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Complete and continuous invariants of 1-periodic sequences in polynomial time*

Vitaliy A. Kurlinf

Abstract. Inevitable noise in real measurements motivates the challenging problem of continuously quantifying
the similarity between rigid objects such as periodic time series and 1-dimensional materials consid-
ered under isometry maintaining inter-point distances. The past work developed many Hausdorft-
like distances, which have slow or approximate algorithms due to minimizations over infinitely many
isometries. For all finite and 1-periodic sequences under isometry and rigid motion in any high-
dimensional Euclidean space, we introduce complete invariants and Lipschitz continuous metrics
whose time complexities are polynomial in both input size and ambient dimension. The key novelty
in the periodic case is the Lipschitz continuity under perturbations that discontinuously change a
minimum period. The proven continuity is practically important for maintaining scientific integrity
by real-time detection of near-duplicate structures in experimental and simulated materials datasets.
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1. Motivations, problem statement, and overview of new results. The emerging area of
Geometric Data Science [4] studies moduli spaces of real objects under practically important
equivalence relations. The key example is a cloud (finite set) of points under rigid motion in
R™ [63]. A cloud can be replaced with a graph, a polygonal mesh, or a simplicial complex.

Recall that a rigid motion in R™ is any composition of translations and rotations. If we
also allow compositions with mirror reflections, we get any distance-preserving transformation
in R™, which is called an isometry. A linear map f : R™ — R" preserves orientation if, for
any linear basis vy, ..., v, of R”, the two n X n determinants with the columns vy, ..., v, and
f(v1),..., f(v,) have the same sign. Any rigid motion is an orientation-preserving isometry.

Other useful equivalences are affine and projective transformations in computer vision.
Rigid motion is arguably the most important equivalence in practice because many real objects
are rigid. Even if an object is flexible like a protein molecule, its different rigid conformations
often have different properties such as interactions with drug molecules [36].

The very first question that should be asked about any data is “same or different?” [57].
Indeed, most objects have many different representations, for example, as lists of coordinates
in an arbitrary coordinate system. We formalize this question by fixing an equivalence relation,
e.g. rigid motion, which makes all these different representations equivalent. Hence the first
problem of Data Science is to recognize when given representations are equivalent or not.

A recognition of non-equivalent representations can be done by an algorithm outputting
a binary answer (yes/no), e.g. by checking if two clouds can be exactly matched by rigid
motion [2]. A more informative approach is to design an invariant I that is a property, e.g.
with vectorial values, preserved under all equivalences in question. In other words, if any data
objects (or their representations) are equivalent (denoted as A ~ B), then I(A) = I(B).
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2 V. A. KURLIN

By definition a non-constant invariant I can distinguish some objects: if I(A) # I(B),
then A ¢ B. The number of points is a simple invariant of finite sets under bijections. A full
solution to the recognition problem (“same or different?”) requires a hard-to-find complete
invariant that distinguishes all non-equivalent objects, so if A o B, then I(A) # I(B).

A complete invariant can be considered a DNA-style code that uniquely identifies a human,
e.g. in court trials, though ignoring identical twins. While we cannot year grow a living
organism from a DNA code, Geometric Data Science asks for an invertible invariant so that
any object A can be efficiently reconstructed from its invariant value /(A), uniquely under
a given equivalence. FEfficiency will always mean an asymptotic time complexity that is
polynomial in the input size, e.g. in the number m of points for a fixed dimension n.

Designing a complete, invertible, and efficient invariant can be already hard to find for
many real objects. Such an invariant is still not practical because most real objects are often
not exactly equivalent because of noise in data. Hence the second key question for real data
is “how much different?” One approach is to call objects equivalent if they differ up to a
small threshold € > 0, e.g. if all points can be exactly matched by e-perturbations. In most
cases, a sufficiently long chain of small perturbations can make all objects equivalent by the
transitivity axiom (if A ~ B ~ C, then A ~ (). Ignoring outliers, e.g. assuming that sets are
equivalent if they differ by one point, similarly leads to a trivial classification. This sorites
paradox from ancient times [35] can be resolved by continuously quantifying all differences
(not ignoring any noise or outliers) in terms of a distance d satisfying all metric axioms.

We formalize the second question (“if different, how much different?”) by asking for
a continuous metric d on invariant values. The continuity requirement is essential because
any complete invariant I defines a discrete (discontinuous) metric, e.g. d(I(A),I(B)) =1 if
I(A) # I(B), else d = 0. The classical ¢ — 0 continuous is weak in practice because most
functions are continuous where defined. For example, 1/x is continuous for all > 0, though
its behavior for very small x is rather explosive. The strongest form of continuity requires
a Lipschitz constant A such that if B is obtained from A by perturbing all points up to any
e >0, then d(I(A),I(B)) < Ae. A metric d should also be computable in polynomial time.

Complete invariants and continuous metrics suffice to solve the discriminative problem
for given data. However, an invariant-based solution to the generative problem (generat-
ing new unseen objects) requires an explicit parametrization of the invariant space {I(A) |
all real objectsA} so that we can generate any new realizable value I(A), which can be inverted
to A. This realizability (through a continuous parametrization) also leads to the question about
continuity of the inverse map I~! so that the invariant I becomes Lipschitz bi-continuous.

The prefix geo in the name of Geometric Data Science refers to a geographic-style map of
the invariant space {I(A) | all real objects A} parametrized by realizable values of I similar
to the latitude and meridional coordinates on Earth, whose allowed ranges are [—90°, +90°]
and (—180°,+180°], respectively. Though the meridional angle is discontinuous due to the
identifications at the boundary +180°, planes can still use them with a metric measuring the
shortest distance along Earth. The vision of Geometric Data Science is to build parametrized
maps of continuous moduli spaces of any real objects, already realized 2D lattices [39, 15],
protein backbones [3, 66], partially for unordered clouds [63, 38], and periodic crystals by
density functions [24, 6, 7] and distance-based invariants [62, 8], and complete isosets [5, 9].
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COMPLETE AND CONTINUOUS INVARIANTS OF 1-PERIODIC SEQUENCES 3

This paper studies high-dimensional data that is periodic in one direction, motivated by
applications to periodic time series [27] and 1-dimensional materials [47], e.g. nanotubes [31].
These periodic sequences live in a high-dimensional space R x R*~! for any dimension n > 1
and were indistinguishable by past invariants even in dimension n = 2, see [52, Fig. 4].

Definition 1.1 (I-periodic sequences in R x R"~1).  Let &1 be the unit vector along the first
axis in R x R"™! forn > 1. For a period [ > 0, a motif M is a set of points py,...,pm in the
slice [0,1) x R*™ of the width | > 0. We assume that the time projections t(p1), ..., t(pm)
under t : [0,1) x R"™1 — [0,1) are distinct, while v(p1),...,v(pm) under the value projection
v:[0,1) x R — R"! gre arbitrary. A 1-periodic sequence S = M + l&17Z is the infinite
sequence of points p(i +myj) = p; + jlé1 € R™ indexed by i + mj, where j € Z, i =1,...,m.

y=sin(x) y=cos(x)
o) S 6'? 6 T e "?o
o l o 3.'1/2 (0] i‘ o 1_[/2 T‘[ o IL o
0 W2 M, 1 2n 5W2 0 o ! o3mW2 2m 5m/2
o o © s 0 4 ©

Figure 1. The periodic sequences C, S C RxR of green and blue points are sampled from the sine and cosine
graphs. The motifs in the shaded slice [0,2m) X R are non-isometric, but S and C are related by translation.

