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Abstract

A periodic 3-dimensional lattice is an infinite set of all integer linear combinations of
three basis vectors in Euclidean 3-space. Any basis extends to a superbase by adding
the fourth vector such that the sum of all four vectors is zero. Any lattice has an
obtuse superbase whose all pairwise angles are non-acute. The recent classification of
3-dimensional lattices constructed a complete invariant consisting of up to six square
roots of scalar products of four superbase vectors. The interior of the resulting 6-
dimensional Lattice Isometry Space consists of all triclinic lattices. We describe the
low dimensional strata representing all other Bravais classes of lattices. In each case we
visualise hundreds of thousands of real crystal lattices from the Cambridge Structural

Database for the first time.

1. Motivations, metric problem and overview of past and new results

This paper complements the recent classification of 3-dimensiobnal lattices up to isom-

etry in the previous paper (?) written for mathematicians and computer scientists.
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This paper for crystallographers demonstrates continuity of the Lattice Isometry Space

by mapping all real crystal lattices from the Cambridge Structural Database (CSD).

Isometry is the fundamental equivalence of lattices due to rigidity of most crystals.
The resulting Lattice Isometry Space (LIS) consists of infinitely many classes, where
every class includes all lattices isometric to each other. Then any transition between
lattices is a continuous path in the LIS. A past approach to uniquely represent any
isometry class was to choose a reduced basis (Niggli’s reduced cell). Any such reduction

is discontinuous under perturbations, see Widdowson et al. (2022, Theorem 15).

2. Basic definitions and a review of past work on lattice classifications

Any point p in Euclidean space R™ can be represented by the vector from the origin
0 € R™ to p. So p may also denote this vector, though an equal vector p can be drawn

at any initial point. The Fuclidean distance between points p,q € R™ is |p — ¢|.

Definition 2.1 (a lattice A, a unit cell U). Let vectors vy, ..., v, form a linear basis

n
in R™ so that if ) ¢;v; = 0 for some real ¢;, then all ¢; = 0. Then a lattice A in
i=1
n
R™ consists of all linear combinations ) c¢;v; with integer coefficients ¢; € Z. The
i=1

n
parallelepiped U(vy,...,v,) = {Z civi ¢ €0, 1)} is a primitive unit cell of A. W
i=1

Definition 2.2 (obtuse superbase and its conorms p;;). For any basis v1, ..., v, in R",
n
the superbase vo,v1, ..., v, includes the vector vg = — ) v;. The conorms p;; = —v;-v;
i=1

are equal to the negative scalar products of the vectors above. The superbase is called
obtuse if all conorms p;; > 0, so all angles between vectors v;,v; are non-acute for

distinct indices 4,5 € {0,1,...,n}. The superbase is called strict if all p;; > 0. [ ]

The indices of a conorm p;; are distinct and unordered, so we assume that p;; = pj;.

A 1D lattice generated by a vector v; has the obtuse superbase of vg = —v; and vy,
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so the only conorm pg; = —vg-v1 = v% is the squared norm of v1. Any basis of R™ has
n(n+1)

2 conorms p;j, for example three conorms po1, po2, p12 in dimension 2.

Theorem 2.3 (obtuse superbase existence). Any lattice A in dimensions n = 2,3 has

an obtuse superbase vg,v1, ..., v, so that p;j = —v; - v; > 0 for any i # j. |

3. Root forms and root invariants of 3-dimensional lattices

Kurlin (2022, Lemmas 4.1-4.5) explicitly described all obtuse superbases for each of five
Voronoi types of lattices. Since any obtuse superbase B has only non-negative conorms,
the root products r;; = \/pij are well-defined for all distinct indices i, j € {0,1,2,3} and
have the same units as original coordinates of basis vectors, for example Angstroms:

1A =10"""m. Any r;j = 4/—; - vj measures non-orthogonality of vectors v;,v;.

