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ABSTRACT

Johnson and Livingston have characterized peripheral structures in homomorphs
of knot groups. We extend their approach to the case of links. The main result is an
algebraic characterization of all possible peripheral structures in certain homomorphic
images of link groups.
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1. Introduction

1.1. Motivation and summary of results

Groups that can appear as the image under a surjective homomorphism of the
group of a knot have been investigated by various authors, see, for instance [3–6].
Given such a homomorphic image G, it is of interest to characterize the subgroup
which is the image of the peripheral subgroup of the knot.

Johnson and Livingston [6] have given necessary and sufficient conditions on
elements µ and λ of G for them to be the image of the meridian, respectively
the preferred longitude of the knot. These conditions involve a Pontryagin product
〈µ, λ〉 in the homology group H2(G) and a Johnson–Livingston product {µ, λ} in
a quotient of H3(G/G′). The Pontryagin product was first used as an obstruction
for the realization problem by Edmonds and Livingston in [3].
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We extend the Johnson–Livingston method to the case of r-component links. In
this context we consider systems of elements µ = (µ1, . . . , µr) and λ = (λ1, . . . , λr)
which are the images of the meridians, respectively the longitudes of the compo-
nents of the link. We show that provided the µi are conjugate in G one can define
an extended Johnson–Livingston product {µ, λ} and give necessary and sufficient
conditions for the realizability of these systems.

1.2. Preliminary definitions

Definition 1.1 (knots, ribbon links, ambient isotopy).
(a) A link L is a smooth embedding of disjoint oriented circles in S3. The ith circle
is called the ith component of the link L and is denoted by Li. If r = 1, then the
link L is a knot.

A link L ⊂ S3 is ribbon if L bounds a disjoint union of disks �r
i=1D

2
i immersed

into S3, whose singularities are always as in Fig. 1 (see Sec. 2.2).

(b) Two links L and L′ are equivalent if there is an orientation preserving self home-
omorphism of S3 sending Li to L′

i for i = 1, . . . , r and respecting the orientations
of the components. Links will be studied up to equivalence.

Definition 1.2 (meridians, longitudes, preferred systems of longitudes).
(a) Let L = ∪r

i=1Li ⊂ S3 be a r-component link, T (Li) be a sufficiently small
tubular neighborhood of Li, and pi a point on the boundary ∂T (Li), i = 1, . . . , r.

A meridian mi of the component Li is an oriented simple closed curve mi ⊂
∂T (Li) that bounds inside T (Li) a 2-dimensional disk intersecting Li in a single
point with positive sign. The homotopy class of mi is unique in π1(∂T (Li), pi) and
called the meridian of Li.

(b) A longitude of the component Li is an oriented curve li ⊂ ∂T (Li) passing
through pi and isotopic to Li inside T (Li). A longitude of Li is preferred and is
denoted by l̄i, if there is an oriented surface Fi ⊂ S3− IntT (Li) with ∂Fi = l̄i. The
homotopy class of l̄i is unique in π1(∂T (Li), pi) and called the preferred longitude.

(c) Denote by T (L) the disjoint union �r
i=1T (Li) of sufficiently small tubular neigh-

borhoods of L1, . . . , Lr. A system of curves (l1, . . . , lr) ⊂ S3 − L is a preferred
system of longitudes for L, if the curve li is a longitude of the component Li for

Fig. 1. A part of a ribbon link, represented bands and a band connection.
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each i = 1, . . . , r, and the union l1 ∪ · · · ∪ lr is the boundary of an oriented surface
F ⊂ S3 − IntT (L).

Defnition 1.2(c) provides a natural extension to links of the notion of a preferred
longitude for knots. Note that (l1, . . . , lr) �= (l̄1, . . . , l̄r) in general. The definition of
preferred longitudes and systems will be reformulated in Lemma 2.2.

We fix a system of arcs γi, i = 2, . . . , r, properly embedded in S3 − IntT (L)
joining p1 to pi and intersecting only at p1. We define γ1 to be the constant path at
p1. To each oriented simple closed curve c in ∂T (Li) passing through pi, i = 1, . . . , r,
we can associate the homotopy class of the loop γi ◦ c ◦ γ−1

i . We still denote this
homotopy class by c and consider it as an element of π1(S3 −L) := π1(S3 −L, p1).
This holds in particular for the meridians and longitudes of L.

Definition 1.3 (a meridional system for G, realizable systems for (G, µ)).
(a) Let G be a finitely generated group. Denote by Gr the direct product G×· · ·×G

(r times). A system of elements µ = (µ1, . . . , µr) ∈ Gr is called meridional for G if
the group G is generated by finitely many conjugates of the elements µ1, . . . , µr.

(b) Suppose that a group G has a meridional system µ = (µ1, . . . , µr) ∈ Gr. A
system of elements λ = (λ1, . . . , λr) ∈ Gr is called weakly realizable for the pair
(G, µ) if there exists a link L = ∪r

i=1Li ⊂ S3 with a surjective homomorphism
ρ : π1(S3 − L) → G such that ρ(mi) = µi, ρ(li) = λi for each i = 1, . . . , r, where
mi is the meridian of the component Li, and li is a longitude of Li.

(c) A weakly realizable system λ = (λ1, . . . , λr) ∈ Gr is realizable for the pair (G, µ)
if (l1, . . . , lr) from (b) is a preferred system of longitudes for the link L. Denote by
R(G, µ) ⊂ Gr the set of all realizable systems λ ∈ Gr for (G, µ).

(d) Let G be a group with a meridional system µ ∈ Gr. Denote by G′ the commuta-
tor subgroup of G. Let pr : G → G/G′ be the quotient map. Denote by [µ1], . . . , [µr]
the images of the meridians µ1, . . . , µr ∈ G in the abelianization G/G′.

1.3. Main results

Let G be a finitely generated group. Suppose that there exist a r-component link
L ⊂ S3 and a surjective homomorphism ρ : π1(S3 − L) → G. For any link L ⊂ S3,
the group π1(S3 − L) has a well-known Wirtinger presentation [2] and hence a
meridional system. Then G also has a meridional system obtained by selecting one
Wirtinger generator mi for each component Li. Their images µi = ρ(mi) form a
meridional system µ = (µ1, . . . , µr) ∈ Gr.

The converse was proved by González–Acuña for links [4] by using a 4-
dimensional technique. We shall need the fact that every meridional system is
realized by a link where all the linking numbers are zero, so we extend to rib-
bon links the simple geometric proof given for knots in [5, Proposition 2.3]. This
result shows that the set R(G, µ) of all realizable systems is not empty.
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Theorem 1.4. Let a group G have a meridional system µ = (µ1, . . . , µr) ∈ Gr.
A system λ = (λ1, . . . , λr) ∈ Gr is weakly realizable for (G, µ) if and only if

(i) the element λi commutes with µi for each i = 1, . . . , r;
(ii) the sum of the Pontryagin products

∑r
i=1〈µi, λi〉 vanishes in the group H2(G).

Let Q(G) denote the quotient group H3(G/G′)/pr∗(H3(G)).

Theorem 1.5. Let a group G have a meridional system µ = (µ1, . . . , µr) ∈ Gr

such that each µi is conjugate to µ1, i = 2, . . . , r.
A system of elements λ = (λ1, . . . , λr) ∈ Gr is realizable for the pair (G, µ) if

and only if conditions (i), (ii) of Theorem 1.4 hold and

(iii) λ ∈ (G′)r;
(iv) the extended Johnson–Livingston product {µ, λ} = 0 in Q(G).

To extend the Johnson–Livingston method we use multi-connected sums of vari-
ous geometric objects such as links, surfaces and manifolds, see Definitions 4.5–4.10.
The key points of the proof are the well-definedness and additivity of the extended
Johnson–Livingston product, see Theorem 4.17.

1.4. Organization of the paper

The realizability of meridional systems is proved in Sec. 2, Proposition 2.3. Section 3
contains Definition 3.2 of the Pontryagin product and the proof of Theorem 1.4. In
Sec. 4 we introduce Johnson–Livingston products in Definitions 4.1, 4.4 and prove
their well-definedness. The proof of Theorem 1.5 will be finished in Sec. 5. We give
examples of applications of Theorem 1.5 in Sec. 6.

