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Abstract. Inevitable noise in real measurements motivates the challenging problem of continuously quantifying4
the similarity between rigid objects such as periodic time series and 1-dimensional materials consid-5
ered under isometry maintaining inter-point distances. The past work developed many Hausdorff-6
like distances, which have slow or approximate algorithms due to minimizations over infinitely many7
isometries. For all finite and 1-periodic sequences under isometry and rigid motion in any high-8
dimensional Euclidean space, we introduce complete invariants and Lipschitz continuous metrics9
whose time complexities are polynomial in both input size and ambient dimension. The key novelty10
in the periodic case is the Lipschitz continuity under perturbations that discontinuously change a11
minimum period. The proven continuity is practically important for maintaining scientific integrity12
by real-time detection of near-duplicate structures in experimental and simulated materials datasets.13
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1. Motivations, problem statement, and overview of new results. The emerging area of16

Geometric Data Science [4] studies moduli spaces of real objects under practically important17

equivalence relations. The key example is a cloud (finite set) of points under rigid motion in18

Rn [63]. A cloud can be replaced with a graph, a polygonal mesh, or a simplicial complex.19

Recall that a rigid motion in Rn is any composition of translations and rotations. If we20

also allow compositions with mirror reflections, we get any distance-preserving transformation21

in Rn, which is called an isometry. A linear map f : Rn → Rn preserves orientation if, for22

any linear basis v1, . . . , vn of Rn, the two n×n determinants with the columns v1, . . . , vn and23

f(v1), . . . , f(vn) have the same sign. Any rigid motion is an orientation-preserving isometry.24

Other useful equivalences are affine and projective transformations in computer vision.25

Rigid motion is arguably the most important equivalence in practice because many real objects26

are rigid. Even if an object is flexible like a protein molecule, its different rigid conformations27

often have different properties such as interactions with drug molecules [36].28

The very first question that should be asked about any data is “same or different?” [57].29

Indeed, most objects have many different representations, for example, as lists of coordinates30

in an arbitrary coordinate system. We formalize this question by fixing an equivalence relation,31

e.g. rigid motion, which makes all these different representations equivalent. Hence the first32

problem of Data Science is to recognize when given representations are equivalent or not.33

A recognition of non-equivalent representations can be done by an algorithm outputting34

a binary answer (yes/no), e.g. by checking if two clouds can be exactly matched by rigid35

motion [2]. A more informative approach is to design an invariant I that is a property, e.g.36

with vectorial values, preserved under all equivalences in question. In other words, if any data37

objects (or their representations) are equivalent (denoted as A ∼ B), then I(A) = I(B).38
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2 V. A. KURLIN

By definition a non-constant invariant I can distinguish some objects: if I(A) ̸= I(B),39

then A ̸∼ B. The number of points is a simple invariant of finite sets under bijections. A full40

solution to the recognition problem (“same or different?”) requires a hard-to-find complete41

invariant that distinguishes all non-equivalent objects, so if A ̸∼ B, then I(A) ̸= I(B).42

A complete invariant can be considered a DNA-style code that uniquely identifies a human,43

e.g. in court trials, though ignoring identical twins. While we cannot year grow a living44

organism from a DNA code, Geometric Data Science asks for an invertible invariant so that45

any object A can be efficiently reconstructed from its invariant value I(A), uniquely under46

a given equivalence. Efficiency will always mean an asymptotic time complexity that is47

polynomial in the input size, e.g. in the number m of points for a fixed dimension n.48

Designing a complete, invertible, and efficient invariant can be already hard to find for49

many real objects. Such an invariant is still not practical because most real objects are often50

not exactly equivalent because of noise in data. Hence the second key question for real data51

is “how much different?” One approach is to call objects equivalent if they differ up to a52

small threshold ε > 0, e.g. if all points can be exactly matched by ε-perturbations. In most53

cases, a sufficiently long chain of small perturbations can make all objects equivalent by the54

transitivity axiom (if A ∼ B ∼ C, then A ∼ C). Ignoring outliers, e.g. assuming that sets are55

equivalent if they differ by one point, similarly leads to a trivial classification. This sorites56

paradox from ancient times [35] can be resolved by continuously quantifying all differences57

(not ignoring any noise or outliers) in terms of a distance d satisfying all metric axioms.58

We formalize the second question (“if different, how much different?”) by asking for59

a continuous metric d on invariant values. The continuity requirement is essential because60

any complete invariant I defines a discrete (discontinuous) metric, e.g. d(I(A), I(B)) = 1 if61

I(A) ̸= I(B), else d = 0. The classical ε − δ continuous is weak in practice because most62

functions are continuous where defined. For example, 1/x is continuous for all x > 0, though63

its behavior for very small x is rather explosive. The strongest form of continuity requires64

a Lipschitz constant λ such that if B is obtained from A by perturbing all points up to any65

ε > 0, then d(I(A), I(B)) ≤ λε. A metric d should also be computable in polynomial time.66

Complete invariants and continuous metrics suffice to solve the discriminative problem67

for given data. However, an invariant-based solution to the generative problem (generat-68

ing new unseen objects) requires an explicit parametrization of the invariant space {I(A) |69

all real objectsA} so that we can generate any new realizable value I(A), which can be inverted70

toA. This realizability (through a continuous parametrization) also leads to the question about71

continuity of the inverse map I−1 so that the invariant I becomes Lipschitz bi-continuous.72

The prefix geo in the name of Geometric Data Science refers to a geographic-style map of73

the invariant space {I(A) | all real objects A} parametrized by realizable values of I similar74

to the latitude and meridional coordinates on Earth, whose allowed ranges are [−90◦,+90◦]75

and (−180◦,+180◦], respectively. Though the meridional angle is discontinuous due to the76

identifications at the boundary ±180◦, planes can still use them with a metric measuring the77

shortest distance along Earth. The vision of Geometric Data Science is to build parametrized78

maps of continuous moduli spaces of any real objects, already realized 2D lattices [39, 15],79

protein backbones [3, 66], partially for unordered clouds [63, 38], and periodic crystals by80

density functions [24, 6, 7] and distance-based invariants [62, 8], and complete isosets [5, 9].81
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This paper studies high-dimensional data that is periodic in one direction, motivated by82

applications to periodic time series [27] and 1-dimensional materials [47], e.g. nanotubes [31].83

These periodic sequences live in a high-dimensional space R× Rn−1 for any dimension n ≥ 184

and were indistinguishable by past invariants even in dimension n = 2, see [52, Fig. 4].85

Definition 1.1 (1-periodic sequences in R×Rn−1). Let e⃗1 be the unit vector along the first86

axis in R×Rn−1 for n ≥ 1. For a period l > 0, a motif M is a set of points p1, . . . , pm in the87

slice [0, l) × Rn−1 of the width l > 0. We assume that the time projections t(p1), . . . , t(pm)88

under t : [0, l)× Rn−1 → [0, l) are distinct, while v(p1), . . . , v(pm) under the value projection89

v : [0, l) × Rn−1 → Rn−1 are arbitrary. A 1-periodic sequence S = M + le⃗1Z is the infinite90

sequence of points p(i+mj) = pi + jle⃗1 ∈ Rn indexed by i+mj, where j ∈ Z, i = 1, . . . ,m.91

Figure 1. The periodic sequences C, S ⊂ R×R of green and blue points are sampled from the sine and cosine
graphs. The motifs in the shaded slice [0, 2π)× R are non-isometric, but S and C are related by translation.

