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Abstract7

The fundamental model of any periodic crystal is a periodic set of points at all atomic8

centres. Since crystal structures are determined in a rigid form, their strongest equiv-9

alence is rigid motion (composition of translations and rotations) or isometry (also10

including reflections). The recent classification of periodic point sets under rigid motion11

used a complete invariant isoset whose size essentially depends on the bridge length,12

defined as the minimum ‘jump’ that suffices to connect any points in the given set.13

We propose a practical algorithm to compute the bridge length of any periodic point14

set given by a motif of points in a periodically translated unit cell. The algorithm15

has been tested on a large crystal dataset and is required for an efficient continuous16

classification of all periodic crystals. The exact computation of the bridge length is a17

key step to realising the inverse design of materials from new invariant values.18

1. Introduction: practical motivations and the problem statement19

All solid crystalline materials can be modelled at the atomic level as periodic sets of20

points (with the chemical attributes if desired) at all atomic centres, defined below.21
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Definition 1 (lattice, unit cell, motif, periodic point set). Any vectors v1, . . . ,vn that22

form a linear basis of Rn generate the lattice Λ = {
n∑

i=1
civi | ci ∈ Z} and the unit23

cell U = {
n∑

i=1
tivi | 0 ≤ ti < 1}. A motif is any finite set of points M ⊂ U , which24

can represent centres of atoms in a real crystal. The motif size |M | is the number of25

points in M . A periodic point set S = Λ+M = {v + p | v ∈ Λ, p ∈ M} is a union of26

|M | lattices whose origins are shifted to all points p of the motif M , see Fig. 1 (left).27

28

Fig. 1. Left: the orthonormal basis v1,v2 generates the green lattice Λ and the unit cell
U containing the blue motif M of three points. The periodic point set S = Λ+M is
obtained by periodically repeating M along all vectors of Λ. Right: different motifs
M,M ′ in the same cell generate periodic sets that differ by only translation.

29

30

Any unit cell U is a parallelepiped on basis vectors v1, . . . ,vn. If we translate the31

unit cell U by all vectors v ∈ Λ, the resulting cells tile Rn without overlaps. Motif32

points represent atomic centres in a real crystal. The same lattice can be generated33

by infinitely many different bases that are all related under multiplication by n × n34

matrices with integer elements and determinant 1. Even if we fix a basis of Rn and35

hence a unit cell U , different motifs in U can define periodic point sets that differ only36

by Euclidean isometry defined as any distance-preserving transformation of Rn.37

Since crystal structures are determined in a rigid form, their slightly stronger equiva-38

lence is rigid motion defined as any orientation-preserving isometry without reflections39

or as a composition of translations and rotations. After many years of discussing def-40

initions of a “crystal” (Brock, 2021), a crystal structure was recently defined in the41
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periodic case as a class of periodic sets under rigid motion (Anosova et al., 2024).42

Any such class consists of all (infinitely many) periodic point sets that are equivalent43

to each other under some rigid motions. However, almost any perturbation of atoms44

disturbs some inter-atomic distances and hence the isometry class with all cell-based45

descriptors such as symmetry groups. Even in dimension 1, for any integer m > 0 and46

threshold ϵ > 0, the sequence Z with period 1 is pointwise ϵ-close to the sequence with47

the motif M = {0, 1 + ϵ, . . . ,m+ ϵ} and arbitrarily large period m+ 1.48

This inherent discontinuity of all cell-based descriptors was resolved by Pointwise49

Distance Distributions (PDD) in (Widdowson et al., 2022; Widdowson & Kurlin, 2022;50

Widdowson & Kurlin, 2021), which defined geographic-style coordinates on the Cam-51

bridge Structural Database (CSD) in (Widdowson & Kurlin, 2024). Though PDDs52

distinguish all periodic crystals in the CSD within minutes on a modest desktop, the53

only theoretically complete and continuous invariant descriptor that uniquely identi-54

fies any periodic point set under isometry in Rn is the isoset (Anosova & Kurlin, 2021),55

see (Kurlin, 2022) for complete and continuous invariants of 1-periodic sets in Rn. The56

isoset invariant requires the bridge length whose definition is reminded below.57

Definition 2 (bridge length β(S)). For any finite or periodic set of points S ⊂ Rn,58

the bridge length β(S) is the minimum distance such that any points p, q ∈ S can be59

connected by a finite sequence of points p = p1, p2, . . . , pk = q in S, such that every60

Euclidean distance has the upper bound |pi − pi+1| ≤ β(S) for all i = 1, . . . , k − 1.61

Equivalently, the bridge length β(S) is the minimum double radius such that the62

union of the closed balls of the radius 1
2β(S) around all points of S is connected. The63

lattice Λ = Z3 of all points with integer coordinates has β(Λ) = 1. If we add to Z3 all64

points whose all coordinates are half-integer, the resulting BCC (body-centred cubic)65

periodic point set has β =
√
3
2 equal to the half-diagonal of the unit cube in R3.66
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Problem 3. Design an algorithm to compute the bridge length β(S) in polynomial67

time of the motif size for any periodic point set S with a fixed unit cell in Rn.68

The bridge length of a finite set can be computed via a Minimum Spanning Tree69

below, but the periodic case does not easily reduce to a finite one as shown in Fig. 2.70

Definition 4 (Minimum Spanning Tree). For any finite set M of points in Rn, a71

Minimum Spanning Tree MST(M) is a tree that has the vertex set M and a minimum72

total length of straight-line edges with lengths measured by Euclidean distance.73

MST(M) is uniquely defined if all distances between points of M are distinct. By74

Definition 2 the bridge length β(M) equals the length of the longest edge of MST(M).75

76

Fig. 2. All Minimum Spanning Trees on extended motifs of a periodic point set S have
the longest edge (in blue) of length 3, which could be made arbitrarily long, relative
to a preserved minimum inter-point distance of 1 and bridge length β(S) = 2 due
to shorter edges from the top right point in every cell across a cell boundary.