Definition 3.1 (root matrices and index-permutations). For any ordered obtuse

superbase B = {vg, v1,v2,v3}, its six root products can written as 2 x 3 root matriz

23 T13 T12
Tolr To2 To3

>. An index-permutation is a permutation o € Sy of indices 0, 1, 2, 3,

which maps root products as follows: 7;; = 74(j)4(;), Where r;; = rj;. [ ]

The group Sy of all 24 index-permutations is generated by the three indez-transpositions
0+ 1,1« 2, 2+ 3. To reduce the ambiguity of root matrices, Definition 3.2 intro-
duces below a root form RF(B) and root invariant RI(B), which turns out to be a
complete invariant of A C R? up to isometry. The root invariant RI(B) reduces RF (B)

to 6, 5, 4, 4, 3 root products for Voronoi types Vi, Vo, V3, Vi, Vs, respectively.

Definition 3.2 (root form RF(B) and root invariant RI(A) of a lattice A). (V5)
Any obtuse superbase B of a lattice A C R? of Voronoi type V5 has exactly three

non-zero root products. Up to 24 index-permutations, the root form is RF(B) =

00 rom > for any

< 00 0 > for any odd superbase B and RF(B) = (
r 0 702 703

01 To2 To3
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even superbase B, where all non-zero root products are freely permutable. The root

invariant RI(A) is an ordered triple of the non-zero root products ro1, 792, 703-

(Va) For any lattice A C R?® of Voronoi type Vj, any obtuse superbase B has two
o . 0O 0 r
zero root products in different columns. A root form is RF(B) = ( "2 >,
o1 To2 To3
where ro3 = 0 = r13, and the root products ri2,701,702 are freely permutable. The

root invariant RI(A) = {(r12,701,702), 703} consists of 3 + 1 root products, where the

triple (712, 701, 702) should be written in increasing order.

(V3) For any lattice A C R?® of Voronoi type V3, any obtuse superbase B of A

has exactly two zero root products in the same column. A root form is RF(B) =
0 :

< 2 > with ro3 = 0 = rg3, and , 12,702, T03 are freely permutable. The

0 792 703

root invariant RI(A) consists of the four non-zero root products in increasing order.

(V) For any lattice A C R3 of Voronoi type Va, any obtuse superbase B of A has

0 12 ) , where

exactly one zero root product. A root form is RF(B) = < e
01 To2 703

12

ro3 = 0 and the 2 x 2 submatrix <
02  T03

) can be changed by the symmetry
group Dy, which can guarantee (without changing indices for simplicity) that =

min{r 3,712,702, 703} and also 19 < rgz. The root invariant consists of 1+ 3 + 1 root

products: RI(A) = {T()l,( , 12, 7‘02), 7’03}, where 703 Z S 712 S ro2.

(V1) For any obtuse superbase B of a lattice A C R? of Voronoi type V1, a root form
RF(B) is the matrix < 23 T3 T2 > , where root products can be rearranged by the
Tor To2 To3
24 index-permutations from Definition 3.1. A permutation of indices 1, 2, 3 as in (3.1a)
allows us to arrange the three columns in any order. The composition of transpositions
0 <> 7 and j < k for distinct 4, j, k # 0 vertically swaps the root products in columns
j and k, for example apply the transposition 2 <+ 3 to the result of 0 < 1 in (3.1b). So
we can put 7pm, = min{7r;;} into the top left position (re3). Then we consider the four

root products in columns 2 and 3. Keeping column 1 fixed, we can put the minimum
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of these four into the top middle position (r13). Then the resulting root products in

the top row should be in increasing order.

If the top left and top middle root products are equal (ro3 = r13), we can put their
counterparts (rg; and 792) in the bottom row of columns 1,2 in increasing order. If
the top middle and top right root products are equal (r;3 = r12), we can put their
counterparts (rg2 and rg3) in the bottom row of columns 2 and 3 in increasing order.

The resulting uniquely ordered matrix is the root invariant RI(A). ]
Scaling any lattice A by a factor s € R multiplies all root products in RI(A) by s.

Theorem 3.3 (3D lattices/isometry ¢+ root invariants). Any lattices A, A’ C R? are

isometric if and only if their root invariants coincide: RI(A) = RI(A'). A

Example 3.4 (root invariants of orthorhombic lattices). (oP) The primitive orthorhom-
bic lattice A with edge-lengths 0 < a < b < ¢ has the obtuse superbase v; =
(a,0,0), v2 = (0,b,0), v3 = (0,0,¢), vo = (—a, —b, —c), whose root form is RF(B) =
< 2 2 (c) >, so the root invariant is RI(A) = (a, b, ¢). If we re-order vectors, columns
of RF(B) are re-ordered accordingly, but RI(A) remains the same. Another obtuse
superbase v; = (a,0,0), v2 = (0,b,0), v5 = (—a,0,c), vj = (0, —b, —c) has RF(B) =

< 8 2 CCL ) The root invariant RI(A) = (a, b, ¢) is the same by Definition 3.2(V3).