The slice [0, l)× Rn−1 excludes all points with t = l, which are equivalent to points with92

t = 0 by translation in the time factor R. So all motif points p1, . . . , pm ∈ [0, l) × Rn−1 are93

counted once and naturally ordered under the time projection t : [0, l)× Rn−1 → [0, l).94

Example 1.2 (1-periodic sequences in R×R). Fig. 1 (left) shows the 1-periodic sequence S95

in R×R (sampled from the sine graph) with the period l = 2π and motif MS of the points (0, 0),96

(π6 ,
1
2), (

π
3 ,

√
3
2 ), (π2 , 1), (

2π
3 ,

√
3
2 ),(5π6 , 12), (π, 0), (

7π
6 ,−1

2), (
4π
3 ,−

√
3
2 ), (3π2 ,−1), (5π3 ,−

√
3
2 ), and97

(11π6 ,−1
2). Similarly, measurements of many oscillating systems [40] generate sequences that98

are periodic in a single time direction and non-periodic in many other directions. Fig. 1 (right)99

shows another sequence C with the same period l = 2π and a different motif MC ̸= MS.100

However, S and C become identical under translation in the x-axis: sin(x+ π
2 ) = cos(x).101

This basic example illustrates a widespread ambiguity of digital representations when102

many real objects look different in various coordinate systems despite being equivalent, for103

example, as rigid objects. We adapt basic equivalences to sets in the product R× Rn−1.104

Definition 1.3 (cyclic vs dihedral isometries and rigid motions in R×Rn−1). A cyclic isom-105

etry of R×Rn−1 is a composition of a translation in the time factor R and an isometry in the106

value factor Rn−1. If we allow compositions of a translation and mirror symmetry x 7→ −x107

in the time factor R, the resulting isometry of R × Rn−1 is called dihedral. If we allow only108

isometries that preserve orientation in the value factor Rn−1, the resulting equivalences are109

called cyclic and dihedral rigid motions in the former and latter cases, respectively.110

The adjectives cyclic and dihedral are motivated by the traditional names of the cyclic111

group Cm and the dihedral group Dm consisting of orientation-preserving isometries and all112

isometries in R2, respectively, that map the regular polygon on m vertices to itself.113
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The equivalences in Definition 1.3 make sense for any finite sequence T ⊂ R×Rn−1 but the114

periodicity worsens the ambiguity of representations via a period l and a motif M as follows.115

A translation in the time factor R allows us to fix any point p of a motif M at t = 0, but this116

choice of p is arbitrary, so a motif M is defined modulo cyclic permutations of its points.117

The set of integers can be defined as Z with period 1 or as {0, 1}+2Z with period 2, and118

also with any integer period l > 0. For any given sequence S = {p1, . . . , pm} + le⃗1Z, we can119

choose a minimum period l such that S can not be represented with a smaller period.120

This classical approach in crystallography leads to an invariant I based on a minimum121

period (primitive cell) and defined as a set of numerical properties preserved under any rigid122

motion. Choosing standard settings [49] for a reduced cell [48] of 3-periodic crystals theoreti-123

cally defines a complete invariant that unambiguously identifies any rigid crystal.124

However, fixing a minimum period creates the following discontinuity. For any small ε > 0125

and integer m, any point of Z is ε-close to a unique point of the sequence {0, 1 + ε, . . . ,m +126

ε} + (m + 1)Z, though their minimum periods 1 and m + 1 are arbitrarily different. Hence127

comparing periodic sequences by their given (minimum) motifs can miss near-duplicates.128

Perturbations of points up to ε in the Euclidean distance are motivated by noise in real129

measurements. Though many materials look rigid, atoms always vibrate above the abso-130

lute zero temperature [25, chapter 1]. When the same material is characterized at different131

temperatures, its structure can have arbitrarily different periods (primitive cells) [54].132

As a result, many experimental databases do not recognize such near-duplicates [65, 62].133

More importantly, any known material can be disguised as ‘new’ [17] by a slight perturba-134

tion that substantially changes a primitive cell with many more options for periodicity in 3135

directions. Simulated materials are even more vulnerable under perturbations because any136

iterative optimization always stops at some approximation to a local optimum. These slightly137

different approximations can accumulate around the same optimum as in Google’s GNoME138

database [46] whose thousands of unexpected duplicates were recently exposed [8, 18].139

The discontinuity of material representations threatens the public trust in science and140

motivates the following problem, which is stated for cyclic isometries below for simplicity but141

will be solved for 1-periodic sequences under all equivalences in Definition 1.3.142

We assume that the input for a 1-periodic sequence S consists of a period l and a motif143

of m = |S| points in the slice [0, l)× Rn−1. All complexities are for the real RAM model.144

Problem 1.4 (complete and continuous invariants of 1-periodic sequences in R×Rn−1). Find145

an invariant I of all 1-periodic sequences in R× Rn−1 satisfying the following conditions.146

(a) Completeness : any 1-periodic sequences S,Q ⊂ R × Rn−1 are related by cyclic isometry147

(denoted as S ∼= Q) in Definition 1.3 if and only if they have equal invariants I(S) = I(Q).148

(b) Reconstruction : any S ⊂ R×Rn−1 is reconstructable from I(S) modulo cyclic isometry.149

(c) Lipschitz continuity : there is a constant λ > 0 and a metric d on invariant values150

such that the metric axioms hold: (1) d(I(S), I(Q)) = 0 if and only if I(S) = I(Q), (2)151

d(I(S), I(Q)) = d(I(Q), I(S)), (3) d(I(S), I(Q))+d(I(Q), I(T )) ≥ d(I(S), I(T )); and if every152

point of Q is obtained by perturbing a point of S up to ε, then d(I(S), I(Q)) ≤ λε.153
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(d) Computability : the invariant I, metric d, and a reconstruction of S from I(S) can be154

computed in a time that depends polynomially on the motif size m and dimension n.155

Due to the first metric axiom, the equality I(S) = I(Q) between complete invariants can156

be checked by comparing d(I(S), I(Q)) with 0. Hence condition 1.4(d) for a metric guarantees157

a polynomial-time algorithm for detecting a cyclic isometry S ∼= Q. All axioms in 1.4(c) imply158

the positivity of d because 2d(a, b) = d(a, b) + d(b, a) ≥ d(a, a) = 0. If the triangle axiom fails159

with any additive error, k-means and DBSCAN can output pre-determined clusters [55].160

The Lipschitz continuity in 1.4(c) is stronger than the classical ε − δ continuity because161

a constant λ should be independent of S, ε. Conditions 1.4(b,d) require a polynomial-time162

inverse function I−1, which is stronger than the completeness (bijectivity) of an invariant I.163

The main contribution is the full solution of Problem 1.4 in Theorem 4.8 by the new164

complete invariants and Lipschitz continuous metrics in Definitions 4.2 and 4.5 for all 1-165

periodic sequences under cyclic and dihedral isometries and rigid motions in R× Rn−1.166

The new invariants were motivated by the infinite family of counter-examples in [52, Fig. 4]167

that were not distinguished by past invariants, see the review below and Example 4.9.168

2. Related work on isometry invariants and metrics on point sets. For a finite sequence169

of points, the complete invariant under isometry is the classical distance matrix [59], see170

relevant Lemma 3.8 based on more recent [22, Theorem 1], which proves all results.171

To distinguish mirror images, a sign of orientation can be enough, but this sign vanishes172

for all degenerate sets of n + 1 points living in a hyperspace of dimension n − 1 in Rn. The173

even harder obstacle is the discontinuity of signs when a sequence of points passes through174

a degenerate configuration (lying within a lower-dimensional subspace) and changes its ori-175

entation. Though the volume of a simplex changes continuously there, this continuity is not176

Lipschitz. In R2, the signed area of a triangle with the base [−x, x] × {0} and top vertex177

at (0, ε) is εx and hence changes by 2εx when the vertex degenerates to (0, 0) and then to178

the symmetric position (0,−ε). For any fixed ε > 0, the change 2εx can be arbitrarily large179

without restrictions on x and hence not Lipschitz continuous as condition 1.4(c).180

The case of m unordered points T ⊂ Rn is much harder because considering m! distance181

matrices is impractical already for m = 4. The case of m = 3 is the SSS theorem saying that182

the triangles are isometric if and only if they have the same triple of side lengths considered183

under 3! = 6 permutations. Though all pairwise distances uniquely determine any generic184

set of m points under isometry in Rn [11], Fig. 2 (left) shows non-isometric sets of m = 4185

unordered points (from an infinite family) that are indistinguishable by 6 pairwise distances.186

Figure 2. Left: the 4-point sets K = {(±2, 0), (±1, 1)} and T = {(±2, 0), (−1,±1)} can not be distin-
guished by pairwise distances

√
2,
√
2, 2,

√
10,

√
10, 4. Right: the periodic sequences S(r) = {0, r, 2 + r, 4}+ 8Z

and Q(r) = {0, 2 + r, 4, 4 + r}+ 8Z for 0 < r ≤ 1 have the same Patterson function [50, p. 197, Fig. 2].