The slice [0,1) x R™"~! excludes all points with ¢ = [, which are equivalent to points with
t = 0 by translation in the time factor R. So all motif points p1,...,pm € [0,1) x R*~! are
counted once and naturally ordered under the time projection ¢ : [0,1) x R*~t — [0,1).

Example 1.2 (1-periodic sequences in R x R). Fig. 1 (left) shows the 1-periodic sequence S

in RxR (sampled from the sine graph) with the period | = 2w and motif Mg of the points (0,0),
(. 2 g;g,%i;a;;}l), G, 50,05, ), (0.0, (5, -3), (5,5, (5,1, (5, %), and
6> —3) y, measurements of many oscillating systems [/0] generate sequences that
are periodic in a single time direction and non-periodic in many other directions. Fig. 1 (right)
shows another sequence C' with the same period | = 21 and a different motif Mo # Mg.

However, S and C become identical under translation in the x-aris: sin(x + §) = cos(x).

This basic example illustrates a widespread ambiguity of digital representations when
many real objects look different in various coordinate systems despite being equivalent, for
example, as rigid objects. We adapt basic equivalences to sets in the product R x R™* 1.

Definition 1.3 (cyclic vs dihedral isometries and rigid motions in R x R*~1). 4 cyclic isom-
etry of R x R™ ! 4s a composition of a translation in the time factor R and an isometry in the
value factor R, If we allow compositions of a translation and mirror symmetry x — —x
in the time factor R, the resulting isometry of R x R"™1 is called dihedral. If we allow only
isometries that preserve orientation in the value factor R, the resulting equivalences are
called cyclic and dihedral rigid motions in the former and latter cases, respectively.

The adjectives cyclic and dihedral are motivated by the traditional names of the cyclic
group C), and the dihedral group D,, consisting of orientation-preserving isometries and all
isometries in R?, respectively, that map the regular polygon on m vertices to itself.

This manuscript is for review purposes only.



4 V. A. KURLIN

The equivalences in Definition 1.3 make sense for any finite sequence T C R x R"~! but the
periodicity worsens the ambiguity of representations via a period I and a motif M as follows.
A translation in the time factor R allows us to fix any point p of a motif M at ¢t = 0, but this
choice of p is arbitrary, so a motif M is defined modulo cyclic permutations of its points.

The set of integers can be defined as Z with period 1 or as {0, 1} + 2Z with period 2, and
also with any integer period | > 0. For any given sequence S = {p1,...,pm} + €17, we can
choose a minimum period [ such that S can not be represented with a smaller period.

This classical approach in crystallography leads to an nvariant I based on a minimum
period (primitive cell) and defined as a set of numerical properties preserved under any rigid
motion. Choosing standard settings [49] for a reduced cell [48] of 3-periodic crystals theoreti-
cally defines a complete invariant that unambiguously identifies any rigid crystal.

However, fixing a minimum period creates the following discontinuity. For any small € > 0
and integer m, any point of Z is e-close to a unique point of the sequence {0,1+¢,...,m +
e} + (m + 1)Z, though their minimum periods 1 and m + 1 are arbitrarily different. Hence
comparing periodic sequences by their given (minimum) motifs can miss near-duplicates.

Perturbations of points up to € in the Euclidean distance are motivated by noise in real
measurements. Though many materials look rigid, atoms always vibrate above the abso-
lute zero temperature [25, chapter 1]. When the same material is characterized at different
temperatures, its structure can have arbitrarily different periods (primitive cells) [54].

As a result, many experimental databases do not recognize such near-duplicates [65, 62].
More importantly, any known material can be disguised as ‘new’ [17] by a slight perturba-
tion that substantially changes a primitive cell with many more options for periodicity in 3
directions. Simulated materials are even more vulnerable under perturbations because any
iterative optimization always stops at some approximation to a local optimum. These slightly
different approximations can accumulate around the same optimum as in Google’s GNoME
database [46] whose thousands of unexpected duplicates were recently exposed [8, 18].

The discontinuity of material representations threatens the public trust in science and
motivates the following problem, which is stated for cyclic isometries below for simplicity but
will be solved for 1-periodic sequences under all equivalences in Definition 1.3.

We assume that the input for a 1-periodic sequence S consists of a period [ and a motif
of m = | S| points in the slice [0,1) x R*~!. All complexities are for the real RAM model.

Problem 1.4 (complete and continuous invariants of 1-periodic sequences in R x R"~1).  Find
an invariant I of all 1-periodic sequences in R x R~ satisfying the following conditions.

(a) Completeness : any 1-periodic sequences S,Q C R x R"™! are related by cyclic isometry
(denoted as S = Q) in Definition 1.3 if and only if they have equal invariants I1(S) = I1(Q).

(b) Reconstruction : any S C R x R"™! is reconstructable from I(S) modulo cyclic isometry.

(c) Lipschitz continuity : there is a constant A > 0 and a metric d on invariant values
such that the metric azioms hold: (1) d(1(S),1(Q)) = 0 if and only if I(S) = 1(Q), (2)

d(1(S),1(Q)) = d(1(Q),1(5)), (3) d(I1(5), 1(Q))+d(I(Q), I(T)) = d(I(5), I(T)); and if every
point of Q is obtained by perturbing a point of S up to e, then d(1(5),1(Q)) < Ae.

This manuscript is for review purposes only.
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(d) Computability : the invariant I, metric d, and a reconstruction of S from I(S) can be
computed in a time that depends polynomially on the motif size m and dimension n.

Due to the first metric axiom, the equality I(S) = I(Q) between complete invariants can
be checked by comparing d(I(S), I(Q)) with 0. Hence condition 1.4(d) for a metric guarantees
a polynomial-time algorithm for detecting a cyclic isometry S = Q). All axioms in 1.4(c) imply
the positivity of d because 2d(a,b) = d(a,b) + d(b,a) > d(a,a) = 0. If the triangle axiom fails
with any additive error, k-means and DBSCAN can output pre-determined clusters [55].

The Lipschitz continuity in 1.4(c) is stronger than the classical € — ¢ continuity because
a constant A should be independent of S,e. Conditions 1.4(b,d) require a polynomial-time
inverse function I~!, which is stronger than the completeness (bijectivity) of an invariant I.

The main contribution is the full solution of Problem 1.4 in Theorem 4.8 by the new
complete invariants and Lipschitz continuous metrics in Definitions 4.2 and 4.5 for all 1-
periodic sequences under cyclic and dihedral isometries and rigid motions in R x R?~1.

The new invariants were motivated by the infinite family of counter-examples in [52, Fig. 4]
that were not distinguished by past invariants, see the review below and Example 4.9.

2. Related work on isometry invariants and metrics on point sets. For a finite sequence
of points, the complete invariant under isometry is the classical distance matrix [59], see
relevant Lemma 3.8 based on more recent [22, Theorem 1], which proves all results.

To distinguish mirror images, a sign of orientation can be enough, but this sign vanishes
for all degenerate sets of n + 1 points living in a hyperspace of dimension n — 1 in R™. The
even harder obstacle is the discontinuity of signs when a sequence of points passes through
a degenerate configuration (lying within a lower-dimensional subspace) and changes its ori-
entation. Though the volume of a simplex changes continuously there, this continuity is not
Lipschitz. In R? the signed area of a triangle with the base [—z,2] x {0} and top vertex
at (0,¢) is ez and hence changes by 2cx when the vertex degenerates to (0,0) and then to
the symmetric position (0, —¢). For any fixed ¢ > 0, the change 2z can be arbitrarily large
without restrictions on  and hence not Lipschitz continuous as condition 1.4(c).

