between them is not more than ε. We shall later show that under certain
conditions on G and C, some connected components of C2(ε) remain stable over a
long interval of ε and can represent edges of the underlying graph G.

Similarly, for any k 6= 2, we split the subcloud Ck of all points p ∈ C with
degC(p) = k into clusters that represent degree k vertices of G. Under certain con-
ditions on a graph G and a cloud C around G, every vertex of G has a neighborhood
where all points from C have degC(p) = k and form a cluster in the subcloud Ck.

In practice, after trying different threshold distances ε to form clusters of vertices
and clusters of edges, we try to build the corresponding graph where an edge is
attached to a vertex if the corresponding clusters have points that are sufficiently
close to each other. Then we validate the resulting graph by the following tests:

• every edge joins 2 vertices, so every edge cluster is close to 2 vertex clusters;

• every cluster of points with degC(p) = k 6= 2 has exactly k close edge clusters.

To get the final reconstructed graph G, we put a vertex at the center of mass for
each vertex cluster and connect all resulting vertices by straight arcs in the plane.

5 Justification of the algorithm: an outline

Input parameters for our algorithm are denoted by Latin letters, e.g. a point cloud
C, a number of points n, a fixed point p etc. Greek letters denote parameters that
the algorithm learns or does not use, e.g. an original graph Γ, a noise level τ , a
threshold distance δ etc. Let d(p, q) be the Euclidean distance between p, q ∈ R2.

For a cloud C ⊂ R2, denote the least distance between points p, q ∈ C by
dmin(C). Let dcon(C) be the least distance ε such that the graph C(ε) is connected.
The following proposition illustrates the case when an original graph Γ is a set of
vertices without edges. Namely, if a given point cloud C splits into subclouds around



finitely many unknown centers that are sufficiently away from each other, then the
single edge clustering algorithm always correctly identifies the subclouds.

Proposition (single edge clustering). For a set ν = {ν1, . . . , νκ} ⊂ R2, let us take
any point cloud C ⊂ ∪κi=1Uτ (νi), where Uτ (νi) is the round disk of a radius τ at

the center νi. If τ <
1

4
min

{
dmin(ν) + dmin(C), 2dmin(ν) − dcon(C)

}
, then our

clustering algorithm correctly splits the given cloud C into κ expected clusters.

We analyse connected components of the graph C(ε) when ε is increasing. In
the interval 2τ < ε < dmin(ν) − 2τ , all graphs C(ε) have expected κ components.
The upper bound on τ guarantees that this interval is long enough. A forthcoming
extended paper with proofs will be available by April 2013 at the webpage below.

6 Java applet for graph reconstruction

www.maths.dur.ac.uk/~dma0vk/java-applets/graph-reconstruction.html

The version of the Java applet on 1st March 2013 shows how the algorithm works
for random clouds that are uniformly generated around the following graphs:

• a ‘star’ graph with one central vertex and a random number of 3-8 rays (spokes),

• a ‘wheel’ graph obtained from a star graph by adding the polygonal boundary,

• a branched cross whose 4 main rays of random length are along regular bisectors
in 4 quadrants, each of these rays has 2 smaller tentacles with random endpoints.

The original graph that the algorithm will reconstruct is shown in green. Clicking
on the ‘new random cloud ’ button generates a blue point cloud around a chosen
graph. The button ‘split points by degree’ calls for the first stage of the algorithm
computing the potential degree degC(p) of each point p in the generated point cloud
C. Degree 1 points are highlighted in blue, degree 2 points are green, degree 3 points
are red, degree 4 points are cyan, points of higher degrees are yellow.

The button ‘reconstructed graph’ shows the final red graph with the original
green graph. The ‘demo’ button demonstrates successive stages with a time delay:
a new point cloud, all points colored by degree and a reconstructed graph. The
applet starts with a demo mode for a wheel graph with 5 vertices and 8 edges.
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