If we need a binary answer, [2, Theorem 1] in 1988 checked the existence of an isometry187
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between two m-point sets in Rn in time O(mn−2 logm). The latest algorithm [12] checks this188

in time O(m⌈n/3⌉ logm), which becomes O(m logm) in R3 [13]. If we need only a metric,189

distances between fixed clouds extend to classes under rigid motion by minimization over190

infinitely many rigid motions [34, 21, 20]. In R2, the time is O(m5 logm) [19] for the Hausdorff191

distance [32], see approximations in [28]. The Gromov-Wasserstein metrics [44] are defined192

for metric-measure spaces also by minimizing over infinitely many correspondences between193

points, but cannot be approximated with a factor less than 3 in polynomial time unless P=NP,194

see [58, Corollary 3.8] and polynomial-time algorithms for important cases in [1, 45, 41, 42].195

Mémoli’s work on local distributions of distances [44], also known as shape distributions196

[10, 29, 43, 51], for metric spaces is closest to the new invariants of 1-periodic sequences.197

These distributions were adapted to any number of periodic directions as Pointwise Distance198

Distributions (PDD) and distinguished (together with underlying lattices) any periodic sets199

in general position [62, Theorem 4.4] but not infinitely many examples in [52, Fig. 4].200

In crystallography, the simpler invariants such as diffraction patterns consisting of all inter-201

point distances considered with frequencies had earlier counter-examples even in dimension 1,202

see Fig. 2 (right). Patterson [50] visualized any periodic sequence S = {p1, . . . , pm}+ lZ ⊂ R203

in a circle of a length l but described its isometry classes by the complicated distance ar-204

ray defined as the anti-symmetric m × m matrix of differences pi − pj for i, j ∈ {1, . . . ,m}.205

Grünbaum and Moore considered rational-valued periodic sequences given by complex num-206

bers on the unit circle and proved [30, Theorem 4] that the combinations of k-factor products207

of complex numbers up to k = 6 suffice to distinguish all such sequences under translation.208

This approach fixes a period of a sequence and hence leads to a discontinuous metric.209

Atomic vibrations are natural to measure by the maximum deviation of atoms from their210

initial positions as in 1.4(c), though the Euclidean metric can be replaced with more general211

metrics without affecting the Lipschitz continuity. The maximum deviation of atoms is usually212

small, but the full sum over infinitely many perturbed points as in the bottleneck distance213

dB(S,Q) is often infinite. If we consider only periodic point sets S,Q ⊂ Rn with the same214

density (or primitive cells of the same volume), dB(S,Q) becomes a well-defined wobbling215

distance [16], which is still discontinuous under perturbations by [62, Example 2.2]. The216

Lipschitz continuity and polynomial-time computability remained notoriously hard conditions217

in Problem 1.4, which were not previously proved for the past complete invariants.218

3. Isometry invariants and continuous metrics for finite sequences in Rn. This section219

studies complete invariants and metrics for isometry classes of finite sequences of ordered220

points in Rn, which will be later extended to 1-periodic sequences in R× Rn−1.221

Definition 3.1 (distance matrices DM and CDM). Let T = {p1, . . . , pm} be an ordered222

sequence of m points in Rn. In the distance matrix DM(T ) of the size m×m, each element223

DMij(T ) is the Euclidean distance |pj − pj | for i, j ∈ {1, . . . ,m}, so dii = 0 for i = 1, . . . ,m.224

In the cyclic distance matrix CDM(T ) of the size (m−1)×m, each element CDMij(T ) is225

the Euclidean distance |pj − pi+j | for i ∈ {1, . . . ,m− 1} and j ∈ {1, . . . ,m}, where all indices226

are considered modulo m, for example, pm+1 = p1.227

Any m = 3 points in Rn with pairwise distances dij have the distance matrix DM =228
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d12 0 d23
d13 d23 0

 and the cyclic distance matrix CDM =

(
d12 d23 d13
d13 d12 d23

)
. CDM(T ) is229

obtained from DM(T ) by removing the zero diagonal and cyclically shifting each column so230

that the first row of CDM(T ) has distances from pi to the next point pi+1 in T .231

Figure 3. These sequences are distinguished by their cyclic distance matrices in Example 3.2.

Example 3.2 (cyclic distance matrices). Fig. 3 shows the sequences T1, . . . , T6 ⊂ R2 whose232

points are in the integer lattice Z2 so that the minimum inter-point distance is 1. In each233

sequence, the points are connected by straight lines in the order 1 → 2 → · · · → m. CDM(T1) =234  1
√
2 1

√
2

1 1 1 1√
2 1

√
2 1

, CDM(T2) =

 √
2 1

√
2 1

1 1 1 1

1
√
2 1

√
2

 are different but related by a235

cyclic shift of columns. This shift of indices in T1 gives a sequence isometric to T2. Then236

CDM(T3) =

 1 1 1 1√
2

√
2

√
2

√
2

1 1 1 1

, CDM(T4) =

 1 1 1
√
5√

2
√
2

√
2

√
2√

5 1 1 1

. The CDMs of237

the sets T5, T6 differ only by distances |p1−p4| = 1 in T5 and |p1−p4| =
√
5 in the highlighted238

cells below. If reduce the number m− 1 of rows in CDM to the dimension n = 2, the smaller239

matrices fail to distinguish the non-isometric sequences T5 ̸∼= T6.240

T5 :


1 1 1

√
2 1

√
10√

2
√
2 1

√
5

√
5 3

1 2 2 1 2 2√
5 3

√
2

√
2 1

√
5√

10 1 1 1
√
2 1

, T6 :


1 1 1

√
2 1

√
10√

2
√
2 1

√
5

√
5 3

√
5 2 2

√
5 2 2√

5 3
√
2

√
2 1

√
5√

10 1 1 1
√
2 1

.241

Definition 3.3 (strength of a simplex and cyclic distances with signs CDS). For the simplex242

A on any set of n + 1 points q0, q1, . . . , qn ∈ Rn, the strength is σ(A) =
V 2(A)

p2n−1(A)
, where243

V (A) is the volume of A, p(A) =
1

2

∑
0≤i<j≤n

|qi − qj | is the half-perimeter.244

For any sequence T of p1, . . . , pm ∈ Rn and i = 1, . . . ,m, let σi(T ) be the strength of the245

simplex on the points pi, . . . , pi+n, where all indices are modulo m. Let signi(T ) be the sign246

(±1 or 0) of the n×n determinant with the columns pi+1 − pi, pi+2 − pi+1, . . . , pi+n − pi+n−1.247

The matrix CDS(T ) of cyclic distances with signs is obtained from CDM(T ) in Definition 3.1248

by attaching the extra m-th row sign(T ) = (sign1(T ), . . . , signm(T )).249

For a triangle A with 3 pairwise distances a, b, c in R2, Heron’s formula gives the squared250
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area p(p − a)(p − b)(p − c), where the half-perimeter is p =
a+ b+ c

2
, so the strength is251

σ(A) =
(p− a)(p− b)(p− c)

p2
. Similarly to the volume V (A), the strength σ(A) vanishes on252

degenerate simplices but is Lipschitz continuous [63, Theorem 4.4] with a constant λn, e.g.253