77

78

For any periodic point set S with a unit cell U on a basis v1, . . . ,vn in Rn, one can79

consider the extended motifs Mk = S ∩ Uk, where the extended cell Uk is defined by80

the basis kv1, . . . , kvn for any integer k > 1. The Minimum Spanning Trees provide81

the upper bounds β(S) ≤ β(Mk) for k > 1, which can be unnecessarily high, see82

Fig. 2, so Problem 3 is much harder for periodic sets than for finite sets of points.83
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For any periodic point set S ⊂ Rn, Lemma 3.7(a) in (Anosova et al., 2022) proved84

the upper bound β(S) ≤ min{r(U), 2R(S)} in terms of parameters below.85

Definition 5 (parameters r(U), R(S), a(U)). Let S ⊂ Rn be periodic point set whose86

a unit cell U has a basis v1, . . . ,vn. Set r(U) = max{b, d2}, where d is the length of the87

longest diagonal of U and b = max
i=1,...,n

|vi|. The covering radius R(S) is the smallest88

radius R such that the union of closed balls of the radius R around all p ∈ S covers89

Rn. The height is h(U) = vol(U)/ max
i=1,...,n

vol(Ui), where Ui is the subcell of U spanned90

by all basis vectors except vi. The aspect ratio is a(U) = r(U)/h(U).91

Main Theorem 6 below guarantees an exact computation of the bridge length β(S)92

in a time that only quadratically depends on the motif size m of a periodic set S.93

Theorem 6. For any periodic point set S ⊂ Rn with a motif of m points in a unit94

cell U , the bridge length β(S) can be computed in time O(m2a(U)nN), where N is the95

time complexity of the Smith Normal Form, a(U) is the aspect ratio from Definition 5.96

As the time complexity is proportional to the aspect ratio a(U) of a cell U , an initial97

reduction of U to a smaller cell will speed up the computation of the bridge length by98

minimising further cell extensions, namely supercell size in Algorithm 16.99

The Smith Normal Form and its time complexity are reminded in sections 3 and 4,100

respectively. Section 5 discusses computations on experimental and simulated crystals.101

2. Auxiliary concepts of graph theory for the bridge length algorithm102

This section introduces a few auxiliary concepts to describe the exact algorithm for103

the bridge length in section 3 and to prove main Theorem 6 at the end of section 4.104

Definition 7 (G ⊂ Rn). Let S ⊂ Rn be a periodic point set with a lattice Λ. A periodic105

Euclidean graph G ⊂ Rn is an infinite graph with the vertex set S and straight-line106

IUCr macros version 2.1.10: 2016/01/28



6

edges such that the translation by any vector v ∈ Λ defines an automorphism of G,107

which is a bijection S → S that also induces a bijection on the edges of G, see Fig. 3.108

If straight-line edges meet at interior points, they are not considered vertices of G.109

110

Fig. 3. Left: the periodic point set S with the basis vectors v1 = (5, 0), v2 = (0, 5) and
motif points p = (2, 1), q = (3, 4). Middle: the periodic Euclidean graph G ⊂ R2

with three types of straight-line edges: green, blue, orange of lengths
√
5,
√
10,

√
20,

respectively. Right: the labelled quotient graph Q has directed edges eg, eb, eo with
translational vectors indicating integer shifts of cells, see Definitions 7, 8, 9.

111

112

Fig. 3 shows a connected periodic graph G but G can also be disconnected. For113

example, let S be the square lattice Z2, then the graph G consisting of all horizontal114

edges connecting the points (m,n) and (m + 1, n) for m,n ∈ Z is periodic but not115

connected. If we add to G all vertical edges connecting (m,n) and (m,n + 1) for116

m,n ∈ Z, the resulting infinite square grid is a connected periodic graph on Z2.117

Definition 8 (quotient graph). Let G be a periodic graph on a periodic point set118

S with a lattice Λ in Rn. Two points of S (also vertices or edges of G) are called119

Λ-equivalent if they are related by a translation along a vector v ∈ Λ. The quotient120

graph G/Λ is an abstract undirected graph obtained as the quotient of G under the121

Λ-equivalence. Then G is called a lifted graph of G/Λ. Any vertex of G/Λ is a Λ-122

equivalence class p+Λ represented by a point p ∈ S. Any edge e of the quotient graph123
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G/Λ is a Λ-equivalence class [p, q] + Λ represented by a straight-line edge [p, q] of G.124

We define the length of any edge e in G/Λ as the Euclidean distance |p− q|.125

The quotient graph G/Λ can have multiple edges between the same pair of vertices126

as shown in Fig. 3, which all can be distinguished by the labels defined below.127

Definition 9 (labelled quotient graph). Let S ⊂ Rn be a periodic point set with a128

lattice Λ defined by a basis v1, . . . ,vn. Let G be a periodic graph on S. For an edge129

e of the quotient graph G/Λ, choose any of two directions and a representative edge130

[p, q] in the lifted graph G. Let U(p), U(q) be the unit cells containing p, q, respectively.131

There is a unique vector v =
n∑

i=1
civi ∈ Λ such that U(q) = U(p) + v and ci ∈ Z.132

A labelled quotient graph (LQG) is G/Λ whose every edge e has a direction (say,133

from the Λ-equivalence class of p to Λ-equivalence class of q) and the translational134

vector v(e) = (c1, . . . , cn) ∈ Zn, see Fig. 3. Changing the direction of e multiplies135

each coordinate of v(e) by (−1). An equivalence of LQGs is a composition of a graph136

isomorphism and changes in edge directions that match all translational vectors.137

Translational vectors v(e) are also called voltages if G/Λ is considered a voltage138

graph or a gain graph in topological graph theory. In crystallography, labelled quotient139

graphs have been studied by many authors. Section 6 in (Chung et al., 1984) generated140

3-periodic nets by considering LQGs whose translational vectors have entries from141

{−1, 0, 1}. Section 2 in (Cohen & Megiddo, 1990) described an algorithm to find142

connected components of a fixed periodic graph in terms of its LQG. Proposition 5.1 in143