2. Preferred Longitudes and Meridional Systems

Section 2.1 discusses preferred systems of longitudes. In Sec. 2.2 the realiz-
ability of meridional systems is proved using geometric operations on algebraic
representations.

2.1. Preferred systems of longitudes

Definition 2.1 (the linking number lk, algebraically split links).
(a) Let J and K be two disjoint oriented simple closed curves in S3. We denote by
lk(J, K) their linking number.

(b) Let L = ∪r
i=1Li ⊂ S3 be an oriented r-component link. If all the linking numbers

lk(Li, Lj) = 0 for i, j = 1, . . . , r, i �= j, then the link L is called algebraically split.

Recall that preferred longitudes and systems were introduced in Definition 1.2.
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Lemma 2.2. Let L = ∪r
i=1Li ⊂ S3 be an oriented r-component link. Let

[mi], [li] ∈ H1(S3 − L) be the classes of the meridian and a longitude of Li,

i = 1, . . . , r. The system of curves (l1, . . . , lr) is preferred for the link L if and only
if [li] =

∑r
i=1 αij [mj ], where αij = lk(Li, Lj), i �= j, αii = −∑j �=i lk(Li, Lj) for all

i, j = 1, . . . , r.

Proof. The homology group H1(S3−L) is isomorphic to Z[m1]⊕· · ·⊕Z[mr], where
mi is the meridian of the component Li, i = 1, . . . , r. By Definition 1.2(c) a system
(l1, . . . , lr) of longitudes is preferred if there is an oriented surface F ⊂ S3−IntT (L)
with boundary ∂F = �r

i=1li.
Hence in the group H1(S3 − L) one has

∑r
i=1[li] = 0. The preferred longitude

l̄i is the boundary of an oriented surface Fi ⊂ S3 − IntT (Li), i = 1, . . . , r. The
surface Fi can be used to compute the linking number αij = lk(Li, Lj), i �= j. Then
[l̄i] =

∑
j �=i αij [mj ] in H1(S3 − L).

By Definition 1.2(b) any longitude li ⊂ ∂T (Li) is isotopic inside T (Li) to Li,
hence li = mαii

i l̄i in π1(∂T (Li)) for some αii ∈ Z, i = 1, . . . , r. Equivalently, in
the homology group H1(S3 − L) one gets [li] = αii[mi] + [l̄i] =

∑r
j=1 αij [mj ]. The

condition
∑r

i=1[li] = 0 is equivalent to αii = −∑j �=i αij as required.
Conversely, construct a smooth map f : �∂T (Li) → S1 such that the restric-

tion to the meridians mi of Li is a degree one map and f is constant on the
curves li. The only obstructions to the extension of the map f to a smooth
map f̃ : S3 − �r

i=1IntT (Li) → S1 are the conditions αii +
∑

j �=i αij = 0,
i = 1, . . . , r.

An inverse image of a regular value of the extended map f̃ gives an oriented
surface F ⊂ S3 − �r

i=1IntT (Li) such that the boundary ∂F = l1 ∪ · · · ∪ lr. Hence
the system of curves (l1, . . . , lr) is preferred for the link L.

2.2. Realizability of meridional systems

Proposition 2.3. Suppose that a group G has a meridional system µ =
(µ1, . . . , µr) ∈ Gr. Then there exists a ribbon r-component link L ⊂ S3 with a
surjective homomorphism ρ : π1(S3 − L) → G such that ρ(mi) = µi for each
i = 1, . . . , r, where mi is the meridian of the component Li.

The proof of Proposition 2.3 is a straightforward generalization of Johnson’s
proof for knots. We refer the reader to [5] for details. Recall that to describe a
homomorphism from the link group to the group G, it suffices to label the arcs of a
planar diagram of the link with elements of G in such a way that, at each crossing,
the corresponding relation for the labelled elements holds in G.

A represented band is a pair of parallel, oppositely directed arcs of the dia-
gram of the link, with no other arcs of the link passing between the two arcs of
the band and such that the two arcs are labelled with the same element of G,
see Fig. 1.
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Fig. 2. The construction of a ribbon link L with a homomorphism ρ : π1(S3 − L) → G.

Proof of Proposition 2.3. Let µ1, . . . , µr be a meridional system for G. There
are positive integers k1, . . . , kr and µij ∈ G, i = 1, . . . , r, j = 1, . . . , ki such that:

• µi1 = µi for all i = 1, . . . , r;
• the µij generate the group G;
• µij = WijµiW

−1
ij for words Wij in the letters µuv, i = 1, . . . , r, j = 1, . . . , ki.

Consider the trivial link of k1 + · · · + kr components and label the components
with the µij (see Fig. 2). This gives a surjective homomorphism from the group of
the trivial link to G. For each pair of i, j weave a represented band issuing from the
component labelled with µi1 according to the instructions given by Wij .

Perform a band connection (see Fig. 1) between the represented band and the
component labelled with µij . One obtains in this way a ribbon link L of r compo-
nents and a surjective homomorphism ρ : π1(S3 − L) → G (see Fig. 2).

3. Weakly Realizable Systems: Proof of Theorem 1.4

In Sec. 3.1 we introduce the Pontryagin product. Section 3.2 is devoted to necessity
in Theorem 1.4. Section 3.3 contains the proof of sufficiency in Theorem 1.4.

3.1. Pontryagin product

Definition 3.1 (the G-bordism group Ωn(G) of n-dimensional manifolds).
(a) Let M, N be two oriented closed n-dimensional possibly disconnected manifolds
and let G be a group. Fix homotopy classes of continuous maps fM : M → K(G, 1),
fN : N → K(G, 1).

The pairs (M, fM ) and (N, fN ) are called G-bordant if there is an oriented
compact connected (n + 1)-dimensional manifold W with a continuous map fW :
W → K(G, 1) such that ∂W = M ∪ (−N), fW |M = fM and fW |N = fN . Here
(−N) is N with the reversed orientation.

(b) Classes of G-bordant pairs [M, fM ] form the G-bordism group Ωn(G). The oper-
ation is the disjoint union, the unit element is the empty set ∅ with the empty map
∅ → K(G, 1).

(c) Denote by Hn(G) the nth homology group of a group G with integer coeffi-
cients [1]. It is a well-known fact, which can be proved using the Atiyah–Hirzebruch
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spectral sequence (see [9, Theorem 15.7]), that for n = 2 and 3, the natural map
ιn : Ωn(G) → Hn(G) is a group isomorphism.

Definition 3.2 (the Pontryagin product 〈µ, λ〉 in the group H2(G).)
(a) Suppose that two elements µ, λ ∈ G commute. Then there is a natural homo-
morphism ψ : Z × Z → G defined by ψ(1, 0) = µ, ψ(0, 1) = λ. The homomor-
phism ψ induces a representation ρ : π1(S1 × S1) → G and a continuous map
f : S1 × S1 → K(G, 1). So, we get an element [S1 × S1, f ] ∈ Ω2(G) ∼= H2(G).

(b) The element 〈µ, λ〉 = ι2([S1 ×S1, f ]) ∈ H2(G) is called the Pontryagin product.
It is well-defined and satisfies the relation 〈µ, λ1〉+ 〈µ, λ2〉 = 〈µ, λ1λ2〉 when λ1 and
λ2 both commute with µ in G, see [1].

We shall use repeatedly the following identification: let W be a connected
manifold with some base point x0. There is a one-to-one correspondence between
representations ρ : π1(W, x0) → G and homotopy classes of continuous pointed
maps f : W → K(G, 1), see [9, Chap. 6, Theorem 6.39(ii)].

3.2. Necessity in Theorem 1.4

Lemma 3.3. Let G be a group with a meridional system µ = (µ1, . . . , µr) ∈ Gr.
If a system λ = (λ1, . . . , λr) ∈ Gr is weakly realizable for the pair (G, µ), then
condition (i) of Theorem 1.4 holds.