λ2 ≤ 2
√
3, while the volume of a simplex is not Lipschitz continuous over the whole Rn.254

Example 3.4 (strengths and signs). For the sequence T1 in Fig. 3 with the points p1 = (0, 0),255

p2 = (0, 1), p3 = (1, 0), p4 = (1, 1), the first 2 × 2 determinant with the columns p2 − p1 =256 (
0
1

)
and p3 − p2 = (1,−1) is det

(
0 1
1 −1

)
has sign −1. The further determinants257

for i = 2, 3, 4 are det

(
1 1
−1 0

)
= +1, det

(
1 −1
0 −1

)
= −1, det

(
−1 1
−1 0

)
= +1, so258

sign(T1) = (−1,+1,−1,+1). All triangles on 4 triples pi, pi+1, pi+2 for i = 1, 2, 3, 4 have the259

sides 1, 1,
√
2, half-perimeter p = 1 + 1√

2
, area V = 1

2 , and strength σ = 1√
2(1+

√
2)3

.260

Because the sign of a determinant discontinuously changes when a point set passes through261

a degenerate configuration, this sign will be multiplied by the Lipschitz continuous strength262

to get a metric satisfying condition 1.4(c), see the proof of Theorem 3.9(d).263

Section 4 will adapt the matrices from Definitions 3.1 and 3.3 to 1-periodic sequences264

whose motifs of points should be considered under cyclic permutations. The cyclic group Cm265

consists ofm permutations on 1, . . . ,m generated by the shift permutation γm : (1, 2, . . . ,m) 7→266

(2, . . . ,m, 1). The dihedral group Dm consists of 2m permutations generated by γm and the267

reverse permutation ιm : (1, 2, . . . ,m) 7→ (m, . . . , 2, 1).268

Lemma 3.5 (actions on vectors and matrices). The shift permutation γm ∈ Cm acts on the269

cyclic distance matrix CDM(T ) by cyclically shifting its m columns and keeping all rows. The270

reverse permutation ιm ∈ Dm reverses the order of columns and rows in CDM(T ). These271

permutations act on the row of signs in Definition 3.3 as γm(s1, s2 . . . , sm) = (s2, . . . , sm, s1)272

and ιm(s1, s2 . . . , sm) = (−1)[3n/2](sm, . . . , s2, s1). For any mirror image T̄ of T , the matrix273

CDS(T̄ ) is obtained from CDS(T ) by reversing all signs in the last row. Any element of the274

groups Cm, Dm acts on any sequence of m numbers as a composition of γm, ιm.275

Proof of Lemma 3.5. The shift permutation γm increments each index 1, 2, . . . ,m (modulo276

m), so the columns of CDM(T ) are shifted in the same way, also the signs s(T ), while row277

indices are differences between point indices and remain the same under γm.278

The reverse permutation ιm reverses the order of points and hence the columns of CDM(T ).279

The rows are also reversed under ιm because the next point for pi in the reversed sequence280

pm, . . . , p1 is the previous point of pi in the original list. Also, under ιm, the n difference vectors281

pi+1− pi, pi+2− pi+1, . . . , pi+n− pi+n−1 reverse all their n signs order and also the order. The282

reverse permutation (s1, . . . , sn) 7→ (sn, . . . , 1) decomposes into [n/2] transpositions, where283

[n/2] is the largest integer not greater than n/2. Hence the n × n determinant under the284

reverse permutation ιm changes its sign by the factor (−1)n(−1)[n/2] = (−1)[3n/2].285

Any mirror reflection in Rn keeps all distances and reverses all signs in the row sign(T ).286

Any matrix k×m can be rewritten row-by-row as a vector v ∈ Rkm. For any q ∈ [1,+∞],287
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the Minkowski norm is ||v||q =
(

km∑
i=1

|vi|q
)1/q

, where the limit case is ||v||∞ = max
i=1,...,km

|vi|. In288

the sequel, any power a1/q for a > 0 is interpreted as 1 in the limit case q = +∞.289

Definition 3.6 (metrics MCDq,MCSq for finite sequences in Rn). For any Minkowski norm290

with a parameter q ∈ [1,+∞] and ordered sequences T, S ⊂ Rn−1 of m points, define the met-291

rics MCDq(S, T ) =
||CDM(S)− CDM(T )||q(

m(m− 1)
)1/q on cyclic distance matrices from Definition 3.1292

and MCSq(S, T ) = max
{
MCDq(S, T ),

2

λn
max

i=1,...,m

∣∣signi(S)σi(S)− signi(T )σi(T )
∣∣}.293

Example 3.7 (metric MCDq). For any q ∈ [1,+∞), we use cyclic distance matrices from294

Example 3.2 to compute MCDq(T1, T3) = (23)
1/q(

√
2 − 1), MCDq(T3, T4) = (16)

1/q(
√
5 − 1),295

and MCDq(T1, T4) = (12(
√
2− 1)q + 1

6(
√
5−

√
2)q)1/q. The triangle inequality holds for q ≥ 1296

as follows:
(
MCDq(T1, T3) +MCDq(T3, T4)

)q
=

(
(23)

1/q(
√
2− 1) + (16)

1/q(
√
5− 1)

)q ≥297 (
(12)

1/q(
√
2 − 1) + (16)

1/q(
√
5 −

√
2)
)q ≥ 1

2(
√
2 − 1)q + 1

6(
√
5 −

√
2)q =

(
MCDq(T1, T4)

)q
due298

to (a+ b)q ≥ aq + bq for a, b > 0 and q ≥ 1. For q = +∞, the inequality becomes (
√
2− 1) +299

(
√
5− 1) ≥

√
5−

√
2. Finally, T5 ̸∼= T6 have MCDq(T5, T6) = 21/q(

√
5− 1).300

We use the extra factors
(
m(m − 1)

)1/q
and

2

λn
in the definition above, where λn is a301

Lipschitz constant of the strength σ from [63, Theorem 4.4], only to guarantee the standard302

Lipschitz constant 2 for the new metrics. Indeed, perturbing any points up to ε changes the303

distance between them up to 2ε. Instead of maxima in the formula for MCSq(S, T ), one can304

consider other metric transforms from [23, section 4.1], for example, sums of metrics.305

To classify finite sequences under rigid motion in Rn, we clarify the computational aspects306

of reconstructing a sequence under isometry by a matrix of distances from [22, Theorem 1].307

The affine dimension 0 ≤ aff(A) ≤ n of a sequenceA = {p1, . . . , pm} ⊂ Rn is the maximum308

dimension of the vector space generated by all inter-point vectors pi − pj , i, j ∈ {1, . . . ,m}.309

The isometry invariant aff(A) is independent of an order of points. Any 2 distinct points310

have aff = 1. Any 3 points that are not in the same straight line have aff = 2. All time311

estimates assume a fixed number of significant digits, so a constant factor O(1) represents the312

complexity of carrying out standard arithmetic operations like addition and multiplication.313

Lemma 3.8 (distance realization). (a) A symmetric m×m matrix of sij ≥ 0 with sii = 0314

is realizable as a matrix of squared distances between points p0 = 0, p1, . . . , pm−1 ∈ Rn if and315

only if the (m− 1)× (m− 1) matrix G of gij =
s0i + s0j − sij

2
has non-negative eigenvalues.316

(b) If G has only non-negative eigenvalues, then aff(0, p1, . . . , pm−1) equals the number k ≤317

m− 1 ≤ n of positive eigenvalues. Then gij = pi · pj define the Gram matrix G of the vectors318

p1, . . . , pm−1 ∈ Rn, which are reconstructable in time O(m3) under an orthogonal map in Rn.319

Proof of Lemma 3.8. (a,b) We extend [22, Theorem 1] to the case m < n+1 and also320

justify the reconstruction of p1, . . . , pm−1 in time O(m3) uniquely under an orthogonal map321

from the orthogonal group O(n) in Rn.322
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The part only if ⇒. Let a symmetric matrix S consist of squared distances between points
p0 = 0, p1, . . . , pm−1 ∈ Rn. For i, j = 1, . . . ,m− 1, the matrix with the elements

gij =
s0i + s0j − sij

2
=

p2i + p2j − |pi − pj |2

2
= pi · pj

is the Gram matrix, which can be written as G = P TP , where the columns of the n× (m− 1)
matrix P are the vectors p1, . . . , pm−1 . For any vector v ∈ Rm−1, we have

0 ≤ |Pv|2 = (Pv)T (Pv) = vT (P TP )v = vTGv.