(Eon, 2011) showed how to reconstruct a periodic graph up to translations from LQG144

and a lattice basis, which we also prove in Lemma 10 in our notations for completeness.145

Section 3 in (Eon, 2016a) described surgeries on building units of LQGs. Theorem 6.1146

in (Eon, 2016b) characterised 3-connected minimal periodic graphs (with a slightly147

different definition of ’minimal’). (McColm, 2024) initiated a search for systematic148

periodic graphs realisable by real crystal nets, see also (Edelsbrunner & Heiss, 2024).149
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The labelled quotient graph G/Λ in Fig. 3 has two vertices p, q. If we orient the150

three edges of Q = G/Λ from p to q, the translational vector (0, 0) of the blue edge151

eb in G/Λ means that the corresponding straight-line blue edge in the lifted graph152

G ⊂ R2 connects points of S within the same unit cell U with the basis v1,v2. The153

orange edge with the translational vector (1, 1) means that each of its infinitely many154

liftings in G ⊂ R2 joins a point in a cell U to another point in the cell U + v1 + v2.155

Lemma 10 (lifting). Let G be a periodic Euclidean graph on a periodic point set S156

with a motif M in a unit cell U defined by a basis v1, . . . ,vn in Rn. Let Q be a labelled157

quotient graph of G. Then G ⊂ Rn can be reconstructed from Q, the basis v1, . . . ,vn,158

and a bijection between all vertices of Q and all points of the motif M ⊂ U .159

Proof. The basis v1, . . . ,vn is needed to define a unit cell U with the given points of160

M , which are in 1-1 correspondence with all vertices of Q. The periodic point set S,161

which is the vertex set of the periodic graph G, is obtained from M by translations162

along the vectors
n∑

i=1
civi for all ci ∈ Z. By Definitions 8 and 9, every edge e of the163

labelled quotient graph Q has a translational vector v(e) = (c1, . . . , cn) and is a Λ-164

equivalence class [p, q]+Λ for some p, q ∈ S whose unit cells U(p), U(q) are related by165

the translation along
n∑

i=1
civi. Then we can lift the edge e to the periodically translated166

straight-line edges [p+ v, q + v +
n∑

i=1
civi] in the periodic graph G for all v ∈ Λ.167

Definition 11 (path/cycle sum). For a path (sequence of consecutive edges) in a168

labelled quotient graph Q, we make all directions of edges consistent in the sequence169

and define the path sum in Zn as the sum of the resulting translational vectors along170

the path. If the path is a closed cycle, the path sum is called the cycle sum.171

In the language of voltage graphs, a path sum may equivalently be referred to as172

the net voltage over the path. In the labelled quotient graph in Fig. 3, the upper cycle173
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consisting of the directed orange edge (from p to q) and the inverted green edge (from174

q to p) has the cycle sum (1, 1) + (0,−1) = (1, 0). This cycle sum means that a lifting175

of the cycle to the periodic graph G in R2 produces a polygonal path connecting a176

point to its translate by the vector v1 = (1, 0) in the next cell to the right.177

Definition 12 (minimal tree MST(S/Λ)). For a periodic point set S ⊂ Rn with a178

lattice Λ, a minimal tree is a Minimum Spanning Tree MST(S/Λ) (Definition 4) on179

the set S/Λ of Λ-equivalence classes of points, where the distance between any classes180

in S/Λ is the minimum Euclidean distance between their representatives in the set S.181

In Fig. 3, a minimal tree MST(S/Λ) consists of one shortest green edge in G/Λ.182

3. Algorithm for the bridge length of a periodic point set183

This section will describe main Algorithm 16 for solving Problem 3, which will call184

auxiliary Algorithm 13 several times. Algorithm 13 starts from a conventional repre-185

sentation of a periodic set S ⊂ Rn with a motif M of points given by coordinates in186

a basis v1, . . . ,vn of a lattice Λ as in a Crystallographic Information File (CIF).187

At every call, Algorithm 13 returns the next shortest edge e between points of S in188

increasing order of length. Although S is a set of points rather than a graph, we will189

use the term ’edge’, because e can be considered an edge from a complete graph with190

the vertex set S and with the ’next shortest edge’ being up to Λ-equivalence.191

Any edge e between points of S will be represented by an ordered pair of points192

p, q ∈ M and a translational vector (c1, . . . , cn) ∈ Zn so that the actual straight-line193

edge in the lifted periodic graph G ⊂ Rn is from p to the point q +
n∑

i=1
civi. For194

convenience, we record the Euclidean distance d = |q − p +
n∑

i=1
civi| between these195

endpoints. Then Algorithm 13 outputs any edge e as a tuple (p, q; c1, . . . , cn; d).196

Algorithm 13 maintains the list of already found edges in increasing order of length.197
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If the next required edge e is already in the list, Algorithm 13 simply returns e. This198

shortcut is implemented in Python with the keyword ‘Yield’, see the documentation at199

https://docs.python.org/3/glossary.html#term-generator-iterator. Rather than start-200

ing from line 1, every time when Algorithm 13 is called, each call ’Yield e’ returns201

an edge e, then temporarily suspends processing, remembering the location execution202

state including all local variables. When ’Yield e’ is called again, Algorithm 13 picks203

up where it left off in contrast to functions that start fresh on every invocation.204

If the next edge e is not yet found, Algorithm 13 adds more points from a shell of205

unit cells surrounding the previously considered cells. This shell contains the extended206

motif Mk without the smaller motif Mk−1 for k > 1, see Fig. 2. For any new point207

p, it suffices to consider only edges to points q ∈ M ⊂ U because any edge e can be208

periodically translated by v ∈ Λ so that one of the endpoints of e belongs to U . In209

Algorithm 13, the Chebyshev distance D∞ in line 3 is the maximum absolute difference210

of corresponding coordinates, while d in line 7 is the usual Euclidean distance.211

Algorithm 13. Input: a basis v1, . . . ,vn defining a unit cell U , a motif M ⊂ U .212

next edge runs only until the next Yield, and outputs the yielded edge.213

1: supercell size=0, current batch=[], next batch=[], next batch min len=infinity214