Proof. Let curves mi, li be associated to the elements µi, λi by Definition 1.3(b),
i = 1, . . . , r. Then mi, li lie on the boundary of a small tubular neighborhood
T (Li) of Li ⊂ L. Since π1(∂T (Li)) ∼= Z ⊕ Z, then the corresponding loops mi, li ∈
π1(S3 − L) commute. Hence their images ρ(mi) = µi, ρ(li) = λi commute in G.

Lemma 3.4. Under the conditions of Theorem 1.4, for each i = 1, . . . , r, fix an
element λi ∈ G commuting with µi. Suppose that there exists an oriented compact
connected 3-manifold M with a representation ρ : π1(M) → G such that

∂M = �r
i=1(S

1
i × S1

i ), ρ|∂M ({pt} × S1
i ) = µi, ρ|∂M (S1

i × {pt}) = λi, i = 1, . . . , r.

Then the sum of the Pontryagin products
∑r

i=1〈µi, λi〉 vanishes in the group H2(G).

Proof. Let f : M → K(G, 1) be a continuous map corresponding to the homo-
morphism ρ : π1(M) → G.

We have ι2([∂M, f |∂M ]) =
∑r

i=1 ι2([S1
i × S1

i , f |S1
i ×S1

i
]) =

∑r
i=1〈µi, λi〉 in the

group H2(G). Since the disjoint union �r
i=1(S

1
i × S1

i ) is bounded by an oriented
compact connected 3-manifold M , then [∂M, f |∂M ] = 0, i.e.

∑r
i=1〈µi, λi〉 = 0.

Lemma 3.5. Let G be a group with a meridional system µ = (µ1, . . . , µr) ∈ Gr.
If a system λ = (λ1, . . . , λr) ∈ Gr is weakly realizable for the pair (G, µ), then
condition (ii) of Theorem 1.4 holds.
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Proof. Let L ⊂ S3 be a link weakly realizing the given system λ ∈ Gr, see
Definition 1.3(b). Let T (L) ⊂ S3 be a sufficiently small tubular neighborhood of L.
Then Lemma 3.5 follows from Lemma 3.4 for M = S3 − IntT (L).

Necessity in Theorem 1.4 follows directly from Lemmas 3.3 and 3.5.

3.3. Sufficiency in Theorem 1.4

Lemmas 3.3 and 3.5 motivate the following definition.

Definition 3.6 (an algebraic triple (G, µ, λ)).
Let G be a group with a meridional system µ ∈ Gr. Let λ = (λ1, . . . , λr) ∈ Gr be
a system such that conditions (i) and (ii) of Theorem 1.4 hold. Then (G, µ, λ) is
called an algebraic triple.

Let G be a group with a meridional system µ ∈ Gr. By Definition 3.6 and
Lemmas 3.3, 3.5 if a system λ ∈ Gr is weakly realizable for the pair (G, µ), then
the triple (G, µ, λ) is algebraic. Our purpose is to prove the converse.

Definition 3.7 (a geometric triple (M, ρ, f)).
Let M be a connected oriented compact 3-manifold with ∂M = �r

i=1(S
1
i × S1

i ).
Suppose that there is a surjective homomorphism ρ : π1(M) → G such that

• for the meridian mi = {pt} × S1
i ⊂ ∂M , we have ρ(mi) = µi;

• for the longitude li = S1
i × {pt} ⊂ ∂M , we have ρ(li) = λi for each i = 1, . . . , r.

Take a continuous map f : M → K(G, 1) associated to ρ. Then (M, ρ, f) is said to
be a geometric triple corresponding to the algebraic triple (G, µ, λ).

Lemma 3.8. For any algebraic triple (G, µ, λ), there is a corresponding geometric
triple (M, ρ, f).

Proof. By Definition 3.6 the Pontryagin products 〈µi, λi〉 ∈ H2(G) are well-
defined. We have representations ρ|S1

i ×S1
i

: π1(S1
i ×S1

i ) → G. There are continuous
maps fi : S1

i × S1
i → K(G, 1) such that ι2([S1

i × S1
i , fi]) = 〈µi, λi〉.

By condition (ii) of Theorem 1.4 the element [�r
i=1(S

1
i × S1

i ),�r
i=1fi] =

ι−1
2 (
∑r

i=1〈µi, λi〉) vanishes in Ω2(G). By Definition 3.1(a) there are a 3-manifold
M and a continuous map f : M → K(G, 1) extending the maps fi. We can, if
necessary, add 1-handles to M to make it connected and add connected sums of
S2 × S1 to make the homomorphism corresponding to f surjective.

Lemma 3.9. Let (G,µ, λ) be an algebraic triple and let (M, ρ, f) be a corresponding
geometric triple. Denote by W the closed 3-manifold M ∪ (S1 × (�r

i=1D
2
i )), where
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{pt} × ∂D2
i is glued to {pt} × S1

i in ∂M . Fix a point qi ∈ ∂D2
i , i = 1, . . . , r.

(a) Any closed curve γ ⊂ M is isotopic, in W, to a curve γ′ ⊂ M with ρ(γ′) = e.
(b) There exists an integral surgery carrying W to S3 in such a way that

• S1 × ∪r
i=1{qi} ⊂ S1 × (�r

i=1D
2
i ) ⊂ W maps to a link L′ = ∪r

i=1L
′
i ⊂ S3;

• ρ : π1(M) → G turns into a surjective homomorphism ρ′ : π1(S3−L′) → G;
• for the meridian m′

i and a longitude l′i of L′
i, one has ρ′(m′

i) = µi, ρ′(l′i) =
λiµ

ai

i for some integer ai.

Proof. The proof of (a) is completely analogous to [6, Claim on p. 140].

(b) Any oriented closed 3-manifold W can be obtained from S3 by an integral
surgery [7, Chap. 9, Sec. I]. Using (a) we can perform such a surgery along curves
γ ⊂ M with ρ(γ) = e. Hence we get a link L′ ⊂ S3 and a surjective homomorphism
ρ′ : π1(S3 − L′) → G. The meridian mi always maps to the meridian m′

i, i.e.
ρ′(m′

i) = ρ(mi) = µi. But the longitude li maps to some longitude l′im
−ai

i , hence
ρ′(l′i) = λiµ

ai

i , where ai ∈ Z.

Proposition 3.10. Let G be a group with a meridional system µ ∈ Gr. A system
λ is weakly realizable for (G, µ) if the triple (G, µ, λ) is algebraic.

Proof. Suppose that (G, µ, λ) is an algebraic triple. Let (M, ρ, f) be a correspond-
ing geometric triple from Lemma 3.8. By forming the connected sum of M with
copies of S1 × S2 we add free generators to π1(M) and hence can arrange that the
representation ρ : π1(M) → G is surjective. Apply Lemma 3.9(b) to the manifold
M and the homomorphism ρ.

Sufficiency in Theorem 1.4 follows directly from Proposition 3.10.

4. Johnson–Livingston Products

4.1. Definitions of Johnson–Livingston products

Firstly, we introduce the usual Johnson–Livingston product in Definition 4.1(c).
The extended Johnson-Livingston product will appear in Definition 4.4.

Definition 4.1 (the Johnson–Livingston product {µ, λ} ∈ Q(G)).
(a) Suppose that the Pontryagin product 〈µ, λ〉 of two commuting elements µ, λ ∈ G

vanishes in H2(G). Since H2(G) ∼= Ω2(G), there is an oriented compact connected
3-manifold M with a surjective homomorphism ρ : π1(M) → G such that

∂M = S1 × S1, ρ|∂M ({pt} × S1) = µ and ρ|∂M (S1 × {pt}) = λ.