Since the quadratic form vTGv ≥ 0 for any v ∈ Rm−1, the matrix G is positive semi-definite323

meaning that G has only non-negative eigenvalues by [33, Theorem 7.2.7].324

The part if ⇐. For any positive semi-definite matrix G, there is an orthogonal matrix B325

such that BTGB = D is the diagonal matrix, whose m−1 diagonal elements are non-negative326

eigenvalues of G. The diagonal matrix
√
D consists of the square roots of eigenvalues of G.327

The number of positive eigenvalues of G equals the dimension k = aff({0, p1, . . . , pm−1}) of328

the subspace in Rn linearly spanned by p1, . . . , pm−1. We may assume that all k ≤ n positive329

eigenvalues of G correspond to the first k coordinates of Rn. Since BT = B−1, the matrix330

G = BDBT = (B
√
D)(B

√
D)T becomes the Gram matrix of the columns of B

√
D. These331

columns become the reconstructed vectors p1, . . . , pm−1 ∈ Rn.332

If there is another diagonalization B̃TGB̃ = D̃ for B̃ ∈ O(n), then D̃ differs from D by a333

permutation of eigenvalues, which is realized by an orthogonal map, so we set D̃ = D. Then334

G = B̃DB̃T = (B̃
√
D)(B̃

√
D)T is the Gram matrix of the columns of B̃

√
D.335

The new columns are obtained from the previously reconstructed vectors p1, . . . , pm−1 ∈336

Rn after multiplying by the orthogonal matrix BB̃T . Hence the reconstruction is unique337

under an orthogonal transformation from O(n). Computing eigenvectors p1, . . . , pm−1 needs338

a diagonalization of G in time O(m3), see [53, section 11.5].339

Theorem 3.9 (solving an analog of Problem 1.4 for finite sequences). (a) For any sequence340

T ⊂ Rn of m points, CDM(T ) and CDS(T ) are complete invariants of T under isometry and341

rigid motion in Rn, computable in times O(m2n) and O(m2n+mn3), respectively.342

(b) Any sequence T ⊂ Rn of m points can be reconstructed from the complete invariant matrix343

CDM(T ) and CDS(T ) under isometry and rigid motion, respectively, in time O(m3).344

(c) For any sequences S, T ⊂ Rn of m points, the distances MCDq(S, T ),MCSq(S, T ) satisfy345

all metric axioms and are computable in time O(m2) and O(m2n+mn3), respectively.346

(d) If S is obtained from any finite sequence T ⊂ Rn by perturbing every point up to Euclidean347

distance ε, then MCDq(S, T ) ≤ 2ε and MCSq(S, T ) ≤ 2ε for any q ∈ [1,+∞].348

Proof of Theorem 3.9. (a,b) Any isometry in Rn maintains all interpoint distances and349

hence preserves CDM(T ). Any rigid motion (orientation-preserving isometry) in Rn preserves350

the signs of n×n determinants, hence the row sign(T ) and matrix CDS(T ) from Definition 3.3.351

Each of O(m2) Euclidean distances in CDM(T ) depends on n coordinates and needs O(n) time.352

Each of m signs in the row sign(T ) of CDS(T ) needs O(n3) time by Gaussian elimination. So353

CDM(T ),CDS(T ) are computable in times O(m2n) and O(m2n+mn3), respectively.354
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For any finite sequence T = (p1, . . . , pm), the cyclic distance matrix CDM(T ) uniquely355

determines the classical distance matrix DM(T ) and hence (after shifting p1 to the origin)356

the Gram matrix of scalar products pi · pj for 1 < i, j ≤ m, which suffices to reconstruct357

T uniquely under isometry by Lemma 3.8(b) in time O(m3). If CDS(T ) contains at least358

one non-zero sign, then CDS(T̄ ) ̸= CDS(T ), so T is distinguished from its mirror image T̄359

and hence uniquely determined from CDS(T ) under rigid motion in Rn. If the row sign(T )360

consists of zeros, then T is contained within an (n− 1)-dimensional subspace of Rn. Indeed,361

sign1(T ) = 0 means that the first n+ 1 points pn+1 is in the (n− 1)-dimensional subspace S362

that is affinely spanned by p1, . . . , pn. Then by induction on i = 2, . . . ,m − n, signi(T ) = 0363

implies that pn+i is in the same subspace S. Within S, the mirror images T̄ and T with364

respect to any (n− 2)-dimensional subspace L ⊂ S are related by a high-dimensional rotation365

around L in Rn, so T is uniquely determined by CDS(T ) also in any degenerate case.366

(c) The metric axioms for the distances MCDq(S, T ),MCSq(S, T ) follow from these axioms for367

the Minkowski metric [26]. Taking the maximum respects the axioms as a metric transform368

by [23, section 4.1]. After computing the invariants CDM(S) and CDM(T ) in time O(m2),369

the metric MCDq needs only O(m2) extra time. Each of 2m strengths for the metric MCSq370

needs time O(n3) for an n×n determinant, hence only O(mn3) extra time, followed by O(m)371

time to take the maxima in the formula for MCSq from Definition 3.6.372

(d) We are given a bijection β : T → S that shifts every point up to ε in Euclidean distance.
Then the distances between any points pi, pj ∈ T and their ε-close images β(pi), β(pj) ∈ S
differ by at most 2ε. The matrix CDM contains m(m − 1) distances. By Definition 3.6,

MCDq(S, T ) =
||CDM(S)− CDM(T )||q(

m(m− 1)
)1/q ≤

(
m(m− 1)(2ε)q

)1/q(
m(m− 1)

)1/q = 2ε. The Lipschitz continu-

ity |σi(S) − σi(T )| ≤ λnε by [63, Theorem 4.4] was proved in [37]. If signi(S)signi(T ) ≥ 0,
then 2

λn
|signi(S)σi(S)− signi(T )σi(T )

∣∣ = 2
λn

|σi(S)−σi(T )| ≤ 2ε. If signi(S) = −signi(T ), the
straight-line deformation of the points pj(t) = (1 − t)pj + tβ(pj), t ∈ [0, 1], j = i, . . . , i + n,
passes through a degenerate subsequence A with σ = 0. Each pj(t) shifts from T by at most
tε to the degenerate subsequence A, then by at most (1− t)ε to S. The Lipschitz continuities
|σi(S)− 0| ≤ λntε and |0− σi(T )| ≤ λn(1− t)ε imply that

2

λn
|signi(S)σi(S)− signi(T )σi(T )

∣∣ = 2

λn
(σi(S) + σi(T )) ≤

2

λn
(λn(1− t)ε+ λntε) = 2ε.