The case of m unordered points T C R™ is much harder because considering m! distance
matrices is impractical already for m = 4. The case of m = 3 is the SSS theorem saying that
the triangles are isometric if and only if they have the same triple of side lengths considered
under 3! = 6 permutations. Though all pairwise distances uniquely determine any generic
set of m points under isometry in R™ [11], Fig. 2 (left) shows non-isometric sets of m = 4
unordered points (from an infinite family) that are indistinguishable by 6 pairwise distances.

P2z TR AR S o I D § SR SR G I
2,472 7 2 o2 g8 6 0 2+ 8 1041
”” 1 \\\\ O\___l___4 _____ - _‘_,
""" N SN VU G SRR

r6 rd o 2+r  4+r 8 10+r 12+r

Figure 2. Left: the 4-point sets K = {(+2,0), (£1,1)} and T = {(£2,0),(—1,£1)} can not be distin-
guished by pairwise distances v/2,v/2,2,/10,/10,4. Right: the periodic sequences S(r) = {0,7,2 4,4} + 8Z
and Q(r) ={0,2+r, 4,4+ r} + 8Z for 0 < r <1 have the same Patterson function [50, p. 197, Fig. 2].

If we need a binary answer, [2, Theorem 1] in 1988 checked the existence of an isometry
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between two m-point sets in R” in time O(m"~2?logm). The latest algorithm [12] checks this
in time O(m!™3logm), which becomes O(mlogm) in R3 [13]. If we need only a metric,
distances between fixed clouds extend to classes under rigid motion by minimization over
infinitely many rigid motions [34, 21, 20]. In R2, the time is O(m® logm) [19] for the Hausdorff
distance [32], see approximations in [28]. The Gromov-Wasserstein metrics [44] are defined
for metric-measure spaces also by minimizing over infinitely many correspondences between
points, but cannot be approximated with a factor less than 3 in polynomial time unless P=NP,
see [58, Corollary 3.8] and polynomial-time algorithms for important cases in [1, 45, 41, 42].

Mémoli’s work on local distributions of distances [44], also known as shape distributions
[10, 29, 43, 51], for metric spaces is closest to the new invariants of 1-periodic sequences.
These distributions were adapted to any number of periodic directions as Pointwise Distance
Distributions (PDD) and distinguished (together with underlying lattices) any periodic sets
in general position [62, Theorem 4.4] but not infinitely many examples in [52, Fig. 4].

In crystallography, the simpler invariants such as diffraction patterns consisting of all inter-
point distances considered with frequencies had earlier counter-examples even in dimension 1,
see Fig. 2 (right). Patterson [50] visualized any periodic sequence S = {pi1,...,pm} +IZ CR
in a circle of a length [ but described its isometry classes by the complicated distance ar-
ray defined as the anti-symmetric m x m matrix of differences p; — p; for 4,5 € {1,...,m}.
Griinbaum and Moore considered rational-valued periodic sequences given by complex num-
bers on the unit circle and proved [30, Theorem 4] that the combinations of k-factor products
of complex numbers up to £ = 6 suffice to distinguish all such sequences under translation.
This approach fixes a period of a sequence and hence leads to a discontinuous metric.

Atomic vibrations are natural to measure by the maximum deviation of atoms from their
initial positions as in 1.4(c), though the Euclidean metric can be replaced with more general
metrics without affecting the Lipschitz continuity. The maximum deviation of atoms is usually
small, but the full sum over infinitely many perturbed points as in the bottleneck distance
dp(S, Q) is often infinite. If we consider only periodic point sets S, Q C R™ with the same
density (or primitive cells of the same volume), dp(S, Q) becomes a well-defined wobbling
distance [16], which is still discontinuous under perturbations by [62, Example 2.2]. The
Lipschitz continuity and polynomial-time computability remained notoriously hard conditions
in Problem 1.4, which were not previously proved for the past complete invariants.

3. Isometry invariants and continuous metrics for finite sequences in R™. This section
studies complete invariants and metrics for isometry classes of finite sequences of ordered
points in R™, which will be later extended to 1-periodic sequences in R x R™*~L.

Definition 3.1 (distance matrices DM and CDM). Let T' = {pi1,...,pm} be an ordered
sequence of m points in R™. In the distance matrix DM(T') of the size m x m, each element
DM;;(T') is the Euclidean distance |pj — p;| fori,j € {1,...,m}, sody =0 fori=1,...,m.

In the cyclic distance matrix CDM(T') of the size (m —1) x m, each element CDM;;(T) is
the Euclidean distance |p; — piyj| fori e {1,...,m—1} and j € {1,...,m}, where all indices
are considered modulo m, for example, pmi1 = p1-

Any m = 3 points in R" with pairwise distances d;; have the distance matrix DM =

This manuscript is for review purposes only.
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0 di2 di3 dio don d
di2 0  dos and the cyclic distance matrix CDM = ( 12 %23 U3 ) CDM(T) is
diz das 0O diz diz dag

obtained from DM(T') by removing the zero diagonal and cyclically shifting each column so
that the first row of CDM(T') has distances from p; to the next point p;y; in 7'

2 4 1 3 2 3 4 1

NP ) SR G N

1 3 a4 > 1 3 5 6 2
T, T, T4 1T 2 T

Figure 3. These sequences are distinguished by their cyclic distance matrices in Example 3.2.

Example 3.2 (cyclic distance matrices). Flig. 3 shows the sequences Ti, ..., Ts C R? whose
points are in the integer lattice Z? so that the minimum inter-point distance is 1. In each
sequence, the points are connected by straight lines in the order 1 — 2 — --- — m. CDM(T}) =

1 V2 1 V2 V2 1 V2 1
1 1 1 1 |, CDM(T3) = 1 1 1 1 are different but related by a
V2 1 V2 1 1 V2 1 V2
cyclic shift of columns. This shift of indices in Ty gives a sequence isometric to To. Then
11 1 1 1 1 1 5
CDM(T3) = | v2 v2 V2 V2 |,CDM(Ty) = | v2 V2 V2 V2 |. The CDMs of
1 1 1 1 Vb 111

the sets Ty, Ty differ only by distances |py —pa| = 1 in Ty and |py — pa| = V/5 in the highlighted
cells below. If reduce the number m — 1 of rows in CDM to the dimension n = 2, the smaller
matrices fail to distinguish the non-isometric sequences Ts % Tg.

1 1 1 v2 1 V10 I 1 1 v2 1 V10
V2 V2 1 V5 VB3 V2 V2 1 V5 V53
Ty : 1 2 2 1 2 2 , T6 : V5 2 2 5 2 9
Vh o3 V2 V21 VB VB3 V2 V2 1 Vs
VIO 11 1 V2 1 VIO 1 1 1 V2 1
Definition 3.3 (strength of a simplex and cyclic distances with signs CDS). For the simplex
V2(A
A on any set of n 4+ 1 points qo,q1,---,q, € R™, the strength is o(A) = 271_(1()14)7 where
p
1
V(A) is the volume of A, p(A) == > |gi — q;| is the half-perimeter.
2 o<ici<n
For any sequence T of p1,...,pm € R™ and i =1,...,m, let 0;(T) be the strength of the
simplex on the points p;,...,Pitn, where all indices are modulo m. Let sign,(T') be the sign
(£1 or 0) of the n x n determinant with the columns P11 — Dis Pi+2 — Pit1, - - - » Pitn — Ditn—1-

The matriz CDS(T') of cyclic distances with signs is obtained from CDM(T') in Definition 3.1
by attaching the extra m-th row sign(T) = (sign,(T),...,sign,,(T)).

