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Abstract

A periodic 3-dimensional lattice is an infinite set of all integer linear combinations of

three basis vectors in Euclidean 3-space. Any basis extends to a superbase by adding

the fourth vector such that the sum of all four vectors is zero. Any lattice has an

obtuse superbase whose all pairwise angles are non-acute. The recent classification of

3-dimensional lattices constructed a complete invariant consisting of up to six square

roots of scalar products of four superbase vectors. The interior of the resulting 6-

dimensional Lattice Isometry Space consists of all triclinic lattices. We describe the

low dimensional strata representing all other Bravais classes of lattices. In each case we

visualise hundreds of thousands of real crystal lattices from the Cambridge Structural

Database for the first time.

1. Motivations, metric problem and overview of past and new results

This paper complements the recent classification of 3-dimensiobnal lattices up to isom-

etry in the previous paper (?) written for mathematicians and computer scientists.
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This paper for crystallographers demonstrates continuity of the Lattice Isometry Space

by mapping all real crystal lattices from the Cambridge Structural Database (CSD).

Isometry is the fundamental equivalence of lattices due to rigidity of most crystals.

The resulting Lattice Isometry Space (LIS) consists of infinitely many classes, where

every class includes all lattices isometric to each other. Then any transition between

lattices is a continuous path in the LIS. A past approach to uniquely represent any

isometry class was to choose a reduced basis (Niggli’s reduced cell). Any such reduction

is discontinuous under perturbations, see Widdowson et al. (2022, Theorem 15).

2. Basic definitions and a review of past work on lattice classifications

Any point p in Euclidean space Rn can be represented by the vector from the origin

0 ∈ Rn to p. So p may also denote this vector, though an equal vector p can be drawn

at any initial point. The Euclidean distance between points p, q ∈ Rn is |p− q|.

Definition 2.1 (a lattice Λ, a unit cell U). Let vectors v1, . . . , vn form a linear basis

in Rn so that if
n∑
i=1

civi = 0 for some real ci, then all ci = 0. Then a lattice Λ in

Rn consists of all linear combinations
n∑
i=1

civi with integer coefficients ci ∈ Z. The

parallelepiped U(v1, . . . , vn) =

{
n∑
i=1

civi : ci ∈ [0, 1)

}
is a primitive unit cell of Λ. �

Definition 2.2 (obtuse superbase and its conorms pij). For any basis v1, . . . , vn in Rn,

the superbase v0, v1, . . . , vn includes the vector v0 = −
n∑
i=1

vi. The conorms pij = −vi·vj

are equal to the negative scalar products of the vectors above. The superbase is called

obtuse if all conorms pij ≥ 0, so all angles between vectors vi, vj are non-acute for

distinct indices i, j ∈ {0, 1, . . . , n}. The superbase is called strict if all pij > 0. �

The indices of a conorm pij are distinct and unordered, so we assume that pij = pji.

A 1D lattice generated by a vector v1 has the obtuse superbase of v0 = −v1 and v1,
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so the only conorm p01 = −v0 · v1 = v21 is the squared norm of v1. Any basis of Rn has

n(n+ 1)

2
conorms pij , for example three conorms p01, p02, p12 in dimension 2.

Theorem 2.3 (obtuse superbase existence). Any lattice Λ in dimensions n = 2, 3 has

an obtuse superbase v0, v1, . . . , vn so that pij = −vi · vj ≥ 0 for any i 6= j. �

3. Root forms and root invariants of 3-dimensional lattices

Kurlin (2022, Lemmas 4.1-4.5) explicitly described all obtuse superbases for each of five

Voronoi types of lattices. Since any obtuse superbase B has only non-negative conorms,

the root products rij =
√
pij are well-defined for all distinct indices i, j ∈ {0, 1, 2, 3} and

have the same units as original coordinates of basis vectors, for example Angstroms:

1Å = 10−10m. Any rij =
√−vi · vj measures non-orthogonality of vectors vi, vj .

Definition 3.1 (root matrices and index-permutations). For any ordered obtuse

superbase B = {v0, v1, v2, v3}, its six root products can written as 2 × 3 root matrix(
r23 r13 r12
r01 r02 r03

)
. An index-permutation is a permutation σ ∈ S4 of indices 0, 1, 2, 3,

which maps root products as follows: rij 7→ rσ(i)σ(j), where rij = rji. �

The group S4 of all 24 index-permutations is generated by the three index-transpositions

0 ↔ 1, 1 ↔ 2, 2 ↔ 3. To reduce the ambiguity of root matrices, Definition 3.2 intro-

duces below a root form RF(B) and root invariant RI(B), which turns out to be a

complete invariant of Λ ⊂ R3 up to isometry. The root invariant RI(B) reduces RF(B)

to 6, 5, 4, 4, 3 root products for Voronoi types V1, V2, V3, V4, V5, respectively.