The maxima in Definition 3.6 guarantee that MCDq(S, T ) ≤ 2ε as required.373

4. Isometry invariants and metrics for 1-periodic sequences in R×Rn−1. The invariants374

and metrics from section 3 will be used for a motif of a 1-periodic sequence S projected to the375

value factor Rn−1. To solve Problem 1.4, we first resolve the discontinuity of a period under376

perturbations of S by considering projections to the time factor R.377

Definition 4.1 (time shift TS). Let S ⊂ R×Rn−1 be a 1-periodic sequence with a period l378

and a motif M of points p1, . . . , pm, which have ordered time projection t(p1) < · · · < t(pm)379

in [0, l) under t : R×Rn−1 → R, see Definition 1.1. Set di = t(pi+1)− t(pi) for i = 1, . . . ,m,380

t(pm+1) = t(p1) + l. The time shift of the pair (motif, period) is TS(M ; l) = (d1, . . . , dm).381
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12 V. A. KURLIN

The sequences S2 = {0, 1} + 3Z and 3 − S2 = {0, 2} + 3Z are related by translation but382

have different time shifts TS({0, 1}; 3) = (1, 2) and TS({0, 2}; 3) = (2, 1). To get isometry383

invariants, these shifts are considered modulo cyclic or dihedral permutations below.384

Definition 4.2 (cyclic and dihedral invariants under isometry and rigid motion). (a) For any385

1-periodic sequence S = M + le⃗1Z ⊂ R × Rn−1 with a minimum motif M of m points, let386

v(M) ⊂ Rn−1 be the image of M under the value projection v : R× Rn−1 → Rn−1.387

(b) The cyclic and dihedral isometry invariants CI(S) and DI(S) are the classes of the pair388

(TS(M ; l),CDM(v(M))) considered under permutations γ from the groups Cm, Dm, respec-389

tively, acting simultaneously on the time shift TS(M ; l) and the matrix CDM(v(M)).390

(c) The cyclic and dihedral rigid invariants CR(S) and DR(S) are the classes of the pair391

(TS(M ; l),CDS(v(M))) considered under permutations γ from the groups Cm, Dm, respec-392

tively, acting simultaneously on the time shift TS(M ; l) and the matrix CDS(v(M)).393

The matrices CDM,CDS are used for the projected motif v(M) ⊂ Rn−1 and do not depend394

on a period l, because a shift along the time direction e⃗1 keeps the value projection.395

In the partial case n = 1, when a periodic sequence S = {p1, . . . , pm} + lZ is in the line396

R, Definition 4.2 simplifies to a single time shift obtained by lexicographic ordering.397

Recall that the lexicographic order on vectors is defined so that (d1, . . . , dm) < (d′1, . . . , d
′
m)398

if d1 = d′1, . . . , di = d′i for some 0 ≤ i < m, where i = 0 means no identities, and di+1 < d′i+1.399

Definition 4.3 (time invariants CT,DT). Let S = {p1, . . . , pm} + lZ be a sequence with a400

minimum period l > 0. Set di = pi+1 − pi for i = 1, . . . ,m, where pm+1 = p1 + l. Apply all401

permutations of Cm to (d1, . . . , dm), order all resulting lists lexicographically, and call the first402

(smallest) list the cyclic time invariant CT(S). Similarly define the dihedral time invariant403

DT(S) as the lexicographically smallest list obtained from (d1, . . . , dm) by the action of Dm.404

The periodic sequences S = {0, 1, 3} + 6Z and Q = 6 − S = {0, 3, 5} + 6Z are related by405

reflection x 7→ 6 − x and not by translation. Their time shifts are TS({0, 1, 3}; 6) = (1, 2, 3)406

and TS({0, 3, 5}; 6) = (3, 2, 1). So the dihedral time invariants are equal to DT = (1, 2, 3), but407

their cyclic time invariants differ: CT(S) = (1, 2, 3) ̸= (1, 3, 2) = CT(Q).408

Though the time invariants from Definition 4.3 can be proved complete for periodic se-409

quences in R, Example 4.4 and Fig. 4 show their discontinuity under tiny perturbations.410

Figure 4. Left: the near-duplicate periodic sequences S±ε = {0, 1 ± ε, 3 ± ε, 4} + 7Z have distant time
invariants from Definition 4.1, see Example 4.4. Right: the periodic sequence Z and its ε-perturbation Zε have
incomparable time shifts TS({0}; 1) = (1) and TS({0, 1− ε}; 2) = (1− ε, 1 + ε) of different lengths.
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Example 4.4. The periodic sequence S0 = {0, 1, 3, 4} + 7Z has two perturbations S±ε =411

{0, 1±ε, 3±ε, 4}+7Z for any small ε > 0. Rewriting the time shifts TS({0, 1−ε, 3−ε, 4}; 7) =412

(1−ε, 2, 1+ε, 3) and TS({0, 1+ε, 3+ε, 4}; 7) = (1+ε, 2, 1−ε, 3) in increasing order does not413

make them close, because the minimum distance 1 − ε is followed by the different distances414

2 < 3 in the nearly identical S±ε for any ε > 0, see Fig. 4 (left). This discontinuity will be415

resolved by minimizing over cyclic permutations but there is one more obstacle below.416

It seems natural to always use a minimum period l > 0 of S = {p1, . . . , pm} + le⃗1Z ⊂417

R×Rn−1. However, the time shift TS = (d1, . . . , dm) of a fixed size m cannot be directly used418

for comparing sequences that have different sizes of motifs, see Fig. 4 (right).419

Definition 4.5 introduces continuous metrics after extending motifs to a common size.420

Definition 4.5 (cyclic and dihedral metrics under isometry and rigid motion). For any 1-421

periodic sequences S = MS+lS e⃗1Z and Q = MQ+lQe⃗1Z in R×Rn−1, let m = lcm(|MS |, |MQ|)422

be the lowest common multiple of their motif sizes (cardinalities). For the integers kS =
m

|MS |
423

and kQ =
m

|MQ|
, the extended motifs defined as kSMS =

⋃
i=1,...,kS

(
MS + ilS e⃗1

)
and kQMQ =424 ⋃

i=1,...,kQ

(
MQ + ilQe⃗1

)
have the same number kS |MS | = m = kQ|MQ| of points.425

Any permutation γ from Cm, Dm acts on the projected motif v(kQMQ) ⊂ Rn−1 as in
Lemma 3.5. For any Minkowski norm with q ∈ [1,+∞], the cyclic and dihedral isometry
metrics are CIMq(S,Q) = min

γ∈Cm

max{dt, dv} and DIMq(S,Q) = min
γ∈Dm

max{dt, dv}, where

dt = m−1/q
∣∣∣∣TS(kSMS ; kSlS)− TS(γ(kQMQ); kQlQ)

∣∣∣∣
q
, dv = MCDq

(
v(kSMS), γ(v(kQMQ))

)
.

The cyclic and dihedral rigid metrics CRMq,DRMq are defined by the same formulae as426

CIMq,DIMq above after replacing MCDq with the metric MCSq from Definition 3.6.427

In the limit case q = +∞, any factor a±1/q for a > 0 is interpreted as lim
q→+∞

a±1/q = 1. In428

Definition 4.5, the extended periods kSlS and kQlQ can be different. For simplicity, the metrics429

MCDq,MCSq were written via projected motifs as in Definition 3.6 but will be computable430

via the complete invariants (under relevant equivalences) from Definition 4.2.431

In the partial case n = 1, the projected motifs are empty, so the cases of rigid motion and432

isometry in R0 trivially coincide. In both cases, the metrics are obtained by minimizing only433

the differences dt between time shifts under cyclic and dihedral permutations.434

Example 4.6. The periodic sequences S = {0, 1} + 3Z and Q = {0, 1, 3} + 6Z have motifs435

MS = {0, 1} and MQ = {0, 1, 3} of different sizes mS = 2 and mQ = 3 whose lowest common436

multiple is m = 6. In the notations of Definition 4.5, we get kS =
m

|MS |
= 3, kQ =

m

|MQ|
= 2.437

The extended motifs and periods are 3MS = {0, 1, 3, 4, 6, 7}, 3lS = 9, 2MQ = {0, 1, 3, 6, 7, 9},438

2lQ = 12. Then TS(3MS ; 9) = (1, 2, 1, 2, 1, 2) and TS(2MQ; 12) = (1, 2, 3, 1, 2, 3). Any cyclic439

or dihedral permutation of the time shift TS(3MS ; 9) relative to TS(2MQ; 12) gives the maxi-440

mum component-wise distance |1− 3| = 2, so CIM+∞(S,Q) = 2 = DIM+∞(S,Q).441
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Table 1
Acronyms and references for the new invariants and metrcis from sections 3 and 4.