(tP) For a primitive tetragonal lattice, set a = b in the case above.
Let all orthorhombic lattices below have a base cube with sides 2a < 2b < 2¢.

(0S) A base-centred orthorhombic lattice A has the obtuse superbase v; = (2a,0,0),
vy = (—a,b,0), v3 = (0,0,¢), vo = (—a,—b,—c), whose root form is RF(B) =
0 0 av/'2 L _ —
< Wi VE—EZ ¢ ) The root invariant is RI(A) = {(av/2,av/2,Vb? — a?),c}

where the v/b2 — a2 should move to the first place if av/2 > Vb2 — a2, b < aV/3.

(oF) A face-centred orthorhombic lattice A has the obtuse superbase v; = (a,b,0),

ve = (a,—b,0), v3 = (—a,0,¢), v9 = (—a,0,—c), whose root form is RF(B) =
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< b2 —a2 a a

c?2—a? a a

>. If b < av/2, the root invariant is RI(A) = RF(B). Otherwise,

RI(A) is obtained from RF(B) above by swapping the first and last columns.

(o) For a body-centred orthorhombic lattice A, assume that a?+b? > ¢2. Then A has

the obtuse superbase v; = (a,b, —c), va = (a,—b, ), v3 = (—a, b, c), vo = (—a, —b, —c),
Vaz +02 —c2 Va2 -2 +c2 V—aZ+b2+c2
\/a2_|_b2_02 \/CLQ—b2+02 \/—a2+62+02

root products are increasing in each row, so RI(A) coincides with RF(B) above.

andRF(B)z( >.Ifa<b<c,the

(tI) For a body-centred tetragonal lattice, set a = b in the case above to get RI(A) =
< 202 -2 ¢ ¢

3 >, where we should swap the first and last columns for a > c.
204 —c* ¢

a a

(eI) For a body-centred cubic A, a =b = c in (oI gives RI(A) = < Z @ a ) [

4. Continuous maps of lattices by their Voronoi, Bravais and Delone types

Hahn et al. (2002, Table 9.1.8.1) subdivides 14 Bravais classes of lattices within each
of 5 Voronoi types and lists 24 Delone’s types, see the original version in Delone (1938,
Fig. 36) and the latest update in Andrews et al. (2020, Fig. 2). These discrete splittings

in 5, 14, 24 types will be extended to continuous maps below.

Examples 4.1-4.5 visualise root forms for each Voronoi type by the maps below:
e column projections CPy, CPo, CP3 visualise any root form as a triple of points in the
quadrant @ = {(z,y) € R? | ,y > 0} or as one point in the product Q1 x Q2 x Q3;
e Voronoi maps VM; : RIS; — @ project root forms of type V; to the quadrant Q;
e Delone maps visualise strata of Bravais types of lattices within each Voronoi type.

Example 4.1 (Voronoi map VM; for lattices of type V). Any root invariant RI =

< 23 T13 T12
Tor To2 To03
jections CPl(RI) = (?”01,7”23), CPQ(RI) = (7”02,7‘13), CPg(RI) = (7“03,7‘12), Where each

> from Definition 3.2(V}) can be visualised by the three column pro-

pair lives in its own quadrant Q; = {ro; >0, r{1233—; > 0}, i =1,2,3.
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The Ist Voronoi map is VM; = (CP1,CP2,CP3) : RIS — @1 X Q2 x Q3. Under

the 1st column projection CPy, the root invariants of all generic lattices of Voronoi

type Vi map to {res > 0} C @ strictly above the horizontal axis {ry3 = 0}, which

represents all non-generic lattices of Voronoi types Va, V3, V4, V5 visualised in further
examples. All lattices of Voronoi type Vi split into eight Delone types below.