(b) Suppose that λ ∈ G′. Form the closed manifold U = M ∪ (D2 ×S1), where ∂M

is identified with ∂(D2×S1) in such a way that the meridian ∂D2×{pt} ⊂ D2×S1
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is glued to S1 × {pt} ⊂ ∂M . This gluing kills the longitude S1 × {pt}, which is in
the kernel of ρ̂ = pr ◦ ρ : π1(M) → G/G′. By the Seifert–van-Kampen theorem,
ρ̂ = pr◦ρ extends to a homomorphism ρ̃ : π1(U) → G/G′. We get the corresponding
map f̃ : U → K(G/G′, 1) and an element [U, f̃ ] ∈ Ω3(G/G′) ∼= H3(G/G′).

(c) Let q : H3(G/G′) → Q(G) = H3(G/G′)/pr∗(H3(G)) be the projection map.
The element {µ, λ} = q ◦ ι3([U, f̃ ]) ∈ Q(G) is the Johnson–Livingston product.

Recall that the Pontryagin product is additive [1]. Then one gets a well-defined
homomorphism θµ : Z(µ) → H2(G), θµ(λ) = 〈µ, λ〉. Here Z(µ) ⊂ G is the central-
izer subgroup of µ ∈ G. Denote by P (G, µ) ⊂ Z(µ) the kernel of θµ.

Proposition 4.2 [6, Sec. 1]. For λ ∈ P (G, µ), the Johnson–Livingston product
{µ, λ} ∈ Q(G) is well-defined. Moreover, {µ, λ} + {µ, τ} = {µ, λ · τ} when defined.
Hence, the map χµ : P (G, µ) → Q(G) is a group homomorphism.

We introduce the notion of a geometric pentad which will be used in the defini-
tion of the extended Johnson–Livingston product below.

Definition 4.3 (a geometric pentad (U,F,M, ρ, f )).
Let (G, µ, λ) be an algebraic triple, (M, ρ, f) be a corresponding geometric triple.
Take a connected oriented surface F with boundary ∂F = �r

i=1S
1
i . Let pi ∈ S1

i ⊂
∂F be a point, i = 1, . . . , r. Form the closed manifold U = M ∪ (F × S1), where
∂F × S1 is identified with ∂M in such a way that

• the meridian mi = {pt} × S1
i ⊂ ∂M is glued to {pi} × S1 ⊂ ∂F × S1;

• the longitude li = S1
i × {pt} ⊂ ∂M is glued to S1

i × {pt} ⊂ ∂F × S1

for each i = 1, . . . , r. The pentad (U, F, M, ρ, f) with all the above properties is
called a geometric pentad corresponding to the algebraic triple (G, µ, λ).

Definition 4.4 (the extended Johnson–Livingston product {µ, λ}∈Q(G)).
Let (G, µ, λ) be an algebraic triple. Suppose that the elements µi of the merid-
ional system µ are conjugate to one another in G. Assume that λ ∈ (G′)r. Let
(U, F, M, ρ, f) be a corresponding geometric pentad. We shall show in Lemma 4.13
that the homomorphism ρ̂ = pr ◦ ρ : π1(M) → G/G′ extends to a homomorphism
ρ̃ : π1(U) → G/G′. We get the corresponding map f̃ : U → K(G/G′, 1) and an
element [U, f̃ ] ∈ Ω3(G/G′). Its image {µ, λ} = q ◦ ι3([U, f̃ ]) in Q(G) is well-defined
and is called the extended Johnson–Livingston product, see Theorem 4.17.

In [6, Appendix 3], there is an example of a group G such that Q(G) is non-trivial.
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4.2. Multi-connected sums

Definition 4.5 (a multi-connected sum of manifolds).
(a) Let (G, µ, λ) and (G, µ, τ ) be algebraic triples. Assume that condition (iii) of
Theorem 1.5 holds for λ and τ . Let (UM , FM , M, ρM , fM ) and (UN , FN , N, ρN , fN )
be geometric pentads corresponding to (G, µ, λ) and (G, µ, τ ), respectively.

(b) Denote by Bi and Ci sufficiently small annular neighborhoods of the meridians
{pt} × S1

i ⊂ ∂M and {pt} × S1
i ⊂ ∂N , respectively, i = 1, . . . , r. Let A = �r

i=1Ai

be the disjoint union of r annuli Ai.

(c) Set M#rN = M ∪ (A× [0, 1])∪N , where Ai ×{0} is identified with Bi ⊂ ∂M ,
Ai × {1} is identified with Ci ⊂ ∂N , i = 1, . . . , r. The manifold M#rN is called a
multi-connected sum of the manifolds M, N , see Fig. 3.

Definition 4.6 (a multi-band sum of surfaces).
Denote by I the disjoint union �r

i=1Ii of r segments. Set bi = Bi ∩ F , ci = Ci ∩ F .
Set F := FM#rFN = FM ∪ (I × [0, 1]) ∪ FN , where Ii × {0} is identified with
bi ⊂ ∂FM , Ii × {1} is identified with ci ⊂ ∂FN . The surface F := FM#rFN is a
multi-band sum of the surfaces FM and FN .

Definition 4.7 (a multi-connected sum of geometric pentads).
By using M#rN and the surface F one can construct a closed manifold W . By
Lemma 4.8(a) below the homomorphisms ρM : π1(M) → G, ρN : π1(N) → G and
the continuous maps fM : M → K(G, 1), fN : N → K(G, 1) can be extended to a
homomorphism ρ : π1(M#rN) → G and a continuous map f : M#rN → K(G, 1).
The pentad (W, F, M#rN, ρ, f) is said to be a multi-connected sum of pentads.

Fig. 3. A multi-connected sum M#rN of 3-dimensional manifolds.
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Lemma 4.8. The geometric pentad (W, F, M#rN, ρ, f) corresponds to the alge-
braic triple (G, µ, λ · τ ). In more details,

(a) the homomorphisms ρM : π1(M) → G, ρN : π1(N) → G and the corresponding
maps fM : M → K(G, 1), fN : N → K(G, 1) can be extended to a homomor-
phism ρ : π1(M#rN) → G and a continuous map f : M#rN → K(G, 1);

(b) we have ∂(M#rN) = �r
i=1S

1
i × S1

i , ρ(mi) = µi, ρ(li) = λiτi, where
mi = {pt} × S1

i ⊂ ∂(M#rN), li = S1
i × {pt} ⊂ ∂(M#rN), i = 1, . . . , r.

Proof. A Seifert–Van-Kampen argument taking into account the arcs joining the
base point to boundary components of M and N shows that ρM and ρN can be
extended to ρ with the required properties, see Fig. 3.

Definition 4.9 (a multi-connected sum of links).
A link L = ∪r

i=1Li ⊂ S3 is called a multi-connected sum of links K = ∪r
i=1Ki ⊂ S3

and J = ∪r
i=1Ji ⊂ S3, if there exist a two-sided 2-sphere S ⊂ S3 and arcs Ii ⊂ S,

such that Ki∩Ji = Ii, (Ki ∪Ji)− Ii = Li for each i = 1, . . . , r, and K lies inside S,
J lies outside S. In other words, we simultaneously make r usual connected sums
on different components of K and J . We shall denote a multi-connected sum by
L = K#rJ , see Fig. 4.

If r = 1, then L = K#1J is the usual connected sum of knots. The following
lemma is geometrically obvious.

Lemma 4.10. Let L = ∪r
i=1Li and L′ = ∪r

i=1L
′
i be links in S3. If (l1, . . . , lr)

and (l′1, . . . , l′r) are systems of preferred longitudes for the link L and L′, respec-
tively, then the usual connected sums (l1#1l

′
1, . . . , lr#1l

′
r) form a preferred system

of longitudes for the multi-connected sum L#rL
′.

Actually, if ∂F = ∪r
i=1li and ∂F ′ = ∪r

i=1l
′
i, then ∂(F#rF

′) = ∪r
i=1(li#1l

′
i).

Proposition 4.11. (a) The set R(G, µ) is a subgroup of Gr. The trivial element
of R(G, µ) is represented by an algebraically split link. If links K and J realize
systems λ, τ ∈ Gr, respectively, then a multi-connected sum K#rJ realizes λ · τ .