2: while True do215

3: for transl vector in Zn s.t. D∞(⃗0, transl vector) = supercell size do216

4: for source in the motif M do217

5: for dest in the motif M do218

6: true dest = dest+ basis · transl vector219

7: length = d(source, true dest)220

8: next batch.append((length, source, dest, transl vector))221

9: next batch min len = minimum(length,next batch min len)222

10: end for223
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11: end for224

12: end for225

13: while current batch is not empty do226

14: next = minimum(current batch)227

15: if next ≥ next batch min len then Break228

16: end if229

17: current batch.remove(next)230

18: Yield(next)231

19: end while232

20: current batch = concatenate( current batch, next batch)233

21: next batch=[]234

22: supercell size = supercell size + 1235

23: end while236

There is a faster way of checking a condition equivalent to next batch min len by237

using the cell geometry. Then in the vast majority of cases the algorithm can stop238

at a supercell one size smaller, which dramatically speeds up the calculation. This239

calculation is described in Remark 14. However, due to the possibility of that not240

being the case (upon which the algorithm would just default to the same supercell241

size), we will keep this simpler idea and use it for the time complexity calculations.242

Remark 14 (a faster way to compute next batch min len in Algorithm 13). For243

a unit cell with a basis v1, . . . ,vn, let ai and bi be the shortest vectors parallel and244

antiparallel to vi from any point of a motif M ⊂ U to the opposite boundary faces of245

the unit cell U . Then the faster alternative for next batch min len is246

min
i=1,...,n

(|ai|+ |bi|+ supercell size ∗ |vi|).

As all the vector lengths |ai|, |bi|, i = 1, . . . , n can be pre-computed, we get a massive247
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improvement over the calculation of next batch min len in Algorithm 13.248

Algorithm 16 will be building a labelled quotient graph Q by adding (or ignoring)249

edges found by Algorithm 13 and monitoring the connectivity of the growing lifted250

graph G whose quotient G/Λ is Q. For a basis v1, . . . ,vn of a unit cell U of the251

lattice Λ of S, the edge e between points p and q +
n∑

i=1
civi ∈ S is added to Q as252

the edge between the Λ-equivalence classes of p and q, with the translational vector253

v(e) = (c1, . . . , cn) ∈ Zn. As soon as G becomes connected, the length of the last254

added edge is the bridge length β(S), which will be proved in Theorem 26 later.255

In comparison with a Minimum Spanning Tree of a finite set of points, verifying the256

connectivity of the lifted periodic graph requires a much more complicated check that257

translational vectors with integer coordinates form a basis in Zn (not Rn), which can258

include more than n vectors. Fig. 4 shows a basis of Z2 consisting 3 vectors, where no259

vector can be dropped without losing the connectivity of all integer points in Z2.260

261

Fig. 4. Left: the 3 vectors v1 = (0, 1), v2 = (2, 0), v3 = (3, 0) form a basis of Z2.Other
images: none of the 3 pairs (v2,v3), (v1,v2), (v1,v3) form a basis (insufficient for
full connectedness) of Z2. Some straight edges are shown curved for better visibility.

262

263

Algorithm 16 will use the Smith Normal Form (SNF) of a matrix of vectors (c1, . . . , cn)264

in Zn, see p. 26 in (Newman, 1972), (Cohn, 1985), and chapter 3.6 in (Van der Waer-265

den, 2003) for finitely generated modules over a Principal Ideal Domain (PID).266

Definition 15 (Smith Normal Form and invariant factors). For integers m,n ≥ 1,267

let A be a non-zero n × m matrix over a Principal Ideal Domain P , for example,268

P = Z. Then there exist invertible n× n and m×m-matrices L,R, respectively, with269
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coefficients in P , such that the product LAR is an n×m matrix whose only non-zero270

entries are diagonal elements ai such that ai divides ai+1 for i = 1, . . . , j − 1, and271

ai = 0 for i = j, . . . , n for some 1 < j ≤ n. This diagonal matrix LAR is the Smith272

Normal Form SNF(A). The diagonal elements ai are called the invariant factors of A.273

Let 1 denote the unit element of a Principal Ideal Domain P . If P = Z, then 1 is the274

usual integer 1. The simplest SNF has all invariant factors equal to 1, which happens275

if and only if the last factor an = 1 because all previous factors ai divide an.276

Algorithm 16 (Finding the bridge length β(S) of any periodic point set S ⊂ Rn).277

Initialisation. A labelled quotient graph Q and a forest F ⊂ Q initially consist of m278

isolated vertices, each representing a Λ-equivalence class of a point of the motif of S.279

We will build a translational matrix A with columns in Zn, which is initially empty.280

Loop stage. Consider the next edge e = next edge() found by Algorithm 13.281

Case 1. If adding the edge e to the current forest F would not form a closed cycle282

(ignoring all edge directions), then add e to F and Q as an edge with an arbitrarily283

chosen direction and corresponding translational vector v(e) found by Algorithm 13.284

Case 2. If adding the edge e to F does form a cycle, find its cycle sum c ∈ Zn
285

from Definition 11. If c is not 0 ∈ Zn and cannot be expressed as an integer linear286

combination of the columns from the current translational matrix A, then add e to Q287

as in Case 1 (but not to the forest F ) and add the vector c as a new column to A.288

Termination. Stop if both conditions below hold, otherwise continue the loop.289

(1) the labelled quotient graph Q (hence the forest F ) becomes connected; and290

(2) the translational matrix A (whose columns are cycle sums of cycles created by291

adding edges) has n invariant factors equal to 1, see Definition 15.292

The necessity of termination condition 1 in Algorithm 16 means that if the lifted293

periodic graph G is connected then so is its quotient Q = G/Λ. The inverse implication294
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(sufficiency) may not hold. For example, in Fig. 3, the minimal tree MST(S/Λ) is295

a single green edge eg, whose preimage under the quotient map G → G/Λ is the296

disconnected set of all green straight-line edges in the periodic graph G ⊂ R2.297

