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Summary of the last discussion
Many thanks to Mois, Davide, Larry, Berthold,
Greg for sharing their expertise and references.

On 25th March we discussed that one can
define many equivalence relations on crystals,
14 Bravais classes, 219 (or 230) space-group
types (isomorphism classes) are widely known.

The strongest equivalence is rigid motion (or
isometry including reflections) because crystal
structures are determined in a rigid form and do
not change their properties under rigid motion.



A periodic point set (crystal)
Any basis v1, . . . , vn of Rn spans the unit cell

U = {
n∑

i=1
civi : 0 ≤ ci < 1} and generates the

lattice Λ. For any finite motif M ⊂ U, the periodic
point set is S = Λ + M = {v + p | v ∈ Λ,p ∈ M}.

Different pairs (basis, motif) give equivalent sets.



How to classify up to equivalence
An invariant (number, vector, matrix,...) must
take the same value on all equivalent crystals.

If a non-invariant takes two different values on
two crystals, then no conclusion can be made.

Question: how about
non-invariant big data?
Answer: use invariants.



Invariants vs non-invariants
Many non-invariants are surprisingly used:
atomic (fractional) coordinates change under
any translation in a fixed cell, comparing infinite
crystals by their finite subsets is even worse.

Isometry invariants I: chemical composition,
space-group type, density. All incomplete:
non-isometric S 6∼= Q can have I(S) = I(Q).

Structure Tidy and other comparisons start from
a conventional or reduced cell (space-group
settings), whose shape is an isometry invariant.



Discontinuity of past invariants
Even if a cell is reduced (Niggli’s cell), any such
reduction is discontinuous under perturbations.

A reduced cell can double under al-
most any perturbation. All discrete
invariants are discontinuous. Why is
continuity important? All atoms vi-
brate, real measurements are noisy,
too many crystals. How can we con-
tinuously quantify a crystal similarity?

JAC 49, 653–664: “difficult to suppose strict
boundaries in similarity by universal criteria”.



What if we allow perturbations?

Assume A ∼ B if A can be perturbed to B by
shifting coordinates up to a threshold ε > 0.

Then any objects A,B are joined by a chain of
small perturbations A ∼ A1 ∼ · · · ∼ An ∼ B, so
all A,B are equivalent by the transitivity axiom.

If we fix any threshold ε > 0, we can cluster a
finite dataset. The resulting classes can change
if we add objects. Is anything better possible?



Metric axioms and metric problem
A metric d is a distance on pairs of objects:

(1) d(S,Q) = 0 if and only if S ∼ Q equivalent;

(2) symmetry: d(S,Q) = d(Q,S);

(3) 4 inequality: d(S,Q) ≤ d(S,T ) + d(T ,Q).

Positivity d(S,Q) ≥ 0 follows from (1), (2), (3).

The triangle axiom justifies a shortest path on a
finite set: a distance d(S,Q) cannot be larger
than the length of a path from S to Q via any T ,
implicitly assumed by many clustering tools.



Importance of the first axiom
Past attempts to define a metric on crystals or
other objects with non-unique representations:

for a descriptor v (usually a vector, good if v is
an invariant), take the Euclidean (or any other)
distance on these vectors: ||v(S)− v(Q)||.

The result is a metric only if v(S) is a complete
invariant, else there are non-equivalent S 6∼ Q
with v(S) = v(Q) and distance 0. Finding a
metric involves solving the equivalence problem.



Equivalence vs metric problems
If we can solve the equivalence problem, one
can define the discrete metric d(S,Q) = 1 for all
non-equivalent S 6∼ Q, which is discontinuous
for slightly different non-isometric crystals.

Converse: any metric d detects equivalence
S ∼ Q if and only if d(S,Q) = 0 (first axiom).

A continuous metric d(S,Q) will be better. If Q
is obtained by perturbing all atoms of S up to ε,
then d(S,Q) ≤ Cε for a constant C and all S,Q.