CDM(T ) Cyclic Distance Matrix of a finite sequence T ⊂ Rn Definition 3.1
CDS(T ) matrix of Cyclic Distances and Signs of a sequence T ⊂ Rn Definition 3.3
MCDq Metric on Cyclic Distance matrices (CDM) Definition 3.6
MCSq Metric on matrices of Cyclic distances and Signs (CDS) Definition 3.6
TS(M ; l) Time Shift for a motif M and period l of a sequence Definition 4.1
CI(S) Cyclic Isometry invariant of a sequence S ⊂ R× Rn−1 Definition 4.2
DI(S) Dihedral Isometry invariant of a sequence S ⊂ R× Rn−1 Definition 4.2
CR(S) Cyclic Rigid invariant of a sequence S ⊂ R× Rn−1 Definition 4.2
DR(S) Dihedral Rigid invariant of a sequence S ⊂ R× Rn−1 Definition 4.2
CI(S) Cyclic Isometry invariant of a sequence S ⊂ R× Rn−1 Definition 4.2
DI(S) Dihedral Isometry invariant of a sequence S ⊂ R× Rn−1 Definition 4.2
CIMq Cyclic Isometry Metric on 1-periodic sequences in R× Rn−1 Definition 4.5
DIMq Dihedral Isometry Metric on 1-periodic sequences in R× Rn−1 Definition 4.5
CRMq Cyclic Rigid Metric on 1-periodic sequences in R× Rn−1 Definition 4.5
DRMq Dihedral Rigid Metric on 1-periodic sequences in R× Rn−1 Definition 4.5

Main Theorem 4.8 will need Lemma 4.7 similar to (or inspired by) Propositions 8.5(2)442

and 8.6 in [14], which were proved only briefly, so we provide the detailed arguments below.443

Lemma 4.7 (metric on a quotient space under action). Let a finite group G act on a space X444

with a metric dX by isometries so that dX(f(a), f(b)) = dX(a, b) for any a, b ∈ X and f ∈ G.445

Then the quotient space X/G consisting of equivalence classes [a] = {f(a) ∈ X | f ∈ G} has446

the quotient distance d([a], [b]) = min
f∈G

dX(f(a), b) satisfying all metric axioms.447

Proof. All axioms for d follow from the axioms for dX . The coincidence axiom means that448

d([a], [b]) = min
f∈G

dX(f(a), b) = 0 if and only if dX(f(a), b) = 0 for some f ∈ G, so f(a) = b449

and hence [a] = [b]. The symmetry axiom follows by using the inverse operation in G, i.e.450

d([a], [b]) = min
f∈G

dX(f(a), b) = min
f∈G

dX(b, f(a)) = min
f−1∈G

dX(f−1(b), a) = d([b], [a]).451

To prove the triangle inequality d([a], [b]) + d([b], [c]) ≥ d([a], [c]), take f, g ∈ G such that452

d([a], [b]) = dX(f(a), b) and d([b], [c]) = dX(g(b), c). Then d([a], [b]) + d([b], [c]) = dX(g ◦453

f(a), g(b)) + dX(g(b), c) ≥ dX(g ◦ f(a), c) ≥ min
h∈G

dX(h(a), c) = d([a], [c]) as required.454

Theorem 4.8 (solution to Problem 1.4 for 1-periodic sequences). (a) For any 1-periodic455

sequence S ⊂ R×Rn−1 with a motif of m points, CI(S),DI(S) from Definition 4.2 are complete456

invariants under cyclic and dihedral isometry in R × Rn−1, respectively, and computable in457

time O(m3n). The invariants CR(S),DR(S) are complete under cyclic and dihedral rigid458

motion in R× Rn−1, respectively, and computable in time O(m3n+m2n3).459

(b) Any 1-periodic sequence S ⊂ R×Rn−1 with a motif of m points can be reconstructed from460

its complete invariant under a relevant equivalence from part (a) in time O(m3n).461

(c) The metrics in Definition 4.5 remain invariant if any 1-periodic sequence S = M + le⃗1Z462
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is given by its extended motif kM and period kl for any integer k > 0. For any 1-periodic463

sequences S,Q ⊂ R×Rn−1 with a lowest common multiple m of their motifs sizes, the metrics464

CIMq,DIMq,CRMq,DRMq in Definition 4.5 satisfy all axioms and are computable in times465

O(m3n) and O(m3n+m2n3) for isometry and rigid motion, respectively.466

(d) Let Q denote a 1-periodic sequence S ⊂ R×Rn−1 after perturbing every point of S up to467

some Euclidean distance ε that is smaller than a half-distance between any points of t(S) and468

of t(Q). Then CIMq(S, T ),DIMq(S,Q),CRMq(S,Q),DRMq(S,Q) ≤ 2ε.469

Proof of Theorem 4.8. (a,b) Any cyclic and dihedral isometry and rigid motion of R ×470

Rn−1 from Definition 1.3 preserve the class of the time shift TS, which is the vector of dif-471

ferences between successive time projections in Definition 4.1, under the actions of Cm, Dm,472

respectively. For a motif of m points, TS needs only O(m) time. Hence the invariance of473

CI(S),DI(S),CR(S),DR(S) and their times follow from Theorem 3.9(a) for the projected474

motif v(M) ⊂ Rn−1. The completeness and reconstruction in time O(m3n) follow from The-475

orem 3.9(b), which reconstructs v(M) ⊂ Rn−1 uniquely under a relevant equivalence after476

assigning the time projections 0, d1, . . . , dm−1 to the ordered points p1, . . . , pm ∈ v(M), re-477

spectively, where TS = (d1, . . . , dm) is the correspondingly ordered time shift.478

(c) Let a 1-periodic sequence S = M + le⃗1Z be given by its extended motif kM and period479

kl for any integer k > 0. The time shift TS(kM ; kl) is a concatenation of m identical vectors480

TS(M ; l). The projected motif v(kM) ⊂ Rn−1 is the set of k identical copies of v(M).481

Hence the km× (km− 1) matrix CDM(v(kM)) consists of k2 identical m(m− 1) matrices482

CDM(v(M)) separated by extra k − 1 rows of zeros, which represent the zero distances from483

each point p ∈ v(M) to its other k − 1 copies in v(kM) at the same location in Rn−1.484

Any cyclic permutation γ ∈ Cm defined to the extended permutation kγ ∈ Ckm that shifts485

all km elements by the same number of positions as γ. Applying such an extended permutation486

γ to a block vector TS(kM ; kl) or a block matrix CDM(v(kM)) described above is equivalent487

to applying γ to the original vector or matrix, and then extending the output by the factor488

k. In other words, the minimization of differences with a block vector or a block matrix over489

km cyclic permutations from the larger group Ckm is equivalent to the minimization of the490

differences with a smaller original vector or a matrix over k cyclic permutations from Cm.491

Then the metric CIM is invariant under any extension of a motif and a period. The same492

arguments apply to dihedral permutations and matrix CDS.493

Hence, to justify the metric axioms below, we can assume that all involved 1-periodic494

sequences are scaled up to a common size of their extended motifs. The auxiliary distances495

dt, dv in Definition 4.5 are standard Minkowski metrics. Taking the maximum of several496

metrics respects all axioms as a standard metric transform [23, section 4.1]. The final operation497

of distance minimization over the actions of the groups Cm, Dm allows us to consider the498

outputs as quotient distances, which satisfy the metric axioms by Lemma 4.7.499

Due to the minimization by the actions of the groups Cm, Dm, each of the metrics500