Fig. 4. A multi-connected sum L = K#rN of links.
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(b) Let (µ1, . . . , µr) be a meridional system of a group G and suppose that
(λ1, . . . , λr) is realized by a link L ⊂ S3. Then, for any µr+1 ∈ G, (µ1, . . . , µr, µr+1)
is a meridional system and (λ1, . . . , λr, e) is realized by the link L � O ⊂ S3, i.e.
the link L with a split off trivial component added to it.

Proof. Let K = ∪r
i=1Ki ⊂ S3 and J = ∪r

i=1Ji ⊂ S3 be two links realizing systems
λ, τ ∈ R(G, µ). We are going to construct a link L = ∪r

i=1Li ⊂ S3 realizing the
system λ · τ = (λ1τ1, . . . , λrτr). Take a multi-connected sum L = K#rJ . Let
B, C ⊂ S3 be the internal and external 3-balls bounded by the sphere S from
Definition 4.9. Then the following diagram is commutative.

π1(S − ∪r
i=1∂Ii) −−−−→ π1(B − ∪r

i=1(Ki − Int Ii))� �
π1(C − ∪r

i=1(Ji − Int Ii)) −−−−→ π1(S3 − L)

By the Seifert–van-Kampen theorem, we may extend the given surjective rep-
resentations ρK : π1(S3 − K) → G and ρJ : π1(S3 − J) → G to a surjective rep-
resentation ρL : π1(S3 − L) → G with peripheral information specified as required
by Lemma 4.10.

To realize the inverse of a system λ in R(G, µ), realize λ by a link L and reverse
the orientations on the link components. Take a ribbon link L which realizes some
element λ ∈ R(G, µ) by using Proposition 2.3. The multi-connected sum of L and
its inverse is an algebraically split link which realizes the trivial element.

The item (b) is geometrically obvious.

4.3. Lifting continous maps and homomorphisms

Lemma 4.12. Let H be a group, U1, U2, W be compact n-dimensional manifolds
with boundary. Take orientation preserving diffeomorphisms g1 : ∂W → ∂U1 and
g2 : ∂W → ∂U2. Let f1 : U1 → K(H, 1), f2 : U2 → K(H, 1), f : W → K(H, 1) be
continuous maps such that the following diagrams are commutative:

∂W
f |∂W−−−−→ K(H, 1) ∂W

f |∂W−−−−→ K(H, 1)

g1

� ∥∥∥ g2

� ∥∥∥
∂U1

f1|∂U1−−−−→ K(H, 1), ∂U2

f2|∂U2−−−−→ K(H, 1).

Then f1, f2 and f extend to continuous maps

f̃1 : U1 ∪g1 (−W ) → K(H, 1) and f̃2 : U2 ∪g2 (−W ) → K(H, 1)

such that in the group Ωn(H) we have

[U1 ∪g1 (−W ), f̃1] − [U2 ∪g2 (−W ), f̃2] = [U1 ∪g3 (−U2), f̃3],

where g3 = g1 ◦ g−1
2 : ∂U2 → ∂W → ∂U1 and f̃3 extends f1 and f2.
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Proof. It is clear that the maps f1, f2 and f extend. Consider the (n + 1)-
dimensional manifold with corners

X = (U1 ∪g1 (−W )) × [0, 1] ∪h1 (W × [0, 1]) ∪h2 (U2 ∪g2 (−W )) × [0, 1],

where h1 identifies W × {0} with (−W ) × {1} ⊂ (U1 ∪g1 (−W )) × {1} and h2

identifies W × {1} with (−W ) × {0} ⊂ (U2 ∪g2 (−W )) × {0}. The maps f̃1 and f̃2

extend to a map f̃ : X → K(H, 1).
The boundary of X has three components diffeomorphic to U1 ∪g1 (−W ),

(−U2)∪g2 W and (−U1)∪ (∂W × [0, 1])∪U2 respectively with corresponding maps
to K(H, 1). This proves the equality in Ωn(H) since [X, f̃ ] = 0 in Ωn+1(H).

Let µ be a meridional system of a group G. From now on, we shall suppose that
the elements µi of the system µ are conjugate to one another in G.

Lemma 4.13. Let (U, F, M, ρM , fM ) be a geometric pentad corresponding to an
algebraic triple (G, µ, λ). If λ ∈ (G′)r, then the homomorphism ρ̂M = pr ◦ ρM :
π1(M) → G → G/G′ can be extended to a homomorphism ρ̃M : π1(U) → G/G′.

Proof. A Mayer–Vietoris sequence argument shows that it suffices to find a homo-
morphism φM : H1(F × S1) → G/G′ such that the diagram is commutative:

H1(∂F × S1) −−−−→ H1(F × S1)� φM

�
H1(M)

ρ̂M−−−−→ G/G′

One has H1(F ×S1) ∼= H1(F )⊗H0(S1)⊕H0(F )⊗H1(S1). Define the restriction of
φM to H1(F )⊗H0(S1) to be the zero map. Let the generator of H0(F )⊗H1(S1) map
under φM to [µ1]. The diagram above commutes since ρ̂M (li) = 0 and ρ̂M (mi) =
[µ1] as all µi are conjugate to one another.

Lemma 4.14. Under the conditions of Lemma 4.13 suppose that λ1 = · · · = λr = e

in G. Then the homomorphism ρ̃ : π1(U) → G/G′ from Lemma 4.13 can be lifted
to a homomorphism ρ̄ : π1(U) → G.

Proof. Set Y1 = M and Y2 = T ∪ (F × S1), where T is a tree connecting the
components of ∂M with a base point q ∈ M inside M . Then Y = Y1 ∩ Y2 = T ∪
(�r

i=1S
1
i ×S1

i ) is connected and π1(Y ) ∼= Πr
i=1(Z[li]×Z[mi]). Denote by γ1 the edge

of T , which connects the base point q with the first component of ∂F ×S1. Let g(F )
be the genus of the surface F . Then π1(γ1 ∪ (F ×S1)) is presented by 2g(F )+ r +1
generators x1, y1, . . . , xg, yg, l1, . . . , lr, z and the relations l1 · · · lr = Πg(F )

j=1 [xj , yj ],
zxj = xjz, zyj = yjz, zli = liz, i = 1, . . . , r, j = 1, . . . , g(F ).

The elements li represent the longitudes, the letter z = m1 denotes the meridian
of the first component. To get T ∪(F ×S1) let us connect q with the ith component
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by an arc γi, i = 1, . . . , r. This adds generators u1, . . . , ur. Define the homomor-
phism ϕ : π1(T ∪ (F × S1)) → G by ϕ(xj) = ϕ(yj) = ϕ(li) = e, ϕ(z) = µ1,
ϕ(ui) = δi1 , where δi1 ∈ G such that µi = δi1µ1δ

−1
i1

. The following diagram
commutes

π1(Y ) −−−−→ π1(Y1)� �ρM

π1(Y2)
ϕ−−−−→ G

since

li −−−−→ li� �ρM

li
ϕ−−−−→ e

and

mi −−−−→ mi� �ρM

uizu−1
i

ϕ−−−−→ µi

Remark 4.15. It is in the proof of Lemma 4.14 that we need the hypothesis that
the elements of the meridional system be conjugate to one another. Lemma 4.14 is
essential for the well-definedness of the extended Johnson–Livingston product.

4.4. Well-definedness of the extended Johnson–Livingston product

Lemma 4.16. Let (W, F, M#rN, ρ, f) be a multi-connected sum of geometric
pentads (UM , FM , M, ρM , fM ) and (UN , FN , N, ρN , fN) corresponding to algebraic
triples (G, µ, λ) and (G, µ, τ ), respectively. Assume that λ ∈ (G′)r and τ ∈ (G′)r.

Using Lemma 4.13, let ρ̃M : π1(UM ) → G/G′, ρ̃N : π1(UN) → G/G′ and
ρ̃ : π1(W ) → G/G′ be the homomorphisms extending ρ̂M , ρ̂N , ρ̂, respectively.

Let f̃M : UM → K(G/G′, 1), f̃N : UN → K(G/G′, 1) and f̃ : W → K(G/G′, 1)
be the corresponding maps. Then [W, f̃ ] = [UM , f̃M ] + [UN , f̃N ] in Ω3(G/G′).