Definition 3.2 (root form RF(B) and root invariant RI(Λ) of a lattice Λ). (V5)(V5)(V5)

Any obtuse superbase B of a lattice Λ ⊂ R3 of Voronoi type V5 has exactly three

non-zero root products. Up to 24 index-permutations, the root form is RF(B) =(
0 0 0
r01 r02 r03

)
for any odd superbase B and RF(B) =

(
0 0 r01
0 r02 r03

)
for any
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even superbase B, where all non-zero root products are freely permutable. The root

invariant RI(Λ) is an ordered triple of the non-zero root products r01, r02, r03.

(V4)(V4)(V4) For any lattice Λ ⊂ R3 of Voronoi type V4, any obtuse superbase B has two

zero root products in different columns. A root form is RF(B) =

(
0 0 r12
r01 r02 r03

)
,

where r23 = 0 = r13, and the root products r12, r01, r02 are freely permutable. The

root invariant RI(Λ) = {(r12, r01, r02), r03} consists of 3 + 1 root products, where the

triple (r12, r01, r02) should be written in increasing order.

(V3)(V3)(V3) For any lattice Λ ⊂ R3 of Voronoi type V3, any obtuse superbase B of Λ

has exactly two zero root products in the same column. A root form is RF(B) =(
0 r13 r12
0 r02 r03

)
with r23 = 0 = r03, and r13, r12, r02, r03 are freely permutable. The

root invariant RI(Λ) consists of the four non-zero root products in increasing order.

(V2)(V2)(V2) For any lattice Λ ⊂ R3 of Voronoi type V2, any obtuse superbase B of Λ has

exactly one zero root product. A root form is RF(B) =

(
0 r13 r12
r01 r02 r03

)
, where

r23 = 0 and the 2 × 2 submatrix

(
r13 r12
r02 r03

)
can be changed by the symmetry

group D4, which can guarantee (without changing indices for simplicity) that r13 =

min{r13, r12, r02, r03} and also r12 ≤ r02. The root invariant consists of 1 + 3 + 1 root

products: RI(Λ) = {r01, (r13, r12, r02), r03}, where r03 ≥ r13 ≤ r12 ≤ r02.

(V1)(V1)(V1) For any obtuse superbase B of a lattice Λ ⊂ R3 of Voronoi type V1, a root form

RF(B) is the matrix

(
r23 r13 r12
r01 r02 r03

)
, where root products can be rearranged by the

24 index-permutations from Definition 3.1. A permutation of indices 1, 2, 3 as in (3.1a)

allows us to arrange the three columns in any order. The composition of transpositions

0↔ i and j ↔ k for distinct i, j, k 6= 0 vertically swaps the root products in columns

j and k, for example apply the transposition 2↔ 3 to the result of 0↔ 1 in (3.1b). So

we can put rmin = min{rij} into the top left position (r23). Then we consider the four

root products in columns 2 and 3. Keeping column 1 fixed, we can put the minimum
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of these four into the top middle position (r13). Then the resulting root products in

the top row should be in increasing order.

If the top left and top middle root products are equal (r23 = r13), we can put their

counterparts (r01 and r02) in the bottom row of columns 1,2 in increasing order. If

the top middle and top right root products are equal (r13 = r12), we can put their

counterparts (r02 and r03) in the bottom row of columns 2 and 3 in increasing order.

The resulting uniquely ordered matrix is the root invariant RI(Λ). �

Scaling any lattice Λ by a factor s ∈ R multiplies all root products in RI(Λ) by s.

Theorem 3.3 (3D lattices/isometry ↔ root invariants). Any lattices Λ,Λ′ ⊂ R3 are

isometric if and only if their root invariants coincide: RI(Λ) = RI(Λ′). N

Example 3.4 (root invariants of orthorhombic lattices). (oPoPoP ) The primitive orthorhom-

bic lattice Λ with edge-lengths 0 ≤ a ≤ b ≤ c has the obtuse superbase v1 =

(a, 0, 0), v2 = (0, b, 0), v3 = (0, 0, c), v0 = (−a,−b,−c), whose root form is RF(B) =(
0 0 0
a b c

)
, so the root invariant is RI(Λ) = (a, b, c). If we re-order vectors, columns

of RF(B) are re-ordered accordingly, but RI(Λ) remains the same. Another obtuse

superbase v1 = (a, 0, 0), v2 = (0, b, 0), v′3 = (−a, 0, c), v′0 = (0,−b,−c) has RF(B) =(
0 0 a
0 b c

)
. The root invariant RI(Λ) = (a, b, c) is the same by Definition 3.2(V5).