[eI] Let a body-centred cubic lattice A have a base cubic cell with a side a. By Exam-

Z Z Z >’ which is mapped by VM; to three equal diagonal

ple 3.4(cI), RI(A) = <
points (a,a) € @y, i = 1,2,3. The Delone map DM]cI] : RI(A) — a projects all

root invariants RI(A) to R and can be visualised as a histogram over a € R. Other

non-primitive orthorhombic lattices will have a base cuboid with sides 2a < 2b < 2c.

[Vi NtI] Let a body-centred tetragonal lattice A of Voronoi type V; have a base cuboid

cell with sides 2a, 2a, 2¢ such that ¢ < ay/2. By Example 3.4(tl), for a < ¢ < av/2, we

have the root invariant RI(A) = < o1 To2 702 >, where rg; = v2a?2 — 2, rg2 = c.
Tor To2 To2

. : . ro1 Tror T
For a > ¢, the root invariant is RI(A) = 0L 701702 ) " where ro1 = ¢, rog =
Tor To1 To2

V2a? — 2. Then VM; maps all root invariants of both types above to three diagonal
points in the quadrants Q1, Q2, @3. The Delone map DM[V; NtI] : RI(A) — (z,y) can
be visualised as a plot in the coordinates z = v/2a% — 2, y = c.

v m),which
vy yy

projects under VM to three equal non-diagonal points (x,y) € Q1, @2, Q3. The Delone

[Vi N hR] A rhombohedral lattice of Voronoi type Vi has RI = (

map DM[V; N hR] can be plotted in the coordinates y > = > 0.

[oF] A face-centred orthorhombic lattice A by Example 3.4(oF) has the root invariant

b2—a? a a a a Vb%—a?
RI(A) = < T2 4 a > for b < av/2 and RI(A) = < 0 a4 I > for
b > av/2. Under the first Voronoi map VM;, both root invariants project to two

diagonal points and one non-diagonal point in @1, @2, Q3.

[V1 NolI] A body-centred orthorhombic lattice A of type Vi by Example 3.4(ol) for
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Tolr To2 T
a? + b > ¢ has RI(A) = 0L 702703 ) " where 1oy = Va2 + 02 — 2, ros =
Tol T02 T03

Va2 — b2 +c2, rg3 = vV—a? 4+ b? + 2. Under the first Voronoi map VM, any root

invariant RI(A) above projects to three non-equal diagonal points in Q1, Q2, Q3.

[Vi NmC|] A centred monoclinic lattice A can have two Delone types with 4 param-

ro3 T T T T T .
eters: RI; = T T2 and RIy = or Toz T2 , where columns might
o1 To02 703 o1 T02 703

be permuted to guarantee a top row in increasing order.

[Vi NaP] The most generic lattices A C R3 are triclinic. Their root invariants consist
of six non-zero root products and live in the interior of ()1 X @2 X (Y3 outside all seven

Delone subspaces considered above. |

The 1st Voronoi map VM; has split six root products into three pairs, which can
be visualised in three quadrants. Other Voronoi maps VM; : RIS; — @ will map root

invariants to one quadrant () so that higher types are represented by coordinate axes.

Example 4.2 (Voronoi map VMs : RISy — Q). Any root invariant of Voronoi type
Vo is RI = {ro1, (13,712, 702), 703}, where 73 > < r12 < ro2, see Definition 3.2(V3).
The 2nd Voronoi map is VMa(RI) = (rg1,713). The limit case of the vertical axis
{ro1 = 0} represents Voronoi types V3, V5. The limit case of the horizontal axis {15 =

0} represents Voronoi types Vy, V5. The origin represents Voronoi type V5. |

Example 4.3 (Voronoi map VM3 : RIS3 — Q). Any root invariant of Voronoi type
V3 from Definition 3.2(V3) is an ordered quadruple RI = (713,712,702, 703). The 3rd
Voronoi map is VM3(RI) = (r93,713) € Q. The limit case of the horizontal axis

{r13 = 0} represents all lattices of Voronoi type V5 below. ]

By Kurlin (2022, Lemma 4.4), a Voronoi domain of type V; is a hexagonal prism
with strict Voronoi vectors vy, vo generating a non-rectangular lattice in R?, while the

3rd vector vs is orthogonal to both v, vs and has the length ¢ = rg3 = /—vg - v3.
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Example 4.4 (Voronoi maps VMy : RISy — @). Any root invariant of of Voronoi

type Vi is RI = {ros, (112,701, 702)} such that ri2 < ro; < 792, see Definition 3.2(V}).
(VMP™) The minimum 4th Voronoi map is VMP™™(RI) = (r12,703).