For a triangle A with 3 pairwise distances a, b, ¢ in R?, Heron’s formula gives the squared

This manuscript is for review purposes only.
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b
area p(p — a)(p — b)(p — ¢), where the half-perimeter is p = w, so the strength is

—a)(p—0b)(p—-c
U(A):(p )(pp2 )(p—c)

. Similarly to the volume V(A), the strength o(A) vanishes on

degenerate simplices but is Lipschitz continuous [63, Theorem 4.4] with a constant A, e.g.
X2 < 2¢/3, while the volume of a simplex is not Lipschitz continuous over the whole R”.

Example 3.4 (strengths and signs). For the sequence Ty in Fig. 3 with the points p1 = (0,0),
pe = (0,1), p3 = (1,0), ps = (1,1), the first 2 x 2 determinant with the columns py — p; =

( (1) and ps — p2 = (1,—1) is det( (1) _11 > has sign —1. The further determinants

. 1 1 1 -1 -1 1
f07"2—2,3,4aredet<_1 0>—+1,det<0 _1>——1,det(_1 0>—+1, s0

sign(T7) = (—1,+1,—1,41). All triangles on 4 triples p;, pi+1,pi+2 for i = 1,2,3,4 have the

; ; — 1 1 — 1
sides 1,1,v/2, half-perimeter p =1 + 73 area V =35, and strength o = NCERIER

Because the sign of a determinant discontinuously changes when a point set passes through
a degenerate configuration, this sign will be multiplied by the Lipschitz continuous strength
to get a metric satisfying condition 1.4(c), see the proof of Theorem 3.9(d).

Section 4 will adapt the matrices from Definitions 3.1 and 3.3 to 1-periodic sequences
whose motifs of points should be considered under cyclic permutations. The cyclic group Cp,

consists of m permutations on 1, ..., m generated by the shift permutation v, : (1,2,...,m)
(2,...,m,1). The dihedral group D,, consists of 2m permutations generated by 7, and the
reverse permutation Ly, 2 (1,2,...,m)— (m,...,2,1).

Lemma 3.5 (actions on vectors and matrices). The shift permutation v, € Cp, acts on the
cyclic distance matric CDM(T) by cyclically shifting its m columns and keeping all rows. The
reverse permutation iy, € Dy, reverses the order of columns and rows in CDM(T'). These
permutations act on the row of signs in Definition 3.3 as Ym/(s1,82...,5m) = (S2,..., Sm, S1)
and Ly (81,82 ..., 8m) = (—1)[3”/2}(57”, ..., 82,51). For any mirror image T of T, the matriz
CDS(T) is obtained from CDS(T) by reversing all signs in the last row. Any element of the
groups Cp,, Dy, acts on any sequence of m numbers as a composition of Ym, tm-

Proof of Lemma 3.5. The shift permutation -, increments each index 1,2, ..., m (modulo
m), so the columns of CDM(T') are shifted in the same way, also the signs s(7"), while row
indices are differences between point indices and remain the same under ~,.

The reverse permutation ¢, reverses the order of points and hence the columns of CDM(T').
The rows are also reversed under ¢,, because the next point for p; in the reversed sequence

Dm, - - -, p1 18 the previous point of p; in the original list. Also, under ¢,,, the n difference vectors
Dit1 — Dis Pit2 — Ditly - - - 5 Pitn — Pi+n—1 reverse all their n signs order and also the order. The
reverse permutation (si,...,S,) + (Sp,...,1) decomposes into [n/2] transpositions, where

[n/2] is the largest integer not greater than n/2. Hence the n x n determinant under the
reverse permutation ¢, changes its sign by the factor (—1)"(—1)"/2l = (—1)B37/2],

Any mirror reflection in R™ keeps all distances and reverses all signs in the row sign(7").1

Any matrix k x m can be rewritten row-by-row as a vector v € R¥™. For any ¢ € [1, +oc],

This manuscript is for review purposes only.
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km 1/q
the Minkowski norm is ||v||, = (Z |vi\q> , where the limit case is [|v||oc = max |v;]. In
i=1 = m

=1,..,

the sequel, any power a/? for a > 0 is interpreted as 1 in the limit case ¢ = +o0.

Definition 3.6 (metrics MCD,, MCS, for finite sequences in R™). For any Minkowski norm
with a parameter q € [1,+00] and ordered sequences T, S C R"™1 of m points, define the met-

rics MCDy(S,T) = [|CDM(S) — CD%(T)Hq
(m(m — 1)) d

and MCSy(S,T) = max {MCDQ(S, T), )\i max |sign;(5)oi(S) — signi(T)ai(Tﬂ}.

n =1,...m

on cyclic distance matrices from Definition 3.1

Example 3.7 (metric MCD,). For any q € [1,+00), we use cyclic distance matrices from
Ezxample 3.2 to compute MCDy(T1,T3) = (%)1/‘1(\/5 — 1), MCD(T3,Ty) = (%)1/‘1(\/5 - 1),
and MCDy(Ty,Ty) = (3(v2 - 1)7+ £ (V5 — V2))Y 4. The triangle inequality holds for ¢ > 1
as follows: (MCDgy(T},T3) + MCDy(T3,14))? = ((%)1/(1(\/5 —1)+ (%)1/‘7(\/5 - 1)) >
(D2 = 1) + ()95 — V)" = L(VZ— 17 + 55 — v2)T = (MCD,(T1, 71))" due
to (a +0)? > a? + b for a,b >0 and q > 1. For q¢ = +o0, the inequality becomes (v/2 — 1) +
(v/5—1) > /5 — /2. Finally, Ts % T have MCD,(Ts, Tg) = 2'/9(\/5 — 1).

2
We use the extra factors (m(m — 1))1/ ! and o in the definition above, where A, is a

Lipschitz constant of the strength o from [63, Theo?em 4.4], only to guarantee the standard
Lipschitz constant 2 for the new metrics. Indeed, perturbing any points up to € changes the
distance between them up to 2e. Instead of maxima in the formula for MCS,(S,T'), one can
consider other metric transforms from [23, section 4.1], for example, sums of metrics.

To classify finite sequences under rigid motion in R”, we clarify the computational aspects
of reconstructing a sequence under isometry by a matrix of distances from [22, Theorem 1].

The affine dimension 0 < aff(A) < n of asequence A = {p1,...,pm} C R™is the maximum
dimension of the vector space generated by all inter-point vectors p; — pj, 4,5 € {1,...,m}.
The isometry invariant aff(A) is independent of an order of points. Any 2 distinct points
have aff = 1. Any 3 points that are not in the same straight line have aff = 2. All time
estimates assume a fixed number of significant digits, so a constant factor O(1) represents the
complexity of carrying out standard arithmetic operations like addition and multiplication.

Lemma 3.8 (distance realization). (a) A symmetric m x m matriz of s;j > 0 with s; = 0

is realizable as a matriz of squared distances between points pg = 0,p1,...,Ppm—1 € R™ if and
only if the (m —1) x (m — 1) matriz G of g;j = W has non-negative eigenvalues.

(b) If G has only non-negative eigenvalues, then aff(0,p1,...,pm—1) equals the number k <
m — 1 < n of positive eigenvalues. Then g;; = p; - p; define the Gram matrix G of the vectors
Pl Pm_1 € R™, which are reconstructable in time O(m?>) under an orthogonal map in R™.

Proof of Lemma 3.8. (a,b) We extend [22, Theorem 1] to the case m < n+ 1 and also
justify the reconstruction of py,...,pm_1 in time O(m?) uniquely under an orthogonal map
from the orthogonal group O(n) in R™.