(tPtPtP ) For a primitive tetragonal lattice, set a = b in the case above.

Let all orthorhombic lattices below have a base cube with sides 2a ≤ 2b ≤ 2c.

(oSoSoS) A base-centred orthorhombic lattice Λ has the obtuse superbase v1 = (2a, 0, 0),

v2 = (−a, b, 0), v3 = (0, 0, c), v0 = (−a,−b,−c), whose root form is RF(B) =(
0 0 a

√
2

a
√

2
√
b2 − a2 c

)
. The root invariant is RI(Λ) = {(a

√
2, a
√

2,
√
b2 − a2), c}

where the
√
b2 − a2 should move to the first place if a

√
2 >
√
b2 − a2, b < a

√
3.

(oFoFoF ) A face-centred orthorhombic lattice Λ has the obtuse superbase v1 = (a, b, 0),

v2 = (a,−b, 0), v3 = (−a, 0, c), v0 = (−a, 0,−c), whose root form is RF(B) =
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b2 − a2 a a√
c2 − a2 a a

)
. If b < a

√
2, the root invariant is RI(Λ) = RF(B). Otherwise,

RI(Λ) is obtained from RF(B) above by swapping the first and last columns.

(oIoIoI) For a body-centred orthorhombic lattice Λ, assume that a2 +b2 ≥ c2. Then Λ has

the obtuse superbase v1 = (a, b,−c), v2 = (a,−b, c), v3 = (−a, b, c), v0 = (−a,−b,−c),

and RF(B) =

( √
a2 + b2 − c2

√
a2 − b2 + c2

√
−a2 + b2 + c2√

a2 + b2 − c2
√
a2 − b2 + c2

√
−a2 + b2 + c2

)
. If a < b < c, the

root products are increasing in each row, so RI(Λ) coincides with RF(B) above.

(tItItI) For a body-centred tetragonal lattice, set a = b in the case above to get RI(Λ) =( √
2a2 − c2 c c√
2a2 − c2 c c

)
, where we should swap the first and last columns for a > c.

(cIcIcI) For a body-centred cubic Λ, a = b = c in (oIoIoI) gives RI(Λ) =

(
a a a
a a a

)
. �

4. Continuous maps of lattices by their Voronoi, Bravais and Delone types

Hahn et al. (2002, Table 9.1.8.1) subdivides 14 Bravais classes of lattices within each

of 5 Voronoi types and lists 24 Delone’s types, see the original version in Delone (1938,

Fig. 36) and the latest update in Andrews et al. (2020, Fig. 2). These discrete splittings

in 5, 14, 24 types will be extended to continuous maps below.

Examples 4.1–4.5 visualise root forms for each Voronoi type by the maps below:

• column projections CP1,CP2,CP3 visualise any root form as a triple of points in the

quadrant Q = {(x, y) ∈ R2 | x, y ≥ 0} or as one point in the product Q1 ×Q2 ×Q3;

• Voronoi maps VMi : RISi → Q project root forms of type Vi to the quadrant Q;

• Delone maps visualise strata of Bravais types of lattices within each Voronoi type.

Example 4.1 (Voronoi map VM1 for lattices of type V1). Any root invariant RI =(
r23 r13 r12
r01 r02 r03

)
from Definition 3.2(V1) can be visualised by the three column pro-

jections CP1(RI) = (r01, r23), CP2(RI) = (r02, r13), CP3(RI) = (r03, r12), where each

pair lives in its own quadrant Qi = {r0i ≥ 0, r{1,2,3}−i ≥ 0}, i = 1, 2, 3.
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The 1st Voronoi map is VM1 = (CP1,CP2,CP3) : RIS → Q1 × Q2 × Q3. Under

the 1st column projection CP1, the root invariants of all generic lattices of Voronoi

type V1 map to {r23 > 0} ⊂ Q1 strictly above the horizontal axis {r23 = 0}, which

represents all non-generic lattices of Voronoi types V2, V3, V4, V5 visualised in further

examples. All lattices of Voronoi type V1 split into eight Delone types below.

[cIcIcI] Let a body-centred cubic lattice Λ have a base cubic cell with a side a. By Exam-

ple 3.4(cI), RI(Λ) =

(
a a a
a a a

)
, which is mapped by VM1 to three equal diagonal

points (a, a) ∈ Qi, i = 1, 2, 3. The Delone map DM[cI] : RI(Λ) 7→ a projects all

root invariants RI(Λ) to R and can be visualised as a histogram over a ∈ R. Other

non-primitive orthorhombic lattices will have a base cuboid with sides 2a ≤ 2b ≤ 2c.