Example 17 (running Algorithm 16 on the periodic point set S in Fig. 3). The298

first addition to the quotient graph Q and forest F , which initially had two isolated299

vertices p, q, is the shortest green edge eg from p to q (case 1 in the loop stage) with the300

translational vector c(eg) = (0, 1) ∈ Z2. The translational matrix A remains empty.301

Adding the next (by length) blue edge eb with c(eb) = (0, 0) to F = {eg} creates a302

cycle with the cycle sum c = c(eg) − c(eb) = (0, 1). According to case 2 in the loop303

stage, the quotient graph Q becomes the cycle of two edges eg∪eb but the forest remains304

F = {eg}. The translational matrix A becomes one column

(
0
1

)
and does not yet305

have two invariant factors 1. The 2nd termination condition is not yet satisfied, and306

the current lifted graph consisting of all green and blue segments is still disconnected.307

Adding the orange edge eo with c(eo) = (1, 1) to F creates another cycle with the308

cycle sum c′ = c(eg)−c(eo) = (−1, 0). The quotient graph Q = eg∪eb∪eo is now full but309

F = {eg} is still one edge. The matrix A becomes

(
0 −1
1 0

)
whose SNF =

(
1 0
0 1

)
310

shows that A has 2 invariant factors equal to 1. Both termination conditions hold and311

the lifted periodic graph G ⊂ R2 of all green, blue, and orange edges is connected. The312

bridge length β(S) = 2
√
5 equals the length of the last (orange) edge as expected.313

4. Correctness and time complexity of the bridge length algorithm314

This section proves the correctness of Algorithm 16 in Theorem 26 about the bridge315

length and main Theorem 6 about its time complexity. Lemmas 20-21 will prove the316

necessity of termination condition 2 in Algorithm 16. Both conditions 1 and 2 will317

guarantee the connectedness of the lifted periodic graph G due to Lemma 23.318

Lemma 18 is a partial case of the splitting lemma on page 147 in (Hatcher, 2002).319

IUCr macros version 2.1.10: 2016/01/28



15

Lemma 18 (splitting). A short sequence of linear maps 0 → Zm−n f−→ Zm g−→ Zn → 0320

is called exact if the image of each map coincides with the kernel (subspace mapping321

to 0) of the next map, i.e. Ker(f) = 0, Im(f) = Ker(g), Im(g) = Zn. If there is a322

map h : Zn → Zm, such that g ◦h is the identity on Zn, then Zm ∼= f(Zm−n)⊕h(Zn),323

where f(Zm−n) and h(Zn) are linearly independent subspaces of Zm for m ≥ n.324

Example 19 (finding a Smith Normal Form). In the notations of Lemma 18, Fig. 4325

defines the map g : Z3 → Z2 given by the matrix A =

(
1 0 0
0 2 3

)
whose 3 columns326

generate Z2. Then Ker(g) ⊂ Z3 consists of all vectors f(k) = k

 0
3
−2

 for k ∈ Z, which327

defines f : Z → Z3 with Ker(f) = 0 and Im(f) = Ker(g) as required in Lemma 18.328

Since g : Z3 → Z2 is surjective, we can find a map h : Z2 → Z3 satisfying g ◦ h = id,329

e.g. h can be given by M =

1 0
0 −1
0 1

, then AM =

(
1 0 0
0 2 3

)1 0
0 −1
0 1

 =

(
1 0
0 1

)
,330

denoted by I2. After extending the 3 × 2 matrix M by the extra column with a basis331

vector of Im(f), we get the matrix R =

1 0 0
0 −1 3
0 1 −2

 such that AR =

(
1 0 0
0 1 0

)
.332

Lemma 18 implies that the constituent blocks of R are linearly independent to each333

other; all columns of R are linearly independent, and R is invertible. Hence, I2AR is334

a Smith Normal Form of A with n = 2 invariant factors equal to 1 by Definition 15.335

Lemma 20 (matrix generating Zn ⇔ n invariant factors equal to 1). The columns of336

any n×m matrix A generate Zn if and only if A has n invariant factors equal to 1.337

Proof. Let them columns of A generate Zn. Then A defines the surjection g : Zm → Zn
338

whose Ker(g) can be obtained as the image of a map f : Zm−n → Zm. So Ker(g) is339

generated by f(e1), . . . , f(em−n), where e1, . . . , em−n form an orthonormal basis of340

Zm−n. Since g : Zm → Zn is surjective, orthonormal basis vectors u1, . . . ,un of Zn are341

images g(v1), . . . , g(vn), respectively, of some vectors v1, . . . ,vn ∈ Zm. We can define342

the linear map h : Zn → Zm, h(ui) = vi for i = 1, . . . , n, so that g ◦ h = id on Zn.343
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Then h has the m× n matrix M such that AM = In, where In is the n× n identity344

matrix. Extending M by the m− n columns f(e1), . . . , f(em−n) gives the invertible345

m × m matrix R such that AR equals the n × m matrix obtained by extending In346

with m− n zero columns. Again, R is an invertible matrix over Z, so ImAR = AR is347

the Smith Normal Form of A with all invariant factors equal to 1 by Definition 15.348

Conversely, let the Smith Normal Form SNF = LAR of the matrix A in Definition 15349

have all invariant factors equal to 1. Then the n columns of the n×m matrix AR and350

hence the n columns of A form a basis of Zn. Indeed, transforming the m columns of351

AR by the invertible n× n matrix L gives the standard orthonormal basis of Zn.352

Lemma 21 (connected periodic graph G ⊂ Rn ⇒ n invariant factors equal 1). In353

Algorithm 16, if the lifted periodic graph G ⊂ Rn becomes connected, then the trans-354

lational matrix A has n invariant factors equal to 1.355

Proof. By Lemma 20 it suffices to show that any vector v ∈ Zn is an integer linear356

combination of columns of A. Choose any point p ∈ S. Then the points p and p + v357

are connected in the lifted periodic graph G ⊂ Rn by a polygonal path of straight-358

line edges. Under G → G/Λ, this path projects to a closed cycle C at the vertex359