Cell reduction is discontinuous
Deform the bases v1(t) = (1,0), v+

2 (t) = (t ,1).
We go back to the square lattice over t ∈ [0,1].

Even for lattices, any reduced cell (not only
Niggli’s) is discontinuous: close initial bases can
have distant reduced bases, see Theorem 15,
MATCH Comm. Math. Comp. Chem., 87(3), 529-559.



Typical way to lose periodicity

Taking boxes or balls with a fixed cut-off radius
produces non-isometric finite sets with no
chance to reconstruct a given periodic set.



Mercury’s RMSD implementation
Given two crystals, Mercury tries to match a
number of molecules (15 by default) in both
crystals by finding a best rigid motion, outputs
the Root Mean Square Deviation RMSD

=

√
1
n

n∑
i=1
||pi − qi ||2 between n matched atoms.

RMSD fails the triangle inequality and is a
bounded version of the bottleneck distance
dB(S,Q) = inf

f :S→Q
sup
p∈S
||f (p)− p||, which can be

+∞, e.g. S = Z, Q = (1 + ε)Z for any ε > 0.



A partial match of molecules
Crystals 14 and
15 are overlaid:
RMSD = 0.004Å,
but this number ir-
regularly grows if
we match more
molecules in crys-
tal 14 and T2-δ.

# matched molecules 5 of 5 8 of 10 10 of 15 11 of 20 16 of 25 18 of 30 21 of 35
RMSD, 1Å = 10−10m 0.603 0.681 0.812 0.825 0.99 1.027 1.079
running time, seconds 0.168 0.422 2.026 14.61 63.51 151.4 759.3



CSP: Crystal Structure Prediction
Aim : discover crystals with target properties,

predict stable crystals by ‘randomly’ placing
several molecules or atoms into a ‘random’ cell.

The lattice energy is iteratively minimized to get
most stable crystals that can be synthesized.



Embarrassment of over-prediction
coined by Prof Sally Price FRS (UCL) says that
the state-of-the-art CSP software outputs too
many approximate local minima of the energy:
random start, perturb atoms, compute again, ...

The plot in Nature 2017
shows 5679 predicted
crystals of T2 molecules,
only 5 were synthesised.

Each crystal is represented by (density, energy),
insufficient to completely map a crystal space.



CSP needs a continuous metric
Any optimisation of simulated crystals outputs
slightly distinct approximations of the same local
energy minimum. Repeated runs produce many
nearly identical crystals whose similarity is hard
to spot because of different cells, space groups.

Crystals 14 and 15 have 2 and 8 T2 molecules
in the unit cells above, but are nearly identical.



Near-duplicates in exp. databases



AMDigrams of exp. T2 crystals



The mapping problem for crystals
Find a map I on the space of isometry classes
(CRISP) of periodic point sets such that

(a) invariant : S,Q are isometric⇒ I(S) = I(Q);

(b) complete: I(S) = I(Q)⇒ S,Q are isometric;

(c) metric : I allows us to define continuous d

(1) d(S,Q) = 0 if and only if S,Q are isometric,

(2) symmetry d(S,Q) = d(Q,S) and

(3) 4 inequality d(S,Q) + d(Q,T ) ≥ d(S,T );



More conditions for a good map
4) Computability : a polynomial time in a motif
size (the number m of atoms in a unit cell).

660K+ periodic crystals in the CSD require
200B+ pairwise comparisons (now done :-).

5) Inverse design : a complete invariant should
allow us to reconstruct a 3D crystal so that we
can choose a new invariant value (unexplored
place on a geographic map) for a realizable
periodic point set and discover a new crystal.



From discrete to continuous
Crystallography has continuously evolved from
the 19th century to the 21st. Biological analogy:

space-group types↔ Linnaean taxonomy,

group-sub(super)group relations↔
Darwin’s evolution theory of species,

continuous complete invariants of crystals↔
DNA-style crystallography (materials genome).

We are open to collaboration. Come to the
ECM33 satellite MACSMIN on 5-9 September


