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Crystals and lattices

Crystal structure is an ordered arrangement of particles in a
lattice that extends in all directions. A lattice is defined as
Λ = {

n∑
i=1

civi : ci ∈ Z} for some linear basis v1, . . . , vn in Rn.
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Lattices and Unit cells

There are infinitely many different linear bases that generate the
same square lattice.

A unit cell is the the parallelepiped U = {
n∑

i=1
civi : ci ∈ [0,1)}

spanned on the linear basis v1, . . . , vn.
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Crystals as periodic point sets

Crystal structure is often presented in terms of the geometry of
arrangement of particles (motif) in the unit cell.
A motif is a finite set of points M ⊂ U. Then a crystal is
described by a periodic point set
S = M + Λ = {u + v : u ∈ M, v ∈ Λ}.
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Isometry invariants

Crystal structures can be studied up to rigid motions, which
preserve distances and orientation.
An isometry is a map f that preserves all interpoint distances:
|p − q| = |f (p)− f (q)|.
Hence mathematically a crystal is an isometry class of
periodic point sets.

Problem: How to split periodic point sets into isometry classes?
Mathematical approach: via an isometry invariant I, that is a
function I such that if periodic sets S,Q are isometric, then
I(S) = I(Q). This invariant is called complete if I(S) = I(Q)

implies that S,Q are isometric.
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Importance of continuity

Atoms constantly vibrate at finite temperature, so all
measurements will have some noise.

All discrete invariants (in-
cluding symmetry groups)
are discontinuous. Pseudo-
symmetries have a manually
chosen threshold.

Crystal Structure Prediction would benefit from continuously
quantifying similarities between simulated crystals with different
symmetry groups.
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Measuring perturbations of points

The most natural way to measure thermal vibrations of atoms is
by max displacement df (S,Q) = sup

p∈S
|p − f (p)| for a fixed

bijection f : S → Q between given periodic sets S,Q.

Bottleneck distance dB(S,Q) = inf
f :S→Q

df (S,Q) is minimized over

all bijections f : S → Q.

Though dB is impractical to compute, we can look for a distance
d between invariants such that d(I(S), I(Q)) ≤ CdB(S,Q) for a
Lipschitz constant C, which is independent of S,Q.
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Isometry classification problem

Find a function I : {crystals} → {numbers}

1) Invariance : if periodic point sets S,Q are isometric, then
I(S) = I(Q).

2) Completeness : if I(S) = I(Q), then S,Q are isometric.

3) (Lipschitz) Continuity : the invariant I slightly changes under
perturbations to quantify a similarity,
that is there exists a factor (constant) C such that
d(I(S), I(Q)) ≤ CdB(S,Q) for the bottleneck distance dB and a
suitable distance d between invariant values.
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More classification requirements

4) Computability : a polynomial time in a motif size (that is in the
number m of atoms in a unit cell).

Past: energy-vs-density plot of 5679 predicted T2 crystals took
12 weeks on a supercomputer.

5) Inverse design : a complete invariant should allow us to
reconstruct a full 3D crystal. We will choose a new invariant
value and discover new crystals with desired properties.

We’ll define isosets : complete and continuous.
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Local clusters of a point p ∈ S

In a periodic set, the local α-cluster of a point p ∈ S at a radius
α is C(S,p;α) = {q − p : q ∈ S, |q − p| ≤ α}.

This set S has all α-
clusters C(S,p;α) isomet-
ric to each other for any ra-
dius α.

In any S, points p,q are α-
equivalent if C(S,p;α) and
C(S,q;α) are isometric.
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A set with two types of α-clusters

If α is small, for any point p ∈ S, its α-cluster C(S,p;α) consists
of the single center p.

For any small radius α, all
p are α-equivalent.

The 2-regular periodic
point set S on the left has
two non-isometric types of
α-clusters C(S,p;α) for
α ≥ 4.
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The α-partition P(S;α)

For a fixed radius α, any periodic point set S splits into classes
of α-equivalent points p ∈ S, which form the α-partition P(S;α).

Left: 1-class partition, right: 2-class partition for any α.
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The isotree IT(S) of a periodic set

is formed by α-equivalence classes of points represented by
their α-clusters over all α ≥ 0.

4 classes 0 + Z, 1
4 + Z, 1

3 + Z, 1
2 + Z for α = 1

4 .
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The bridge length β(S)

Consider all paths: finite sequences of points p0, . . . ,pm ∈ S.
β(S) = min

all paths
max

i=1,...,m
|pi − pi−1| is the minimum ‘jump’ needed to

reach any point.
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The key concept: a stable radius α

For a periodic set S, a radius α is stable if

1) α-partitions stabilize: P(S;α) = P(S;α− β);

2) the symmetry groups (of self-isometries of local clusters with
fixed centers) stabilize for any point p in a motif of S, so
Sym(S,p;α) = Sym(S,p;α− β).

The isosets of the square and
hexagonal lattices at the stable
radius 2 consist of one cluster.
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Minimal stable radius α(S)

With increasing α, classes of
P(S;α) can only be subdivided,
not merged: if α′ > α, the parti-
tion P(S;α′) refines P(S;α).

Any periodic set with m points in a motif has at most m classes
in any α-partition, hence a stable radius exists. All stable radii
form an interval [α(S),+∞) with the minimal stable radius α(S).
For our goal upper bounds of α(S), β(S) will suffice.
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The isoset invariant I(S;α)

consists of isometry classes [C(S,p;α)] for all points p in a motif
of S. If a class is repeated for k of m points in the motif, it has
the weight k/m.
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A complete classification

Theorem. Periodic point sets S,Q ⊂ Rn with a common stable
radius α are isometric if and only if there is a bijection between
their isosets I(S;α)→ I(Q;α) respecting all weights.

Any periodic crystal is uniquely identified (can be explicitly
reconstructed in Rn) by a finite list of isometry classes of its local
α-clusters.

A stable radius α should now replace arbitrary cut-offs since
isosets are complete invariants.
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Continuity of complete isosets

A continuous metric on isosets is defined below.

Step 1: the distance between isometry classes of α-clusters is a
Hausdorff distance minimized over rotations around the
common center, also tolerant to points close to the boundary.

Step 2: use Earth Mover’s Distance between isosets as
weighted distributions of isometry classes.

Step 3: EMD(I(S;α), I(Q;α)) ≤ 2dB(S,Q).
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Isosets of crystals summary

Periodic point sets model all crystalline solids.

A periodic point set S is uniquely determined up to isometry in
Rn by its isoset I(S;α), which is
a weighted distribution of isometry classes of α-clusters
[C(S,p;α)] at a stable radius α.

The isosets define continuous coordinates on the space of
isometry classes of all crystals.

Further developments are in arXiv:2103.02749, Introduction to
Periodic Geometry and Topology, V.Kurlin & O.Anosova
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Summary of crystallographic invariants

Invariant Complete Continuous Run time Reconstruct
Niggli’s cell Yes Yes No Fast Yes
(for lattices) in practice
Symmetry Yes No No Fast
groups in practice
Density Yes in generic Yes, with O(mk3) unclear
function ψk cases a distance
AMDk , Yes unclear Yes, with near linear unclear
PDDk with a distance in m, k
Isosets Yes Yes Yes, with O(m3) Yes

a distance
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