(Λ-equivalence class) p+ Λ in the labelled quotient graph Q = G/Λ.360

Let the cycle C pass through edges e1, . . . , ek (with integer multiplicities) in the361

complement Q− F of the forest F in the quotient graph Q. These edges were added362

only to Q in case 2 of the loop stage. When we tried to add every edge ej to F , the edge363

ej created a cycle Cj whose cycle sum appeared as a column in the translational matrix364

A (if this cycle sum was not yet an integer combination of the previous columns). Then365

the vector v equals the sum of the cycle sums of all the cycles Cj for j = 1, . . . , k,366

which is an integer combination of the columns of A as required.367

Lemma 22 (connected quotient graph G/Λ ⇒ ∃ a tree of representatives T ⊂ G). If368
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a labelled quotient graph Q = G/Λ is connected, its lifted graph G ⊂ Rn on a periodic369

point set S with a motif of m points and a lattice Λ includes a straight-line tree of370

representatives T ⊂ G with m vertices that are not Λ-equivalent to each other.371

Proof. Since Q is connected, we can choose a spanning tree F ⊂ Q on the m vertices372

of Q. A required tree T ⊂ G will be a connected union of straight-line edges of G that373

map 1-1 to all edges of F under the quotient G → Q. Start from any point p ∈ S and374

take any edge e at the vertex (Λ-equivalence class) p+Λ of F ⊂ Q. The preimage of e375

under G → Q contains a unique straight-line edge [p, q] ⊂ G, which we add to T . After376

adding to T all edges at p that project to all edges of F at the vertex p + Λ, choose377

another point p′ ∈ T such that the vertex p′ +Λ has an edge of F not yet covered by378

T under G → Q. We continue adding edges to T by using their projections in F ⊂ Q379

until we get a tree T ⊂ G that spans m points of S that are not Λ-equivalent. The380

final T has no cycle, else this cycle projects under G → Q to a cycle in a forest F .381

Lemma 23 (termination conditions in Algorithm 16 ⇒ connected graph G ⊂ Rn).382

Let Q be a labelled quotient graph with a translational matrix A and a lifted graph G383

on a periodic point set S ⊂ Rn with a lattice Λ. If Q is connected and the matrix A384

has n invariant factors equal to 1, then the lifted periodic graph G ⊂ Rn is connected.385

Proof. For any points p, q ∈ S, we will find a path of straight-line edges in G as386

follows. By Lemma 22 the connectedness of the quotient graph Q = G/Λ guarantees387

the existence of a tree T ⊂ G whose vertices represent all Λ-equivalences classes of388

points of S. Let p′, q′ be the vertices of T that are Λ-equivalent to p, q, respectively.389

Since p′, q′ are connected by a path in T , it suffices to find a path from p to its390

Λ-translate p′ = p + v (then similarly from q to q′) in the graph G for any v ∈ Λ.391

By Lemma 20 the columns of A form a basis of Zn, so v is an integer combination of392

these columns. It suffices to find a path in G by assuming that v is one column of A393

IUCr macros version 2.1.10: 2016/01/28



18

because a path for any sum
∑

i vi can be obtained by concatenating paths for vi. A394

column v can appear in A only in case 2 of the loop stage in Algorithm 16 as a cycle395

sum of a cycle C ⊂ Q that was created by trying to add an edge e from Algorithm 13396

to a forest F ⊂ Q. If we order all edges of C from the vertex p+ Λ as e1, . . . , ek, the397

sum of their translation vectors equals v. We build a path from p to p + v in G by398

finding a unique edge [p, p1] ⊂ G that projects to e1, then a unique edge [p1, p2] ⊂ G399

that projects to e2 and so on until we cover all e1, . . . , ek and arrive at p+ v.400

Remark 24. The paper (Onus & Robins, 2022) discusses connected components of401

a periodic graph K in terms of homology, namely Theorem 1(1) proves that H0(K)402

has a basis of
∑N

i=1[Zd : WQi ] elements, see details in their section 3.1, but without403

describing an algorithm for finding such a basis. Our results complement their approach404

by proving the time complexity for checking the connectivity of a dynamic periodic405

Euclidean graph in Theorem 6 whilst keeping track of its connected components.406

Lemma 25 (ignored edges). Let an edge e be a Λ-equivalence class of a straight-line407

edge [p, q] + Λ in a lifted periodic graph G for some points p, q ∈ S. If Algorithm 16408

does not add the edge e to a labelled quotient graph Q, then the points p, q are already409

connected by a path in the graph G ⊂ Rn lifted from Q by Lemma 10.410

Proof. The loop stage in Algorithm 16 ignores an edge e in the cases below.411

Case 1. The edge e forms a cycle in Q whose cycle sum is the zero vector in Zn.412

Case 2. The edge e forms a cycle whose cycle sum equals an integer linear combination413

of pre-existing cycle sums from the translational set B.414

In both cases, we have either one cycle (in case 1) containing e, whose cycle sum415

is 0 ∈ Zn, or several cycles (in case 2), one (up to multiplicity) of which contains e,416

whose total sum of translational vectors is 0 ∈ Zn. By Definition 9 each edge of Q417

involved in this zero sum can be lifted to a straight-line edge in the graph G ⊂ Rn.418

IUCr macros version 2.1.10: 2016/01/28



19

If we start from the given point p ∈ S, a cycle in Q and its sum 0 of translational419

vectors guarantees that the sequence of the lifted edges in G finishes at the same point420

p and hence forms a cycle C. This cycle C has the edge [p, q] whose exclusion keeps421

the points p, q ∈ S connected by the path in C that is complementary to [p, q].422

Theorem 26. Algorithm 16 finds the bridge length β(S) from Definition 2 for any423

periodic point set S ⊂ Rn with a motif M of points given in a basis v1, . . . ,vn.424