Proof. Using the notations of Definition 4.5 and applying Lemma 4.12 for the
group H = G/G′, we have

[W, f̃ ] − [UM , f̃M ] = [(A × [0, 1]) ∪ N ∪ (I × [0, 1] ∪ FN ) × S1, f̃0],

where f̃0 is the restriction of f̃ to (A× [0, 1])∪N ∪ (I × [0, 1]∪FN )×S1. Applying
Lemma 4.12 again, we get:

[W, f̃ ] − [UM , f̃M ] − [UN , f̃N ] = [(A × [0, 1]) ∪ (I × [0, 1]) × S1, f̃1],

where f̃1 is the restriction of f̃ to (A× [0, 1])∪ (I × [0, 1])×S1. The latter manifold
is a disjoint union of r copies of S2 × S1 and any map S2 × S1 → K(G, 1) extends
to B3 × S1. Therefore, [W, f̃ ] − [UM , f̃M ] − [UN , f̃N ] = 0 in Ω3(G/G′).

Theorem 4.17. Let a group G have a meridional system µ = (µ1, . . . , µr) ∈ Gr

such that each µi is conjugate to µ1, i = 2, . . . , r. Assume that λ ∈ Gr and that
conditions (i)–(iii) of Theorems 1.4, 1.5 hold.

(a) The extended Johnson–Livingston product {µ, λ} ∈ Q(G) is well-defined.
(b) We have {µ, λ} + {µ, τ} = {µ, λ · τ} when defined.
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Proof. (a) Let (U, F, M, ρ, f) and (U ′, F ′, M ′, ρ′, f ′) be two geometric pentads rep-
resenting the algebraic triple (G, µ, λ). Then the pentad (−U ′,−F ′,−M ′, ρ′, f ′)
represents (G, µ, λ−1). The multi-connected sum of (U, F, M, ρ, f) and
(−U ′,−F ′,−M ′, ρ′, f ′) represents (G, µ, e) by Lemma 4.8 and gives an element
in pr∗H3(G) by Lemma 4.14. Lemma 4.16 implies that [U, f̃ ]− [U ′, f̃ ′] ∈ pr∗H3(G),
hence {µ, λ} is well-defined.

(b) The additivity is a direct consequence of Lemma 4.16.

The following lemma will be used in Lemma 5.8, Sec. 5.3.

Lemma 4.18. Suppose that conditions (i), (ii) of Theorem 1.4 hold for systems
µ = (µ1, . . . , µr) and λ = (λ1, . . . , λr). Assume that λr = e in the group G.
Set µ′ = (µ1, . . . , µr−1) and λ′ = (λ1, . . . , λr−1). Then the extended Johnson–
Livingston product {µ′, λ′} ∈ Q(G) is well-defined and equal to {µ, λ}.

Proof. It is clear that (G, µ′, λ′) is an algebraic triple. Let (U ′, F ′, M ′, ρ′, f ′) be
a geometric pentad realizing it. Denote by F the surface obtained by removing the
interior of a disk D2 in the interior of F ′, hence U ′ = (F × S1) ∪ (D2 × S1) ∪ M ′.

Consider the disjoint union M0 = M ′�(D2×S1). To make it connected, perform
a 1-handle surgery. The resulting 3-dimensional manifold M satisfies π1(M) =
π1(M ′) ∗ Z, so that ρ′ can be extended to ρ : π1(M) → G by sending the free
generator to µr. Denote by f : M → K(G, 1) the corresponding map.

Set U = M ∪ (F × S1). It is easy to see that (U, F, M, ρ, f) is a geometric
pentad corresponding to the triple (G, µ, λ). One can then extend ρ′ and ρ using
Lemma 4.10 to ρ̃′ : π1(U ′) → G/G′ and ρ̃ : π1(U) → G/G′. Consider the associated
maps f̃ ′ : U ′ → K(G/G′, 1) and f̃ : U → K(G/G′, 1).

Set W = U ∪ (F × S1 × [0, 1]) ∪ (−U ′), where F × S1 × {0} is identified with
F × S1 ⊂ U and F × S1 × {1} is identified with F × S1 ⊂ (−U ′). The compact
4-manifold W has boundary ∂W = U ∪(−U ′). Moreover, the maps f̃ and f̃ ′ extend
to W since they agree on F × S1. Hence, the equality [U ′, f̃ ′] = [U, f̃ ] holds in
Ω3(G/G′). This shows that {µ, λ} = {µ′, λ′} in Q(G).

5. Realizable Systems: Proof of Theorem 1.5

Let µ be a meridional system of G. In this section, we still assume that the elements
µi of the system µ are conjugate to one another in G.

5.1. Necessity in Theorem 1.5

Proposition 2.3 implies that the set R(G, µ) of realizable systems is non-empty.

Lemma 5.1. If λ ∈ R(G, µ), then condition (iii) of Theorem 1.5 holds.
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Proof. Let L = ∪r
i=1Li ⊂ S3 be a link realizing the system λ ∈ Gr. In other words,

one has ρ(mi) = µi and ρ(li) = λi, where m1, . . . , mr are meridians of L1, . . . , Lr,
(l1, . . . , lr) is a preferred system of longitudes for the link L. By Lemma 2.2, in the
group H1(S3 − L) one has [li] =

∑r
j=1 αij [mj ], where αij = lk(Li, Lj), i �= j and

αii = −∑j �=i lk(Li, Lj).
The homomorphism ρ̂ = pr ◦ ρ : π1(S3 − L) → G → G/G′ factorizes through

H1(S3 − L). Hence in the quotient G/G′ one gets [λi] =
∑r

j=1 αij [µj ]. By the
conditions of Theorem 1.5 one has [µ1] = · · · = [µr]. Since

∑r
j=1 αij = 0, then

[λi] = 0 for each i = 1, . . . , r.

Lemma 5.2. If λ ∈ R(G, µ), then condition (iv) of Theorem 1.5 holds.

Proof. By Lemma 5.1 and Theorem 4.17(a) the Johnson–Livingston product
{µ, λ} is well-defined. Let L = ∪r

i=1Li ⊂ S3 be a link with a surjective homo-
morphism ρ : π1(S3 − L) → G realizing the given system λ ∈ Gr. Denote by
f : S3 − L → K(G, 1) a continuous map corresponding to ρ.

Let F ⊂ S3 be an oriented surface such that F ∩ L = ∂F = L. Consider
the sphere S3 as the boundary of the ball B4. Push F into B4 leaving ∂F in S3.
Take a sufficiently small regular neighborhood T (F ) ⊂ B4. Then the complement
V = B4 − IntT (F ) is an oriented compact 4-dimensional manifold with boundary
∂V = (S3 − ∪r

i=1IntT (Li)) ∪ (S1 × F ).
The pentad (∂V, F − IntT (L), S3 − IntT (L), ρ, f) is a geometric pentad cor-

responding to (G, µ, λ). Note that H1(V ) ∼= Z. Denote by j the inclusion j :
S3− IntT (L) → V . Consider the homomorphism ρ̃ : π1(V ) → G/G′ induced by the
map which sends the generator of H1(V ) to [µ1]. This makes the following diagram
commutative

π1(S3 − IntT (L))
pr◦ρ−−−−→ G/G′

j∗

� ∥∥∥
π1(V )

ρ̃−−−−→ G/G′

Denote by i∗ the homomorphism induced by the inclusion ∂V ⊂ V . Let f̃ :
∂V → K(G/G′, 1) be the map corresponding to ρ̃ ◦ i∗. The construction above
shows that [∂V, f̃ ] vanishes in the group Ω3(G/G′). This implies {µ, λ} = 0.