CIMq,DIMq,CRMq,DRMq requires only an extra factor O(m) in comparison with the times501

O(m2n) and O(m2n+mn3) from Theorem 3.9(c) for the relevant metrics MCDq (under isom-502

etry) and MCSq (under rigid motion) between the projected motifs in Rn−1. Indeed, the503
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Minkowski metric between time shifts adds only an additive time O(m), which is dominated504

by the time O(m2n) for the metric between cyclic distance matrices CDM.505

(d) Any perturbation of points up to Euclidean distance ε in R × Rn−1 changes their time506

projections by at most ε. Then any difference between successive time projections changes by507

at most 2ε, which is less than the distance between any successive points in the time projection508

t(S) and in the time projection t(Q). Hence there is a bijection S → Q respecting the time509

order of all points. When computing the Minkowski metric between the time shifts for the510

identity permutation γ = id, the maximum deviation 2ε emerges m times and hence leads511

to the overall factor (2ε)m1/q. The extra factor m−1/q in the formula for the distance b in512

Definition 4.5 gives the final factor 2ε. The Lipschitz constant 2 is guaranteed for the metrics513

MCDq,MCSq by Theorem 3.9(a). The minimization over permutations γ from Cm or Dm can514

make the final distance only smaller. So the final Lipschitz contant is 2.515

Example 4.9 (challenging 1-periodic sequences). The infinite family of counter-examples516

in [52, Fig. 4] to the completeness of past distance-based invariants includes the pairs of517

the 1-periodic sequences A± ⊂ R × R2 with a period l > 0 and 6-point motifs M+ =518

{W ′, C+, V,W,C ′
+, V

′} and M− = {W ′, C−, V,W,C ′
−, V

′} with the points V = (vx, vy, 0),519

W = ( l2 , wy, wz), C± = ( l4 , cy,±cz), and free parameters l, wy, wz, cy, cz > 0, vx, vy ∈ [0, l
2 ].520

Figure 5. These periodic sequences A± ⊂ R× R2 from [52, Fig. 2] have identical past invariants.

Any point with a dash is obtained by g(x, y, z) = (x+ l
2 , y,−z). The time projections are521

identical: t(M±) = (0, l
4 , vx,

l
2 ,

3l
4 ,

l
2 + vx). Assuming that vx ∈ ( l4 ,

l
2) as in Fig. 5, the time522

shifts are TS(M±; l) = ( l4 , vx −
l
4 ,

l
2 − vx,

l
4 , vx −

l
4 ,

l
2 − vx). Order value projections along the523
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x-axis from l
2 to the right: v(M±) = {(wy,−wz), (cy,±cz), (vy, 0), (wy, wz), (cy,∓cz), (vy, 0)}.524

The cyclic distance matrices of M+ and M− are on the left and right, respectively, below:525  d11 d12 d21 d11 d12 d21
d21 d22 d12 d21 d22 d12
2|wz| 2|cz| 0 2|wz| 2|cz| 0

 ̸=

 d22 d12 d21 d22 d12 d21
d21 d11 d12 d21 d11 d12
2|wz| 2|cz| 0 2|wz| 2|cz| 0

.526

The differences are highlighted: d11 =
√

(wy − cy)2 + (wz +cz )2, d12 =
√

(cy − vy)2 + c2z,527

d22 =
√
(wy − cy)2 + (wz −cz )2, d21 =

√
(wy − vy)2 + w2

z . The matrix difference has the528

Minkowski norm ||CDM(M+)− CDM(M−)||∞ = |d11 − d22| > 0 unless cz = 0 or wz = 0. If529

cz = 0, A± are identical. If wz = 0, then A± are isometric by g(x, y, z) = (x+ l
2 , y,−z).530

If both cz, wz ̸= 0, then CIM+∞(A+, A−) is obtained by minimizing over 6 cyclic permuta-531

tions γ ∈ C6. The trivial permutation and the shift by 3 positions give |d11 − d12|. Any other532

permutation gives dt = max{vx − l
4 ,

l
2 − vx} from comparing TS(M+; l) with γ(TS(M−; l))533

and dv = max{|a− b|} maximized for all pairs of a, b ∈ {d11, d12, d21, d22}.534

In all cases, the metric is positive: CIM+∞(A+, A−) ≥ |d11−d22| > 0. Hence the invariant535

CI from Definition 4.2 distinguished these challenging 1-periodic sequences A+ ̸∼= A−.536

5. Discussion: the importance of Lipschitz continuity for data integrity. This paper537

rigorously stated and solved Problem 1.4 for 1-periodic sequences in R × Rn−1 for any high-538

dimension n ≥ 1. Even in the finite case of ordered points, the Lipschitz continuity around539

degenerate configurations needs the recent strength of a simplex, so Theorem 3.9 is new.540

The 1-periodic case is much harder because a minimum period arbitrarily scales up under541

almost any perturbation of points within the space of 1-periodic sequences. Infinite non-542

periodic sequences are currently studied through finite subsets, which we considered above,543

but even the 1-periodic case remained open. Main Theorem 4.8 solved Problem 1.4 for the four544

equivalences that maintain all distances but can change orientation in a factor of the product545

R × Rn−1. All invariants and metrics easily extend to compositions of these equivalences546

with uniform scaling in any of the factors. Indeed, it suffices to normalize all distances and547

strengths by the diameter of a finite set or a minimum period l of a 1-periodic sequence.548

Though the invariants in Definition 4.2 are introduced as classes under cyclic or dihe-549

dral permutations γ, any 1-periodic sequence S ⊂ R × Rn−1 can be reconstructed from any550

representative time shift TS and a suitable matrix (CDM or CDS) of a finite motif, which551

requires less space in computer memory. Applying permutations γ is needed only for metric552

computations in Definition 4.5. Example 4.9 illustrates that the new invariants and metrics553

can be manually computed even for infinitely many periodic sequences in [52, Fig. 4] that554

were not distinguishable by generically complete past invariants such as PDD [62].555

The Lipschitz continuity is practically important for detecting near-duplicates that have556

very different periods (primitive cells) because any known material can be easily perturbed557

with an extended motif and claimed as ‘new’ especially if some atoms were artificially replaced.558

Such duplicates were found in the well-curated and world’s largest collection of real materials559

[60] CSD (Cambridge Structural Database) because past comparisons based on finite subsets560
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are slow and unreliable [65]. As a result, five journals are investigating the underlying pub-561

lications for data integrity [62, section 6]. The simulated data can be much worse because562

iterative optimizations are expected to approximate the same local optima on different runs,563

see [8, Tables 1-2]. Hence the Lipschitz continuity helps maintain the public trust in science.564

The polynomial-time complexities in Theorems 3.9 and 4.8 suffice in practice because the565

new invariants form a hierarchy from the easy and fast invariants to the slower but complete.566

For example, we should first compare real 1-periodic sequences by their time shifts TS in linear567

time O(m) and continue below only for pairs with very close time shifts. After computing the568

matrix CDM in time O(m2) for a smaller number of potential near-duplicates, we compare569

simpler subinvariants such as the first rows of CDMs (distances to the next neighbor in time) or570

column averages still in time O(m2) by applying O(m) permutations from Cm orDm to vectors571

of length m. This hierarchical filtering was done for 200+ billion pairwise comparisons of all572

periodic materials in the CSD [62], now running within a few minutes on a modest desktop573

computer, though the underlying Earth Mover’s Distance [56] has a cubic complexity.574

Problem 1.4 is a practical alternative to data-driven ‘horizontal’ exploration of continuous575

spaces through finite samples (datasets). Solutions to Problem 1.4 and its versions for other576

data provide ‘satellite’ view of continuous data spaces [15, 64, 61]. Indeed, 1-periodic sequences577

and isometries can be replaced with any real objects and equivalences but the conditions of578

completeness, reconstruction, Lipschitz continuity, and polynomial time remain essential.579
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