This manuscript is for review purposes only.
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The part only if =. Let a symmetric matrix S consist of squared distances between points
po=0,p1,...,0m—1 € R®. For¢,7 =1,...,m — 1, the matrix with the elements

_ So0i + S05 — Sij _ p?—i—p? - |pi_pj‘2
Jis = 2 - 2

=Di" Py

is the Gram matrix, which can be written as G = PT P, where the columns of the n x (m — 1)
matrix P are the vectors pi,...,pm—1 . For any vector v € R™™1, we have

0 < |Pv|* = (Pv)T(Pv) = vT (PTP)v = vT Gu.

Since the quadratic form v7Gv > 0 for any v € R™~1, the matrix G is positive semi-definite
meaning that G has only non-negative eigenvalues by [33, Theorem 7.2.7].

The part if <. For any positive semi-definite matrix G, there is an orthogonal matrix B
such that BTGB = D is the diagonal matrix, whose m — 1 diagonal elements are non-negative
eigenvalues of G. The diagonal matrix v/ D consists of the square roots of eigenvalues of G.

The number of positive eigenvalues of G equals the dimension k = aff ({0, p1,...,pm—1}) of
the subspace in R” linearly spanned by p1,...,pm—1. We may assume that all k£ < n positive
eigenvalues of G correspond to the first k& coordinates of R™. Since BT = B~!, the matrix
G = BDBT = (B\/E)(B\/E)T becomes the Gram matrix of the columns of BvD. These

columns become the reconstructed vectors p1,...,pm—1 € R™.

If there is another diagonalization BTGB = D for B € O(n), then D differs from D by a
permutation of eigenvalues, which is realized by an orthogonal map, so we set D = D. Then
G = BDBT = (BvD)(BvVD)T is the Gram matrix of the columns of Bv/D.

The new columns are obtained from the previously reconstructed vectors pi,...,pm—1 €
R™ after multiplying by the orthogonal matrix BBT. Hence the reconstruction is unique
under an orthogonal transformation from O(n). Computing eigenvectors p1, ..., pm—1 needs
a diagonalization of G in time O(m?), see [53, section 11.5]. [ ]

Theorem 3.9 (solving an analog of Problem 1.4 for finite sequences). (@) For any sequence
T C R™ of m points, CDM(T) and CDS(T) are complete invariants of T under isometry and
rigid motion in R™, computable in times O(m?n) and O(m?*n + mn3), respectively.

(b) Any sequence T C R™ of m points can be reconstructed from the complete invariant matriz
CDM(T) and CDS(T) under isometry and rigid motion, respectively, in time O(m?).

(c) For any sequences S,T C R"™ of m points, the distances MCD,(S,T'), MCS,(S,T) satisfy
all metric azioms and are computable in time O(m?) and O(m?n + mn3), respectively.

(d) If S is obtained from any finite sequence T C R™ by perturbing every point up to Euclidean
distance €, then MCDy(S,T) < 2e and MCSy(S,T) < 2¢ for any q € [1,400].

Proof of Theorem 3.9. (a,b) Any isometry in R™ maintains all interpoint distances and
hence preserves CDM(T'). Any rigid motion (orientation-preserving isometry) in R™ preserves
the signs of n xn determinants, hence the row sign(7") and matrix CDS(T") from Definition 3.3.
Each of O(m?) Euclidean distances in CDM(T) depends on n coordinates and needs O(n) time.
Each of m signs in the row sign(T") of CDS(T') needs O(n?) time by Gaussian elimination. So
CDM(T), CDS(T) are computable in times O(m?n) and O(m?n + mn3), respectively.

This manuscript is for review purposes only.
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For any finite sequence T' = (p1,...,pm), the cyclic distance matrix CDM(T") uniquely
determines the classical distance matrix DM(7T') and hence (after shifting p; to the origin)
the Gram matrix of scalar products p; - p; for 1 < ¢, < m, which suffices to reconstruct
T uniquely under isometry by Lemma 3.8(b) in time O(m3). If CDS(T) contains at least
one non-zero sign, then CDS(T) # CDS(T), so T is distinguished from its mirror image T
and hence uniquely determined from CDS(T") under rigid motion in R™. If the row sign(7’)
consists of zeros, then T is contained within an (n — 1)-dimensional subspace of R™. Indeed,
sign; (7') = 0 means that the first n + 1 points p,+1 is in the (n — 1)-dimensional subspace S
that is affinely spanned by p1,...,p,. Then by induction on i = 2,...,m — n, sign,(T) = 0
implies that p,y; is in the same subspace S. Within S, the mirror images 7" and 7 with
respect to any (n — 2)-dimensional subspace L C S are related by a high-dimensional rotation
around L in R™, so T is uniquely determined by CDS(T") also in any degenerate case.

(c) The metric axioms for the distances MCD, (.S, T"), MCS, (S, T') follow from these axioms for
the Minkowski metric [26]. Taking the maximum respects the axioms as a metric transform
by [23, section 4.1]. After computing the invariants CDM(.S) and CDM(T) in time O(m?),
the metric MCD, needs only O(m?) extra time. Each of 2m strengths for the metric MCS,
needs time O(n?3) for an n x n determinant, hence only O(mn?) extra time, followed by O(m)
time to take the maxima in the formula for MCS, from Definition 3.6.

(d) We are given a bijection [ : T — S that shifts every point up to ¢ in Euclidean distance.
Then the distances between any points p;,p; € T and their e-close images B(p;), B(p;) € S
differ by at most 2¢. The matrix CDM contains m(m — 1) distances. By Definition 3.6,

1/q
_ —1)(2e)4
MCD,(S, T) = ICDM(S) - CDM(T)|ly _ (m(m = 1)@e)) 7, Lipschitz continu-

(m(m — 1))1/q  (m(m - 1))1/q
ity |oi(S) — 04(T)| < Ape by [63, Theorem 4.4] was proved in [37]. If sign;(S)sign;(7) > 0,
then %]signi(S)Ji(S) —sign;(T)o(T)| = %\Ui(S) —0i(T)| < 2e. If sign, (S) = —sign,(7T), the
straight-line deformation of the points p;(t) = (1 — t)p; + tB(p;), t € [0,1], j =4,...,i+n,
passes through a degenerate subsequence A with o = 0. Each p;(t) shifts from 7" by at most
te to the degenerate subsequence A, then by at most (1 —t)e to S. The Lipschitz continuities
loi(S) — 0] < A\pte and |0 — 03(T)| < A\ (1 — t)e imply that

2 2 2
)\—]signi(S)Ui(S) — sign;(T)oi(T)| = )\—(Ui(S) +0i(T)) < )\—()\n(l —t)e + Apte) = 2e.
The maxima in Definition 3.6 guarantee that MCDg(S,T") < 2¢ as required. [ ]

4. lsometry invariants and metrics for 1-periodic sequences in R x R"~!, The invariants
and metrics from section 3 will be used for a motif of a 1-periodic sequence S projected to the
value factor R"~!. To solve Problem 1.4, we first resolve the discontinuity of a period under
perturbations of S by considering projections to the time factor R.

Definition 4.1 (time shift TS). Let S C R x R"! be a 1-periodic sequence with a period
and a motif M of points pi,...,Ppm, which have ordered time projection t(p1) < -+ < t(pm)
in [0,1) under t : R x R"~! — R, see Definition 1.1. Set d; = t(pi+1) —t(p;) fori=1,...,m,
t(pm+1) = t(p1) + 1. The time shift of the pair (motif, period) is TS(M;1) = (d1,...,dm).