Proof. Within Algorithm 16, let d be the length of the last added edge e after which425

both termination conditions finally hold. By Lemma 25 all ignored edges do not create426

extra connections in the graph G. By Lemmas 21 and 22 the graph G obtained before427

adding the last edge e is disconnected. Lemma 23 guarantees that, when e is added, the428

graph G becomes connected. Because Algortihm 13 yields edges in increasing order, e429

is the shortest edge that could have this property, so the bridge length is β(S) = d.430

Theorem 6 has a rough upper bound assuming that the Smith Normal Form SNF(A)431

of an integer n ×m matrix A is re-computed for every iteration in time O(N). This432

time was estimated in (Giesbrecht, 1995) as O∼(nω−1m ·M(n log ||A||)), where ||A|| =433

maxi,j |Aij |, M(t) bounds the cost of multiplying two t-bit integers, and ω ≤ 2.372434

is the exponent for matrix multiplication: two n × n matrices can be multiplied in435

time O(nω), see (Williams et al., 2024). The “soft-Oh” simplifies the complexity up to436

logarithmic factors, so f = O∼(G) if and only if f = O(g logc g) for a constant c > 0.437

To speed up Algorithm 16 in practice, the Smith Normal Form can be updated at438

every iteration instead of recomputing from scratch, see details in appendix A.2.439

Proof of Theorem 6. Algorithm 16 solves Problem 3 by Theorem 26. It remains to440

show that the time complexity of Algorithm 16 is O(m2a(U)nN). Algorithm 16 has441

the initialisation of a constant time O(1) and the loop stage. We will multiply an442

upper bound for the number of loops by the time complexity of each loop.443
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One loop in Algorithm 16 contains at most the following checks.444

� (Cycle) Does adding an edge e to a forest F create a cycle?445

� (Combination) Is the cycle sum an integer combination of previous cycle sums?446

� (Termination) After appending a cycle sum c to the translational matrix A and447

calculating SNF(A), does A have n invariant factors equal to 1?448

The condition Cycle is checked traditionally by a depth-first search O(m), see449

(Sedgewick, 1983). The condition Combination is equivalent to ’Has SNF(A) changed?’,450

and Termination is equivalent to ’Is the product of invariant factors of A equal to 1?’.451

So both conditions can be jointly checked in time O(N) needed to compute SNF(A).452

The time complexity of SNF(A) dominates all other steps in Algorithm 16, so we453

will use O(N) to represent the complexity of a single loop iteration of Algorithm 16.454

Every loop iteration calls Algorithm 13. If we consider all calls to Algorithm 13 as455

running sequentially, then the main loop will run at most a(U)+ 1 times, where a(U)456

is the aspect ratio from Definition 5. Each loop runs through the unit cells that are457

’supercell size’ away from the central cell U1. By the end, we will have run through458

and yielded (a(U) + 1)n unit cells. For each unit cell Ui, we find all distances between459

the m points in Ui and m points in the central cell. The required time is O(m2) for460

two cells and hence O(m2a(U)n) for all cells. Algorithm 16 does not actually run for461

every edge found by Algorithm 13 but we assume this for simplicity. The worst-case462

complexity for the naive implementation of Algorithm 16 is O(m2a(U)nN).463

5. Experiments on real and simulated crystals, and a discussion464

This section discusses experiments computing the exact bridge length β(S) for 5679465

simulated and 5 real nanoporous crystals in Fig. 5 reported in Nature paper (Pulido466

et al., 2017). Table 1 contains the bridge lengths computed by Algorithm 16 on the467
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crystals from Fig. 5 given by their codes in the Cambridge Structural Database (CSD).468

The names of T2 polymorphs refer to the crystalline forms α, β, γ, δ, ϵ based on the469

same molecule T2. The crystal IDs starting from 6-letter codes in the first column of470

Table 1 refer to the Cambridge Structural Database (Taylor & Wood, 2019).471

472

Fig. 5. T2 molecule and 5 crystals synthesized from T2. The first four T2-α, T2-β,
T2-γ, T2-δ were reported in (Pulido et al., 2017), the last T2-ϵ in (Zhu et al., 2022).

473

474

Note that the polymorph T2-γ contains four slightly different versions in the CSD475

(DEBXIT01. . . 04) because their crystal structures were determined at different tem-476

peratures. The seven versions DEBXIT01. . . 07 with the same 6-letter code may look477

similar even for experts. T2-δ (SEMDIA) was deposited later than others because even478

the original authors confused this polymorph with earlier crystals, which was detected479

by invariants from (Edelsbrunner et al., 2021), computed by (Smith & Kurlin, 2022).480

Table 1 includes the upper bounds β(S) ≤ min{r(U), 2R(S)} from Lemma 3.7(a)481

in (Anosova et al., 2022), see r(U) and R(S) in Definition 5. The run times in Table 1482

were recorded on a laptop with Intel i5, one 1GHz core, 8Gb RAM.483

The final row contains the averages for 5,679 simulated T2 crystals, which are484

publicly available in the supplementary materials of (Pulido et al., 2017) and were used485

for predicting the 5 experimental polymorphs represented by 9 entries in the CSD.486

For all crystals in Table 1, the translational matrix size never exceeded 3 columns.487
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Table 1. The exact bridge length β(S) computed by Algorithm 16 and its upper bounds for the

9 experimental and 5679 simulated T2 crystals reported by (Pulido et al., 2017).
CSD ref codes of number bridge upper upper best upper running
experimental and of atoms length bound bound bound over time,
simulated crystals in a cell β(S), Å r(U), Å 2R(S), Å exact β(S) seconds
T2-α NAVXUG 184 2.028 22.325 15.609 7.695 4.337
T2-β DEBXIT05 92 3.163 20.665 12.906 4.080 0.664
T2-β DEBXIT06 92 3.188 20.694 12.884 4.042 0.657
T2-γ DEBXIT01 92 1.879 23.224 23.366 12.358 0.706
T2-γ DEBXIT02 92 1.926 23.226 23.375 12.061 0.636
T2-γ DEBXIT03 92 1.902 23.230 23.373 12.216 0.653
T2-γ DEBXIT04 92 1.970 23.290 23.448 11.824 0.649
T2-δ SEMDIA 92 2.713 14.401 8.350 3.077 0.671
T2-ϵ DEBXIT07 92 2.062 12.608 5.707 2.768 0.641
average for all 5679 295.8 2.293 15.203 9.110 3.973 31.653
simulated T2 crystals