[V1 ∩ tIV1 ∩ tIV1 ∩ tI] Let a body-centred tetragonal lattice Λ of Voronoi type V1 have a base cuboid

cell with sides 2a, 2a, 2c such that c < a
√

2. By Example 3.4(tI), for a ≤ c < a
√

2, we

have the root invariant RI(Λ) =

(
r01 r02 r02
r01 r02 r02

)
, where r01 =

√
2a2 − c2, r02 = c.

For a > c, the root invariant is RI(Λ) =

(
r01 r01 r02
r01 r01 r02

)
, where r01 = c, r02 =

√
2a2 − c2. Then VM1 maps all root invariants of both types above to three diagonal

points in the quadrants Q1, Q2, Q3. The Delone map DM[V1∩ tI] : RI(Λ) 7→ (x, y) can

be visualised as a plot in the coordinates x =
√

2a2 − c2, y = c.

[V1 ∩ hRV1 ∩ hRV1 ∩ hR] A rhombohedral lattice of Voronoi type V1 has RI =

(
x x x
y y y

)
, which

projects under VM1 to three equal non-diagonal points (x, y) ∈ Q1, Q2, Q3. The Delone

map DM[V1 ∩ hR] can be plotted in the coordinates y ≥ x > 0.

[oFoFoF ] A face-centred orthorhombic lattice Λ by Example 3.4(oF) has the root invariant

RI(Λ) =

( √
b2 − a2 a a√
c2 − a2 a a

)
for b ≤ a

√
2 and RI(Λ) =

(
a a

√
b2 − a2

a a
√
c2 − a2

)
for

b > a
√

2. Under the first Voronoi map VM1, both root invariants project to two

diagonal points and one non-diagonal point in Q1, Q2, Q3.

[V1 ∩ oIV1 ∩ oIV1 ∩ oI] A body-centred orthorhombic lattice Λ of type V1 by Example 3.4(oI) for
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a2 + b2 > c2 has RI(Λ) =

(
r01 r02 r03
r01 r02 r03

)
, where r01 =

√
a2 + b2 − c2, r02 =

√
a2 − b2 + c2, r03 =

√
−a2 + b2 + c2. Under the first Voronoi map VM1, any root

invariant RI(Λ) above projects to three non-equal diagonal points in Q1, Q2, Q3.

[V1 ∩mCV1 ∩mCV1 ∩mC] A centred monoclinic lattice Λ can have two Delone types with 4 param-

eters: RI1 =

(
r23 r23 r12
r01 r02 r03

)
and RI2 =

(
r01 r02 r12
r01 r02 r03

)
, where columns might

be permuted to guarantee a top row in increasing order.

[V1 ∩ aPV1 ∩ aPV1 ∩ aP ] The most generic lattices Λ ⊂ R3 are triclinic. Their root invariants consist

of six non-zero root products and live in the interior of Q1×Q2×Q3 outside all seven

Delone subspaces considered above. �

The 1st Voronoi map VM1 has split six root products into three pairs, which can

be visualised in three quadrants. Other Voronoi maps VMi : RISi → Q will map root

invariants to one quadrant Q so that higher types are represented by coordinate axes.

Example 4.2 (Voronoi map VM2 : RIS2 → Q). Any root invariant of Voronoi type

V2 is RI = {r01, (r13, r12, r02), r03}, where r03 ≥ r13 ≤ r12 ≤ r02, see Definition 3.2(V3).

The 2nd Voronoi map is VM2(RI) = (r01, r13). The limit case of the vertical axis

{r01 = 0} represents Voronoi types V3, V5. The limit case of the horizontal axis {r13 =

0} represents Voronoi types V4, V5. The origin represents Voronoi type V5. �

Example 4.3 (Voronoi map VM3 : RIS3 → Q). Any root invariant of Voronoi type

V3 from Definition 3.2(V3) is an ordered quadruple RI = (r13, r12, r02, r03). The 3rd

Voronoi map is VM3(RI) = (r03, r13) ∈ Q. The limit case of the horizontal axis

{r13 = 0} represents all lattices of Voronoi type V5 below. �

By Kurlin (2022, Lemma 4.4), a Voronoi domain of type V4 is a hexagonal prism

with strict Voronoi vectors v1, v2 generating a non-rectangular lattice in R2, while the

3rd vector v3 is orthogonal to both v1, v2 and has the length c = r03 =
√
−v0 · v3.
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Example 4.4 (Voronoi maps VM4 : RIS4 → Q). Any root invariant of of Voronoi

type V4 is RI = {r03, (r12, r01, r02)} such that r12 ≤ r01 ≤ r02, see Definition 3.2(V4).