This manuscript is for review purposes only.
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The sequences Sy = {0,1} + 3Z and 3 — Sy = {0,2} + 3Z are related by translation but
have different time shifts TS({0,1};3) = (1,2) and TS({0,2};3) = (2,1). To get isometry

invariants, these shifts are considered modulo cyclic or dihedral permutations below.

Definition 4.2 (cyclic and dihedral invariants under isometry and rigid motion). (a) For any
1-periodic sequence S = M +161Z C R x R with a minimum motif M of m points, let
v(M) C R*! be the image of M under the value projection v : R x R*~1 — R~ 1,

(b) The cyclic and dihedral isometry invariants CI(S) and DI(S) are the classes of the pair
(TS(M;1),CDM(v(M))) considered under permutations vy from the groups Cy,, Dy,, respec-
tively, acting simultaneously on the time shift TS(M;1) and the matriz CDM(v(M)).

(¢) The cyclic and dihedral rigid invariants CR(S) and DR(S) are the classes of the pair
(TS(M;1),CDS(v(M))) considered under permutations v from the groups Cy,, Dy,, respec-
tively, acting simultaneously on the time shift TS(M;l) and the matriz CDS(v(M)).

The matrices CDM, CDS are used for the projected motif v(M) C R"~! and do not depend
on a period [, because a shift along the time direction €] keeps the value projection.

In the partial case n = 1, when a periodic sequence S = {p1,...,pm} + [Z is in the line
R, Definition 4.2 simplifies to a single time shift obtained by lexicographic ordering.

Recall that the lexicographic order on vectors is defined so that (dy,...,dy) < (d},...,d.,)
if di = dy,...,d; = dj for some 0 <i < m, where i = 0 means no identities, and d;;1 < dj_;.

Definition 4.3 (time invariants CT,DT). Let S = {p1,...,pm} + IZ be a sequence with a
manimum period I > 0. Set d; = pi41 —p; fori =1,...,m, where ppy1 = p1 + 1. Apply all
permutations of Cy, to (di,...,dy,), order all resulting lists lexicographically, and call the first
(smallest) list the cyclic time invariant CT(S). Similarly define the dihedral time invariant
DT(S) as the lexicographically smallest list obtained from (di,...,dy) by the action of Dy,.

The periodic sequences S = {0,1,3} +6Z and Q = 6 — S = {0, 3,5} + 6Z are related by
reflection z — 6 — z and not by translation. Their time shifts are TS({0,1,3};6) = (1,2,3)
and TS({0,3,5};6) = (3,2,1). So the dihedral time invariants are equal to DT = (1, 2, 3), but
their cyclic time invariants differ: CT(S) = (1,2,3) # (1, 3,2) = CT(Q).

Though the time invariants from Definition 4.3 can be proved complete for periodic se-
quences in R, Example 4.4 and Fig. 4 show their discontinuity under tiny perturbations.

_¢1'€ _

2 C1+e o 3 L g _01 L 1 . 1 o 1 o 7
0 1-¢ 3-¢ 4 7 €0 1 2 3 4
_é1+s R 2 V1-sv 3 bg .¢1'E C1+s é1-?. U1+£ ~
0 1+¢ 3+e 4 7 *ff 0 1-¢ 2 3= 4 "¢

Figure 4. Left: the near-duplicate periodic sequences St. = {0,1 £ ¢,3 & ¢,4} + 7TZ have distant time
invariants from Definition 4.1, see Example 4.4. Right: the periodic sequence Z and its e-perturbation Z. have
incomparable time shifts TS({0};1) = (1) and TS({0,1 —¢€};2) = (1 — ¢,1 4+ €) of different lengths.

This manuscript is for review purposes only.
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COMPLETE AND CONTINUOUS INVARIANTS OF 1-PERIODIC SEQUENCES 13

Example 4.4. The periodic sequence Sy = {0,1,3,4} + 7TZ has two perturbations St =
{0,1+¢,3+¢,4}+7Z for any small e > 0. Rewriting the time shifts TS({0,1—¢,3—¢,4};7) =
(1—€,2,14¢,3) and TS({0,1+¢,3+¢€,4};7) = (14¢,2,1—¢,3) in increasing order does not
make them close, because the minimum distance 1 — € is followed by the different distances
2 < 3 in the nearly identical St. for any € > 0, see Fig. 4 (left). This discontinuity will be
resolved by minimizing over cyclic permutations but there is one more obstacle below.

It seems natural to always use a minimum period [ > 0 of S = {p1,...,pm} +1E1Z C
R x R"~!. However, the time shift TS = (di, ..., d,,) of a fixed size m cannot be directly used
for comparing sequences that have different sizes of motifs, see Fig. 4 (right).

Definition 4.5 introduces continuous metrics after extending motifs to a common size.

Definition 4.5 (cyclic and dihedral metrics under isometry and rigid motion).  For any 1-
periodic sequences S = Mg+1sé1Z and Q = Mg+lge1Z in RxR"L, let m = lem(|Mg|, |Mg|)
m

be the lowest common multiple of their motif sizes (cardinalities). For the integers kg = M
S
m

and kg = m, the extended motifs defined as ksMg = | (Ms + ilgé’l) and koMg =
Q i=1,....ks
U (Mg +ilgér) have the same number ksg|Mg| = m = kg|Mg| of points.
i=1,....kg
Any permutation vy from Cp,, Dy, acts on the projected motif v(kgMg) C R"™! as in
Lemma 3.5. For any Minkowski norm with q € [1,+0o0], the cyclic and dihedral isometry
metrics are CIM,(S, Q) = 'yrélé'n max{ds,d,} and DIM4(S,Q) = Jé%n max{d;,d,}, where

dy = m ™| TS(ksMs; ksls) — TS(v(kqgMq); kolg)|

v = MCDq (v(ksMs),(v(kqgMqg)))-

The cyclic and dihedral rigid metrics CRMy, DRM, are defined by the same formulae as
CIMy, DIM,, above after replacing MCD, with the metric MCSy from Definition 5.6.

In the limit case ¢ = 400, any factor a*1/4 for a > 0 is interpreted as hIJ'I_l at/4=1. In
q——+00

Definition 4.5, the extended periods kgls and kglg can be different. For simplicity, the metrics
MCD,, MCS, were written via projected motifs as in Definition 3.6 but will be computable
via the complete invariants (under relevant equivalences) from Definition 4.2.

In the partial case n = 1, the projected motifs are empty, so the cases of rigid motion and
isometry in R trivially coincide. In both cases, the metrics are obtained by minimizing only
the differences d; between time shifts under cyclic and dihedral permutations.