[mP] All primitive monoclinic lattices from the Bravais class (mP) have (x,y) =
VMZP“*(RI) in the interior of the quadrant @, where 2 = 715 > 0 and y = ro3 > 0.
The limit case of the vertical axis {rj2 = 0} represents the lattices of Voronoi type V3
when the basis vectors vy, vo, v3 are pairwise orthogonal, see Example 4.5.

(VM$'t) Similarly to the root invariants of 2D lattices, it is convenient to scale root

(r12,701,702)
T2 + To1 + T2
The orthogonal 4th Voronoi map is VM (RI) = (7p2 — 701, 3712) € QT.

products in an ordered triple dividing them by the sum: (712, 701, 702) =

The above map forgets 73 equal to the length |vs| of the 3rd basis vector vs orthog-
onal to vy, vy. Since ro; = —vg - v; = (v +v2 +v3) - v; = (v1 +v2) - v; for i = 1,2 due to
vg - v; = 0, the above root products g1, ro2 for the superbase in R? coincide with the

root products for the smaller superbase vy, vo, —v1 — v9 generating the 2D lattice.

[0S] Any base-centred orthorhombic lattice from the Bravais class (0S) includes a 2D
centred-rectangular lattice Ay generated by v; = (2a,0), v = (—a,b) for 0 < a < b.
The 2D root invariant RI(A3) is an ordered triple (av/2, av/2, Vb? — a?), where the first
and last entries should be swapped for a < b < av/3. The 3D root invariant is RI(A) =
{e,RI(A2)}. The orthogonal 4th Voronoi map shows A as the point VM$*(RI(A)) in
the vertical edge or the hypotenuse (without all vertices) of QT. Any such A can be

represented by (¢, c) in a separate plot.

[AP] The top vertex VM$(RI) = (0,1) € QT represents all hexagonal lattices below.

Any lattice A from the Bravais class (hp) includes a 2D hexagonal lattice generated by

vectors v1 = (a,0) and vy = (-5, @a) of a length a. Then RI(A) = {e, (%, %, \%)}

Any 3D hexagonal lattice can represented by (a,c) in a separate plot. |
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Example 4.5 (Voronoi map VMj : RIS2 — Q). Any root invariant RI = (a, b, ¢) of

Voronoi type Vs is an ordered triple 0 < a < b < ¢ of edge-lengths of a cuboid cell.

a b

[VM5] The 5th Voronoi map is VM5(RI) = ( ) c{(z,y) eR?|0<x<y<1}

e
[cP] Root invariants (a,a,a) of all simple cubic lattices with all three equal sides
a = b = ¢ map under VM35 to the point (1,1). The sides a of all simple cubic lattices

can be shown in a histogram with vertical bars whose width is a small interval of a

and the height is proportional to the number of lattices with sides in this interval.

[tP] Root invariants (a,a,c) and (a,b,b) of all simple tetragonal lattices with two
equal sides a = b or b = ¢, respectively, map under VM5 to the diagonal {0 < z =
=% =y < 1} and the horizontal line {0 < = < 1,y = % = 1}, respectively.

a
c c

[oP] Root invariants RI = (a,b,c) of all primitive orthorhombic latices map under

VM; to (%, %) in the open triangle {0 <y < z < 1}. |
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VM5 Map of All V5 Lattices , n = 157005
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Fig. 1. The 5th Voronoi map VM5 for all CSD lattices of Voronoi type Vs from Exam-
ple 4.5. The colours of pixels indicate numbers of lattices with parameters (2, g)
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Fig. 2. The density plot of the 5th Voronoi map VMj5 from Fig. 1 in the logarithmic
scale better visualises the interior of the triangle 0 < ¢ < g < 1 representing the
Bravais class of all primitive orthorhombic lattices in Example 4.5[oP].
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