5.2. Partial realization results

Here we shall realize some auxilary systems needed for sufficiency in Theorem 1.5.
For any meridional system µ ∈ Gr, we have a well-defined homomorphism θµ :
Z(µ) → H2(G), θµ(λ) =

∑r
i=1〈µi, λi〉. Here Z(µ) ⊂ Gr is the centralizer subgroup

of µ ∈ Gr. Denote by P (G, µ) ⊂ Z(µ) the kernel of θµ. Therefore, a system λ ∈ Gr

is weakly realizable if and only if λ ∈ P (G, µ).
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Since the elements µi of the system µ are conjugate to one another in G, the
abelianization G/G′ is a cyclic group. We shall denote by n its order. In particular,
n = 0 when G/G′ ∼= Z and n = 1 when G = G′. The following lemma is a
generalization of [6, Theorem 3].

Lemma 5.3. Let µ ∈ Gr be a meridional system of a finitely generated group G. If
condition (iii) of Theorem 1.5 holds and λ ∈ P (G, µ), then there are a1, . . . , ar ∈ Z

such that λa := (λ1µ
a1
1 , . . . , λrµ

ar
r ) ∈ R(G, µ) and ai ≡ 0 (mod n).

Proof. By Lemma 3.9(b), there is a link L′ ⊂ S3 with a surjective homomorphism
ρ′ : π1(S3 − L′) → G realizing a system λa := (λ1µ

a1
1 , . . . , λrµ

ar
r ) with a1, . . . , ar ∈

Z. For i = 1, . . . , r, condition (iii) of Theorem 1.5 says that [λi] = 0 in G/G′ and
Lemma 5.1 shows that [λi] + ai[µi] = 0 in G/G′. Since [µ1] generates G/G′, we get
ai ≡ 0 (mod n).

Lemma 5.4. Let µ ∈ G2 be a meridional system of a finitely generated group G.
Let L = L1 ∪ L2 ⊂ S3 be a 2-component link with a surjective homomorphism
ρ : π1(S3 − L) → G such that ρ(m1) = µ1, ρ(m2) = µ2, where m1, m2 are the
meridians of L1, L2.

Let b, c be integers such that b + c ≡ 0 (mod n). Then there is an oriented
trivial knot J ⊂ S3 − L such that ρ(J) = e, lk(J, L1) = b, lk(J, L2) = c.

Proof. Let us produce two oriented curves J1, J2 ⊂ S3 − L such that

• ρ(J1) = µb
1µ

c
2, lk(J1, L1) = b, lk(J1, L2) = c;

• ρ(J2) = µb
1µ

c
2, lk(J2, L1) = 0, lk(J2, L2) = 0.

To construct J1 choose a closed curve in S3 −L homotopic to mb
1m

c
2, perform a

homotopy to make it embedded. Since µb
1µ

c
2 ∈ G′ and G is normally generated by

µ1, one gets µb
1µ

c
2 =

∏s
i=1 ξiµ

εi
1 ξ−1

i , where the ξi are in G and the εi are integers
such that

∑s
i=1 εi = 0 (see [6, Claim in the proof of Theorem 2]).

Let γi, i = 1, . . . , s be closed curves in S3 − L such that ρ(γi) = ξi. The curve
γ =

∏s
i=1 γiµ1γ

−1
i can be homotoped to a simple closed curve J2 in S3 − (L ∪ J1)

such that ρ(J2) = µb
1µ

c
2 and lk(J2, L1) = lk(J2, L2) = 0. Consider the connected

sum of J1 and J2 in S3 − L. It can be unknotted by a homotopy in S3 − L. The
resulting curve J satisfies the required properties.

The following lemma is a generalization of [6, Theorem 2] to 2-component links.

Lemma 5.5. Let µ ∈ G2 be a meridional system of a finitely generated group
G. For all integers b, c such that b + c ≡ 0 (mod n), one has (µb2+bc

1 , µbc+c2

2 ) ∈
R(G, µ).

Proof. By Proposition 4.11(a) there is a 2-component algebraically split link
L = L1 ∪ L2 realizing the system (e, e) ∈ G2. Let m1, m2 be the meridians of
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L1, L2 and denote by l̄1, l̄2 the preferred longitudes of L1, L2, respectively. Since L

is algebraically split, (l̄1, l̄2) is the preferred system of longitudes for L.
Take a homomorphism ρ : π1(S3 − L) → G such that ρ(m1) = µ1, ρ(m2) = µ2,

ρ(l̄1) = ρ(l̄2) = e. By Lemma 5.4 there exists an oriented trivial knot J ⊂ S3 − L

such that ρ(J) = e, lk(J, L1) = b, lk(J, L2) = c.
The integral surgery on J with framing +1 carries S3 to itself and the link L

to a link L′ = L′
1 ∪ L′

2 with a surjective homomorphism ρ′ : π1(S3 − L′) → G.
The meridians of L′ satisfy m′

1 = m1, m′
2 = m2. Let us denote by (l′1, l

′
2) the

preferred system of longitudes of L′. Our aim is to prove that ρ′(l′1) = µb2+bc
1 and

ρ′(l′1) = µbc+c2

2 .
Let mJ be the meridian of J and let lJ be a longitude such that lk(lJ , J) = +1.

The homology class of lJ in the group H1(S3 −L− J) ∼= Z[m1]⊕Z[m2]⊕Z[mJ ] is

given in this basis by the vector [lJ ] =

(
b
c
1

)
. Similarly, H1(S3−L′) ∼= Z[µ′

1]⊕Z[µ′
2].

In these bases the attaching map of the surgery disc is given by

(
b
c
1

)
.

The inclusion ψ : S3− (L∪J) → S3−L′ is described in homology by
„

1 0 −b
0 1 −c

«
.

Denote by l̄′1, l̄
′
2 the preferred longitudes of the components L′

1, L
′
2, respectively.

One gets [l̄1] =

(
0
0
b

)
, [l̄2] =

(
0
0
c

)
∈ H1(S3 − L − J);

ψ∗([l̄1]) =
(−b2

−bc

)
, ψ∗([l̄2]) =

(−bc

−c2

)
, [l̄′1] =

(
0
∗
)

, [l̄′2] =
( ∗

0

)
∈ H1(S3−L′).

In particular, for the link L′, one gets lk(L′
1, L

′
2) = −bc and l′1 = mbc

1 l̄′1, l′2 = mbc
2 l̄′2.

Since ψ(l̄1) and ψ(l̄2) are longitudes of the components L′
1 and L′

2, then l̄′1 =
md1

1 ψ(l̄1) and l̄′2 = md2
2 ψ(l̄2) for d1, d2 ∈ Z. By substituting in the vectors above

one obtains d1 = b2, d2 = c2. One computes l′1 = mb2+bc
1 ψ(l1) and l′2 = mbc+c2

2 ψ(l2).
Since ρ(l1) = ρ(l2) = e, we get ρ′(l′1) = µb2+bc

1 and ρ′(l′1) = µbc+c2

2 as desired.

Lemma 5.6. Let µ ∈ G2 be a meridional system of a finitely generated group G.

(a) (1, µn2

2 ) ∈ R(G, (µ1, µ2)), where n is the order of G/G′.
(b) For any integer h ∈ Z, (µhn

1 , µ−hn
2 ) ∈ R(G, µ).

Proof. (a) [6, Theorem 2] states that, in the particular case r = 1 of a knot, µn2
is

realizable, i.e. there is a knot K with a surjective homomorphism ρ : π1(S3−K) →
G such that ρ(m) = µ, ρ(l) = µn2

, where m and l are the meridian and the preferred
longitude of K. By Proposition 4.11(b) the link O �K realizes (1, µn2

2 ), where O is
the trivial circle.
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(b) Lemma 5.5 with b = h, c = n − h implies (µhn
1 , µn2−hn

2 ) ∈ R(G, µ). By Propo-
sition 4.11(a) the set R(G, µ) is a group. Then we get

(µhn
1 , µ−hn

2 ) = (µhn
1 , µn2−hn

2 ) · (1, µn2

2 )−1 ∈ R(G, µ).

5.3. Sufficiency in Theorem 1.5

Here we finish the proof of our main Theorem 1.5 formulated in Sec. 1.3.