Example 4.6. The periodic sequences S = {0,1} + 3Z and Q = {0,1,3} + 6Z have motifs

Mg ={0,1} and Mg = {0,1,3} of different sizes mg = 2 and mg = 3 whose lowest common
m m

5] 2 M T gl %
The extended motifs and periods are 3Mg = {0,1,3,4,6,7}, 3ls =9, 2M¢g = {0,1,3,6,7,9},
2lg = 12. Then TS(3Mg;9) = (1,2,1,2,1,2) and TS(2Mg;12) = (1,2,3,1,2,3). Any cyclic
or dihedral permutation of the time shift TS(3Mg;9) relative to TS(2Mg;12) gives the mazi-
mum component-wise distance |1 — 3| =2, so CIM1(5,Q) =2 = DIM, (S5, Q).

multiple is m = 6. In the notations of Definition 4.5, we get kg =

This manuscript is for review purposes only.
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Table 1
Acronyms and references for the new invariants and metrcis from sections 3 and 4.
CDM(T) Cyclic Distance Matrix of a finite sequence T C R” Definition 3.1
CDS(T) matrix of Cyclic Distances and Signs of a sequence T' C R" Definition 3.3
MCD, Metric on Cyclic Distance matrices (CDM) Definition 3.6
MCS, Metric on matrices of Cyclic distances and Signs (CDS) Definition 3.6
TS(M;1) Time Shift for a motif M and period [ of a sequence Definition 4.1
CI(9) Cyclic Isometry invariant of a sequence S C R x R?~! Definition 4.2
DI(S) Dihedral Isometry invariant of a sequence S C R x R*~! Definition 4.2
CR(S) Cyclic Rigid invariant of a sequence S C R x R?~! Definition 4.2
DR(S) Dihedral Rigid invariant of a sequence S C R x R*~! Definition 4.2
CI(9) Cyclic Isometry invariant of a sequence S C R x R?~! Definition 4.2
DI(S) Dihedral Isometry invariant of a sequence S C R x R"~! Definition 4.2
CIM, Cyclic Isometry Metric on 1-periodic sequences in R x R*~1 Definition 4.5
DIM, Dihedral Isometry Metric on 1-periodic sequences in R x R”™!  Definition 4.5
CRM, Cyclic Rigid Metric on 1-periodic sequences in R x R?~! Definition 4.5
DRM, Dihedral Rigid Metric on 1-periodic sequences in R x R™~! Definition 4.5

Main Theorem 4.8 will need Lemma 4.7 similar to (or inspired by) Propositions 8.5(2)
and 8.6 in [14], which were proved only briefly, so we provide the detailed arguments below.

Lemma 4.7 (metric on a quotient space under action). Let a finite group G act on a space X
with a metric dx by isometries so that dx(f(a), f(b)) = dx(a,b) for any a,b € X and f € G.
Then the quotient space X/G consisting of equivalence classes [a] = {f(a) € X | f € G} has
the quotient distance d([al, [b]) = ?lelg dx(f(a),b) satisfying all metric axioms.

Proof. All axioms for d follow from the axioms for dx. The coincidence axiom means that
d([a], [b]) = Ifnigdx(f(a),b) = 0 if and only if dx(f(a),b) = 0 for some f € G, so f(a) =
€

and hence [a] = [b]. The symmetry axiom follows by using the inverse operation in G, i.e.

d([al, [b]) = min dx(f(a),b) = min dx (b, f(a)) = in dx (f~1(b), a) = d([t], [a]).

To prove the triangle inequality d([a], [b]) + d([b], []) = d([a], [c]), take f,g € G such that
d(la], [b]) = dx(f(a),b) and d([b],[c]) = dx(g(b),c). Then d([a], [b]) + d([b],[c]) = dx(g©
Fa), (b)) + dx (9(b),¢) 2 dx (g © f(a), ) = mindx (h(a), ) = d([a], [c]) as required. u

Theorem 4.8 (solution to Problem 1.4 for 1-periodic sequences). (a) For any 1-periodic
sequence S C RxR" ! with a motif of m points, CI(S), DI(S) from Definition /.2 are complete
invariants under cyclic and dihedral isometry in R x R"™1 respectively, and computable in
time O(m3n). The invariants CR(S),DR(S) are complete under cyclic and dihedral rigid

motion in R x R"™1, respectively, and computable in time O(m>n + m?n?).

(b) Any I-periodic sequence S C R x R"~1 with a motif of m points can be reconstructed from
its complete invariant under a relevant equivalence from part (a) in time O(m?n).

(¢) The metrics in Definition 4.5 remain invariant if any 1-periodic sequence S = M + le1Z

This manuscript is for review purposes only.
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COMPLETE AND CONTINUOUS INVARIANTS OF 1-PERIODIC SEQUENCES 15

s given by its extended motif kM and period kl for any integer k > 0. For any 1-periodic
sequences S,Q C R xR with a lowest common multiple m of their motifs sizes, the metrics
CIM,, DIM,, CRMy, DRM, in Definition 4.5 satisfy all axioms and are computable in times
O(m3n) and O(m3n + m?n3) for isometry and rigid motion, respectively.

(d) Let Q denote a I-periodic sequence S C R x R"™! after perturbing every point of S up to
some BEuclidean distance € that is smaller than a half-distance between any points of t(S) and
of t(Q). Then CIM,(S,T),DIM,(S,Q), CRM,(S, Q), DRM,(S, Q) < 2.

Proof of Theorem /.8. (a,b) Any cyclic and dihedral isometry and rigid motion of R X
R™ ! from Definition 1.3 preserve the class of the time shift TS, which is the vector of dif-
ferences between successive time projections in Definition 4.1, under the actions of C,,, D,
respectively. For a motif of m points, TS needs only O(m) time. Hence the invariance of
CI(S),DI(S),CR(S),DR(S) and their times follow from Theorem 3.9(a) for the projected
motif v(M) C R"~!. The completeness and reconstruction in time O(m3n) follow from The-
orem 3.9(b), which reconstructs v(M) C R""! uniquely under a relevant equivalence after
assigning the time projections 0,dy,...,d,—1 to the ordered points p1,...,pm € v(M), re-
spectively, where TS = (dy,...,dy,) is the correspondingly ordered time shift.

(c) Let a 1-periodic sequence S = M + [€1Z be given by its extended motif kM and period
kl for any integer k > 0. The time shift TS(kM; kl) is a concatenation of m identical vectors
TS(M;1). The projected motif v(kM) C R"! is the set of k identical copies of v(M).

Hence the km x (km — 1) matrix CDM(v(kM)) consists of k? identical m(m — 1) matrices
CDM(v(M)) separated by extra k — 1 rows of zeros, which represent the zero distances from
each point p € v(M) to its other k — 1 copies in v(kM) at the same location in R" 1,

Any cyclic permutation v € C), defined to the extended permutation kv € Cy,, that shifts
all km elements by the same number of positions as . Applying such an extended permutation
v to a block vector TS(kM; kl) or a block matrix CDM(v(kM)) described above is equivalent
to applying v to the original vector or matrix, and then extending the output by the factor
k. In other words, the minimization of differences with a block vector or a block matrix over
km cyclic permutations from the larger group Ci,, is equivalent to the minimization of the
differences with a smaller original vector or a matrix over k cyclic permutations from C,.
Then the metric CIM is invariant under any extension of a motif and a period. The same
arguments apply to dihedral permutations and matrix CDS.

Hence, to justify the metric axioms below, we can assume that all involved 1-periodic
sequences are scaled up to a common size of their extended motifs. The auxiliary distances
dt, d, in Definition 4.5 are standard Minkowski metrics. Taking the maximum of several
metrics respects all axioms as a standard metric transform [23, section 4.1]. The final operation
of distance minimization over the actions of the groups C,,, D,, allows us to consider the
outputs as quotient distances, which satisfy the metric axioms by Lemma 4.7.

Due to the minimization by the actions of the groups Cj,, Dy, each of the metrics
CIM,, DIM,, CRM,, DRM, requires only an extra factor O(m) in comparison with the times
O(m?n) and O(m?n+mn?) from Theorem 3.9(c) for the relevant metrics MCD, (under isom-
etry) and MCS, (under rigid motion) between the projected motifs in R"~1. Indeed, the

This manuscript is for review purposes only.



ar ot

o O O o O ©
© 00 N O Ut e

T
W N =

—

ot Ot Ot Ot Ut ot Ot Ot ot Ot
o

ot

516
517
518
519

520

(S, S
NN N

16 V. A. KURLIN

Minkowski metric between time shifts adds only an additive time O(m), which is dominated
by the time O(m?n) for the metric between cyclic distance matrices CDM.