(VMmin
4VMmin
4VMmin
4 ) The minimum 4th Voronoi map is VMmin

4 (RI) = (r12, r03).

[mPmPmP ] All primitive monoclinic lattices from the Bravais class (mP) have (x, y) =

VMmin
4 (RI) in the interior of the quadrant Q, where x = r12 > 0 and y = r03 > 0.

The limit case of the vertical axis {r12 = 0} represents the lattices of Voronoi type V5

when the basis vectors v1, v2, v3 are pairwise orthogonal, see Example 4.5.

(VMort
4VMort
4VMort
4 ) Similarly to the root invariants of 2D lattices, it is convenient to scale root

products in an ordered triple dividing them by the sum: (r̄12, r̄01, r̄02) =
(r12, r01, r02)

r12 + r01 + r02
.

The orthogonal 4th Voronoi map is VMort
4 (RI) = (r̄02 − r̄01, 3r̄12) ∈ QT.

The above map forgets r03 equal to the length |v3| of the 3rd basis vector v3 orthog-

onal to v1, v2. Since r0i = −v0 · vi = (v1 + v2 + v3) · vi = (v1 + v2) · vi for i = 1, 2 due to

v3 · vi = 0, the above root products r01, r02 for the superbase in R3 coincide with the

root products for the smaller superbase v1, v2,−v1 − v2 generating the 2D lattice.

[oSoSoS] Any base-centred orthorhombic lattice from the Bravais class (oS) includes a 2D

centred-rectangular lattice Λ2 generated by v1 = (2a, 0), v2 = (−a, b) for 0 < a ≤ b.

The 2D root invariant RI(Λ2) is an ordered triple (a
√

2, a
√

2,
√
b2 − a2), where the first

and last entries should be swapped for a ≤ b < a
√

3. The 3D root invariant is RI(Λ) =

{c,RI(Λ2)}. The orthogonal 4th Voronoi map shows Λ as the point VMort
4 (RI(Λ)) in

the vertical edge or the hypotenuse (without all vertices) of QT. Any such Λ can be

represented by (ab , c) in a separate plot.

[hPhPhP ] The top vertex VMort
4 (RI) = (0, 1) ∈ QT represents all hexagonal lattices below.

Any lattice Λ from the Bravais class (hp) includes a 2D hexagonal lattice generated by

vectors v1 = (a, 0) and v2 = (−a
2 ,
√
3
2 a) of a length a. Then RI(Λ) = {c, ( a√

2
, a√

2
, a√

2
)}.

Any 3D hexagonal lattice can represented by (a, c) in a separate plot. �
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Example 4.5 (Voronoi map VM5 : RIS2 → Q). Any root invariant RI = (a, b, c) of

Voronoi type V5 is an ordered triple 0 < a ≤ b ≤ c of edge-lengths of a cuboid cell.

[VM5VM5VM5] The 5th Voronoi map is VM5(RI) =

(
a

c
,
b

c

)
∈ {(x, y) ∈ R2 | 0 < x ≤ y ≤ 1}.

[cPcPcP ] Root invariants (a, a, a) of all simple cubic lattices with all three equal sides

a = b = c map under VM5 to the point (1, 1). The sides a of all simple cubic lattices

can be shown in a histogram with vertical bars whose width is a small interval of a

and the height is proportional to the number of lattices with sides in this interval.

[tPtPtP ] Root invariants (a, a, c) and (a, b, b) of all simple tetragonal lattices with two

equal sides a = b or b = c, respectively, map under VM5 to the diagonal {0 < x =

a
c = b

c = y < 1} and the horizontal line {0 < x < 1, y = b
c = 1}, respectively.

[oPoPoP ] Root invariants RI = (a, b, c) of all primitive orthorhombic latices map under

VM5 to
(
a
c ,

b
c

)
in the open triangle {0 < y < x < 1}. �
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Fig. 1. The 5th Voronoi map VM5 for all CSD lattices of Voronoi type V5 from Exam-
ple 4.5. The colours of pixels indicate numbers of lattices with parameters (ac ,

b
c).
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Fig. 2. The density plot of the 5th Voronoi map VM5 from Fig. 1 in the logarithmic
scale better visualises the interior of the triangle 0 < a

c <
b
c < 1 representing the

Bravais class of all primitive orthorhombic lattices in Example 4.5[oP].
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