Proposition 5.7. Under the conditions of Lemma 5.3 there exists h ∈ Z such that
(λ1µ

hn
1 , λ2, . . . , λr) ∈ R(G, µ).

Proof. By Lemma 5.3 take integers a1, . . . , ar ∈ Z such that λa =
(λ1µ

a1
1 , . . . , λrµ

ar
r ) ∈ R(G, µ) and ai ≡ 0 (mod n) for each i = 1, . . . , r. If n = 0,

then the result is obvious. Suppose n ≥ 1 and write ai = hin, hi ∈ Z, i = 1, . . . , r.

By Lemma 5.6(b) the system (µh2n
1 , µ−h2n

1 ) belongs to R(G, (µ1, µ2)), hence
(µh2n

1 , µ−h2n
2 , 1, . . . , 1) ∈ R(G, µ) by Proposition 4.11(b). Then we obtain

λ′
a := (λ1µ

(h1+h2)n
1 , λ2, λ3µ

h3n
3 , . . . , λrµ

hrn
r ) = λa·(µh2n

1 , µ−h2n
2 , 1, . . . , 1) ∈ R(G, µ).

Apply the same trick to the components λ1µ
(h1+h2)n
1 and λ3µ

h3n
3 of λ′

a to kill
h3 and so on. Finally, we get h ∈ Z such that (λ1µ

hn
1 , λ2, . . . , λr) ∈ R(G, µ) as

required.

The following lemma is a simple generalization of [6, Theorem 4].

Lemma 5.8. Let µ ∈ Gr be a meridional system of a finitely generated group
G. Let h be an integer such that {µ, µh} = 0, where µh = (µhn

1 , 1, . . . , 1). Then
µh ∈ R(G, µ).

Proof. By Lemma 4.18 one has {µ, µh} = {µ1, µ
hn
1 } ∈ Q(G). [6, Theorem 4] says

that µhn
1 ∈ R(G, µ1). Then Proposition 4.11(b) implies µh ∈ R(G, µ).

Proof of Theorem 1.5. Theorem 1.5 says that, for a system λ ∈ P (G, µ), con-
ditions (iii) and (iv) are equivalent to realizability λ ∈ R(G, µ). Necessity of these
conditions follows from necessity in Theorem 1.4 and Lemmas 5.1, 5.2.

To prove sufficiency take by Proposition 5.7 an integer h ∈ Z such that
λh ∈ R(G, µ), where λh = (λ1µ

hn
1 , λ2, . . . , λr). By Lemma 5.2 (necessity of con-

dition (iv)) one gets {µ, λh} = 0 in Q(G). By Theorem 4.17(b) (additivity of the
extended Johnson–Livingston product) one has 0 = {µ, λh} = {µ, λ} + {µ, µh},
where µh = (µhn

1 , 1, . . . , 1).
Condition (iv) of Theorem 1.5 means that {µ, λ} = 0, hence one obtains

{µ, µh} = 0. Then by Lemma 5.8 we get µh ∈ R(G, µ). Since by Proposition 4.11(a)
the set R(G, µ) is a group, λ = λh · µ−1

h ∈ R(G, µ) as required.
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6. Applications

We give below examples of groups where conditions (i)–(iv) of Theorems 1.4 and 1.5
apply.

Example 6.1. Let G be the group of a classical knot K and let µ1, . . . , µr be
meridians of K. Then µ = (µ, . . . , µr) ∈ Gr is a meridional system of G and the
only nontrivial conditions of Theorems 1.4 and 1.5 are conditions (i) and (iii) since
it is well-known that H2(G) = 0 and H3(G/G′) = H3(Z) = 0. For i = 1, . . . , r, let
λ denote the preferred longitude of K that commutes with µi. Then all systems of
the form λ = (λa1 , . . . , λar ), ai ∈ Z, i = 1, . . . , r are realizable.

If K is a hyperbolic knot, then one shows that these are the only realizable
systems since any element of G which commutes with µi is parabolic and belongs
to the peripheral subgroup of G containing µi.

If K is a composite knot, then there are other realizable systems because the
preferred longitude of a summand of K commutes with the meridian of K but is
not a power of the preferred longitude of K.

Example 6.2. Consider virtual knot groups as described by Kim [8]. Let G be
the group of a virtual knot such that H2(G) is cyclic of order 2. Such a knot exists
[8, Sec. 6.3]. Its group has the presentation:

〈a, b | b = a−1b2ab−2a, b = [ba−1, a−1b]−1b[ba−1, a−1b]〉.
Let r > 0 be an integer and let µ and λ denote the meridian and preferred

longitude of the virtual knot. Set µ = (µ, . . . , µ) and λ = (λ, . . . , λ) in Gr. Then µ

is a meridional system of G, conditions (i), (iii) and (iv) are satisfied, in particular,
G/G′ ∼= Z so that H3(G/G′) = 0. The Pontryagin product 〈µ, λ〉 generates H2(G)
by [8, Theorem 15], hence condition (ii) is equivalent to the condition that r is even.

Example 6.3. Let G be the group described in [6, Appendix 3]. It has the
presentation

〈a, b, x, y | b−1anb = [x, y], b−2anb2 = y−2xy2, a−1ba = y−3xy3, a−2ba2 = x−2yx2〉,
where n is a positive integer. The group G is normally generated by a and G/G′

is cyclic of order n generated by the class of a. According to [6], we have H2(G) =
H3(G) = 0 and since G/G′ ∼= Zn, we get Q(G) = H3(G/G′) ∼= Zn.

Let r be a positive integer and take µ = (a, . . . , a) ∈ Gr and λ = (an, . . . , an) ∈
(G′)r. Conditions (i)–(iii) are satisfied. We shall compute explicitly the extended
Johnson–Livingston product {µ, λ} and show that it is r times the generator of
Q(G) ∼= Zn. So, condition (iv) is equivalent to n divides r.

Let L0 ⊂ S3 be the trivial link with r components. Denote by m0
i and l0i , i =

1, . . . , r the meridians and preferred longitudes of L0. Let ρ0 : π1(S3 −L0) → G be
the homomorphism sending m0

i to a. Let M be the connected sum of S3−IntT (L0)
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with three copies of S2 × S1. We can extend ρ0 to a surjective homomorphism
ρ : π1(M) → G. Let f : M → K(G, 1) be a corresponding continuous map.

Parametrize the components of ∂T (L0) by maps gi : S1 ×S1 → ∂T (L0) in such
a way that gi({pt} × S1) = m0

i and gi(S1 × {pt}) = (m0
i )

nl0i , i = 1, . . . , r. The
geometric triple (M, ρ, f) realizes the algebraic triple (G, µ, λ). Let F denote the
2-dimensional sphere punctured with r holes. Glue F × S1 to M to get a closed
manifold U as described in Definition 4.3 and extend ρ to ρM : π1(U) → G/G′ with
associated map f : U → K(G/G′, 1).

The way that ρM is constructed in Lemma 4.14 shows that we may assume
that the restriction of f̃ to F × S1 is of the form f̃(x, t) = g(t) for x ∈ F and
t ∈ S1, where g : S1 → K(G/G′, 1) is a map such that in homotopy the generator
of π1(S1) is sent to the class of a in G/G′. The associated pentad computes the
extended Johnson–Livingston product {µ, λ}.

Set U1 = F ×S1 and U2 = (S2 − IntF )×S1 which is a disjoint union of r solid
tori. Lemma 4.12 shows that, in Ω3(G/G′), the element [U, f̃ ] is equal to [U ′, f̃ ′],
where U ′ is a connected sum of lens spaces of type L(n, 1) and f̃ ′ is the extension
of f to U ′. This uses the fact that any element of the form [S2 × S1, h] vanishes
in Ω3(G/G′). Therefore, [U, f̃ ] = r[L(n, 1), ψ] in Ω3(G/G′), where ψ : L(n, 1) →
K(G/G′, 1) induces a surjective homomorphism π1(L(n, 1)) ∼= Zn → G/G′.

The result follows since the element [L(n, 1), ψ] corresponds to a generator of
H3(G), see [6, Sec. 3, p. 138].
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