(d) Any perturbation of points up to Euclidean distance ¢ in R x R"~! changes their time
projections by at most €. Then any difference between successive time projections changes by
at most 2¢, which is less than the distance between any successive points in the time projection
t(S) and in the time projection ¢(Q). Hence there is a bijection S — @ respecting the time
order of all points. When computing the Minkowski metric between the time shifts for the
identity permutation 7 = id, the maximum deviation 2¢ emerges m times and hence leads
to the overall factor (2¢)m!/?. The extra factor m~'/4 in the formula for the distance b in
Definition 4.5 gives the final factor 2¢. The Lipschitz constant 2 is guaranteed for the metrics
MCD,, MCS, by Theorem 3.9(a). The minimization over permutations v from C, or D,, can
make the final distance only smaller. So the final Lipschitz contant is 2. |

Example 4.9 (challenging 1-periodic sequences). The infinite family of counter-examples
in [52, Fig. 4] to the completeness of past distance-based invariants includes the pairs of
the 1-periodic sequences AT C R x R? with a period | > 0 and 6-point motifs M+t =
W, CL,V,W,C".,V'} and M~ = {W',C_,V,W,C",V'} with the points V = (vg,vy,0),
W = (é,wy,wz), Cy = (ﬁ,cy,icz), and free parameters |, wy, w;, ¢y, c; > 0, vy, vy € [0, %]

z periodic sequence A Z value projection v(A+) toy,z

I S o
w' C, w'
W, §------e s j-- oo oo O
w E : 3 V=V’
0 1/4 5 RS Cy: Wy Vy oy
i O E : W, ¢-mnnes oo O
: w : E : W
] O C_"_ i _Cz """" O C_',_
periodic sequence A” | Z vyalue projection v(A) to y,z
oc. % S c |
: W ! w
: O W, $---mmoes AR O
12 i X L x ; ' V=V
Y 314 L Gy Wy Yy oy
O ! W, ¢---mmee SRCRRLRES O
W ; : W
I B4 SRR ' Yo!

Figure 5. These periodic sequences AT C R x R? from [52, Fig. 2] have identical past invariants.

Any point with a dash is obtained by g(z,y,z) = (x + %,y, —z). The time projections are
identical: t(M*) = (0, ﬁ,vx, éj %l, % + vg). Assuming that v, € (é, %) as in Fig. 5, the time

shifts are TS(M*;1) = (é, Up — é, é — Vg, é, Up — i, é —vy). Order value projections along the
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z-azis from é to the right: v(M*) = {(wy, —w2), (¢y, £c2), (vy, 0), (wy, w2), (cy, Fez), (vy, 0)}.
The cyclic distance matrices of M and M~ are on the left and right, respectively, below:

din  di2 dor din diz  do doyo di2 dor do2  di2  d;
da1 doo di2 dn deg dia | # | du di1  di2 dn di1  di2
2w, 2|l 0 2wy 2|e] O 2w, 2le;] 0 2wy 2|e.] O

The differences are highlighted: di1 = \/(wy —¢y)? + (wy 4, )2, dig = \/(cy —vy)? + 2,

doy = \/(wy —y)? + (W, —¢; )2, do1 = \/(wy —vy)?2 +w?2. The matriz difference has the
Minkowski norm ||[CDM(M™) — CDM(M 7)||so = |d11 — daa| > 0 unless ¢, =0 or w, = 0. If
c. =0, AT are identical. If w, = 0, then AT are isometric by g(z,y,2) = (x + %, Y, —2).

If both c,,w, # 0, then CIM o (AT, A7) is obtained by minimizing over 6 cyclic permuta-
tions v € Cg. The trivial permutation and the shift by 3 positions give |di11 — dy2|. Any other
permutation gives dy = max{v, — L, L — v} from comparing TS(M*;1) with v(TS(M~;1))
and d, = max{|a — b|} maximized for all pairs of a,b € {di1,d12,d21,d22}.

In all cases, the metric is positive: CIM oo (AT, A7) > |d11 —daz| > 0. Hence the invariant
CI from Definition 4.2 distinguished these challenging 1-periodic sequences AT % A~ .

5. Discussion: the importance of Lipschitz continuity for data integrity. This paper
rigorously stated and solved Problem 1.4 for 1-periodic sequences in R x R*~! for any high-
dimension n > 1. Even in the finite case of ordered points, the Lipschitz continuity around
degenerate configurations needs the recent strength of a simplex, so Theorem 3.9 is new.

The 1-periodic case is much harder because a minimum period arbitrarily scales up under
almost any perturbation of points within the space of 1-periodic sequences. Infinite non-
periodic sequences are currently studied through finite subsets, which we considered above,
but even the 1-periodic case remained open. Main Theorem 4.8 solved Problem 1.4 for the four
equivalences that maintain all distances but can change orientation in a factor of the product
R x R* 1. All invariants and metrics easily extend to compositions of these equivalences
with uniform scaling in any of the factors. Indeed, it suffices to normalize all distances and
strengths by the diameter of a finite set or a minimum period [ of a 1-periodic sequence.

Though the invariants in Definition 4.2 are introduced as classes under cyclic or dihe-
dral permutations 7, any l-periodic sequence S C R x R®~! can be reconstructed from any
representative time shift TS and a suitable matrix (CDM or CDS) of a finite motif, which
requires less space in computer memory. Applying permutations 7 is needed only for metric
computations in Definition 4.5. Example 4.9 illustrates that the new invariants and metrics
can be manually computed even for infinitely many periodic sequences in [52, Fig. 4] that
were not distinguishable by generically complete past invariants such as PDD [62].

The Lipschitz continuity is practically important for detecting near-duplicates that have
very different periods (primitive cells) because any known material can be easily perturbed
with an extended motif and claimed as ‘new’ especially if some atoms were artificially replaced.
Such duplicates were found in the well-curated and world’s largest collection of real materials
[60] CSD (Cambridge Structural Database) because past comparisons based on finite subsets
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are slow and unreliable [65]. As a result, five journals are investigating the underlying pub-
lications for data integrity [62, section 6]. The simulated data can be much worse because
iterative optimizations are expected to approximate the same local optima on different runs,
see [8, Tables 1-2]. Hence the Lipschitz continuity helps maintain the public trust in science.

The polynomial-time complexities in Theorems 3.9 and 4.8 suffice in practice because the
new invariants form a hierarchy from the easy and fast invariants to the slower but complete.
For example, we should first compare real 1-periodic sequences by their time shifts TS in linear
time O(m) and continue below only for pairs with very close time shifts. After computing the
matrix CDM in time O(m?) for a smaller number of potential near-duplicates, we compare
simpler subinvariants such as the first rows of CDMs (distances to the next neighbor in time) or
column averages still in time O(m?) by applying O(m) permutations from C,,, or D,, to vectors
of length m. This hierarchical filtering was done for 200+ billion pairwise comparisons of all
periodic materials in the CSD [62], now running within a few minutes on a modest desktop
computer, though the underlying Earth Mover’s Distance [56] has a cubic complexity.

Problem 1.4 is a practical alternative to data-driven ‘horizontal’ exploration of continuous
spaces through finite samples (datasets). Solutions to Problem 1.4 and its versions for other
data provide ‘satellite’ view of continuous data spaces [15, 64, 61]. Indeed, 1-periodic sequences
and isometries can be replaced with any real objects and equivalences but the conditions of
completeness, reconstruction, Lipschitz continuity, and polynomial time remain essential.

Acknowledgments. We thank all reviewers for their valuable time and helpful suggestions.
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