488

The real T2 crystals in the CSD have smaller motifs consisting of only 2 or 4 T2489

molecules, while simulated T2 crystals contain up to 32 molecules, which makes the490

running times slower in comparison with real ones, see the last column in Table 1.491

More importantly, the exact bridge length β(S) is 4 times smaller (on average) than492

its upper bound min{r(U), 2R(S)}. The bridge length β(S) provides the upper bound493

β(S)+2R(S) > α(S) in Lemma 3.7(b) from (Anosova et al., 2022) for a stable radius494

α of atomic clouds that suffices for a complete and continuous isoset invariant of S.495

This isoset uniquely identifies any periodic crystal S under rigid motion and has496

a continuous distance metric that has detected thousands of near-duplicate crystals.497

Decreasing the upper bound of α(S) from 4R(S) to the smaller value β(S) + 2R(S)498

by a factor of about 2 decreases the size m of atomic clouds by a factor of 23 = 8 in499

R3. This size reduction speeds up by several orders of magnitude the algorithms for500

isosets and their distance metric, which have complexity O(m3 logm) and O(m6) in501

R3, respectively; see the conclusions of section 5 in (Anosova et al., 2022).502

The next open problem is an exact computation of the minimal stable radius α(S).503
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Appendix A507

A.1. Pathsum Matrix Example508

With unit cell:509

[28, 0], [0, 28]

And ordered motif:510

(5, 3), (25, 3), (25, 7), (1, 9), (19, 17), (5, 23)

We get the incomplete and complete Pathsum Matrices:511



(0, 0) NaN NaN NaN NaN (0,−1)
NaN (0, 0) (0, 0) (1, 0) NaN NaN
NaN (0, 0) (0, 0) (1, 0) NaN NaN
NaN (−1, 0) (−1, 0) (0, 0) NaN NaN
NaN NaN NaN NaN (0, 0) NaN
(0, 1) NaN NaN NaN NaN (0, 0)


This is only one example of an
incomplete Tree and Pathsum Matrix

512



(0, 0) (−1, 0) (−1, 0) (0, 0) (−1, 0) (0,−1)
(1, 0) (0, 0) (0, 0) (1, 0) (0, 0) (1,−1)
(1, 0) (0, 0) (0, 0) (1, 0) (0, 0) (1,−1)
(0, 0) (−1, 0) (−1, 0) (0, 0) (−1, 0) (0,−1)
(1, 0) (0, 0) (0, 0) (1, 0) (0, 0) (1,−1)
(0, 1) (−1, 1) (−1, 1) (0, 1) (−1, 1) (0, 0)


This is the only possible complete
Tree and Pathsum Matrix for a Minimal Tree.

513

As can be seen, we have used NaN for the Null(disconnected) values. This is because514

one powerful way to calculate the matrix is to leverage IEEE 754’s NaN to simply515

add and subtract rows and columns when including new edges in the tree. What may516

also be seen, is that not only can we now quickly determine which equivalance classes517

of motif points are already connected (i.e., not NaN), we can also quickly determine518
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cyclesums for any additions to the tree.519

For example, if we were to add an edge e, formally described as:520

(source index, dest index, voltage) = (4, 5, (1, 0))

(with zero-based numbering for motif point indices):521

522

Fig. h. Creating a cycle

523

524

We can see that e has the voltage (1, 0). To get the cyclesum of the cycle formed525

from adding the edge to the tree (consistent with the direction of e), we simply add v526

to the Matrix element R5,4 as so:527

v +R5,4 = (1, 0) + (−1, 1) = (0, 1)

Which coincides with the figure.528

A.2. A faster ’online’ algorithm for the Smith Normal Form529

A different way of checking the Termination condition is to append columns to A530

in an ’online’ fashion. This avoids the need to calculate the Smith Normal Form from531

scratch every time (or often at all), and reduces the complexity to a time close toO(mω·532
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E · n), where ω ≤ 2.372 is the exponent for matrix multiplication (Williams et al.,533

2024), and O(E) is the complexity of the Extended Euclidean Algorithm (Baladi &534

Vallée, 2005). As this reduction in complexity is dominated by the price of populating535

the edges with Algorithm 13, this will be irrelevant for most use cases (and is not536

used in the experiments shown later). As a use case involves, say, a larger or higher-537

dimensional pre-populated set of edges, this algorithm becomes more necessary.538

Recalling from Definition 15 that the diagonal of the Smith Normal Form SNF(A) =539

LAR is made up of the invariant factors of A. To progressively calculate SNF(A), we540

must only keep track of the right-multiplying unimodular matrix R, and the invariant541

factors themselves, which form a vector f = (f1, . . . , fn) ∈ Zn. To run the main542

algorithm here, we do have to begin with a matrix with n integer linearly independent543

rows. ’Adding’ a vector v to f is where the process changes. We treat R and f as544

mutable, meaning each value is not necessarily fixed to its original assignment. The545

first step is to define x := v ∗ R, then we find gi = gcd(xi, fi). If fi = gi (i.e.,546

fi divides xi), we can continue with i := i + 1, with no need to change R as it only547

keeps track of columns (for context, if we were keeping track of L, too, we would have548

to subtract the i-th row from the last row xi/fi times).549

If fi divides xi for all i, we would know that including the vector changes nothing,550

therefore the relative edge is also irrelevant and can be discarded (this reduces the551

complexity of most of the Termination condition from O(N) to O(nω + log2(n)).552

However, if gi < fi, then fi not only becomes gi, but we also know that SNF(A) will553

change and that we must add the edge relative to v. We must also alter R, accounting554

for the fact that F represents the diagonal of a matrix. We can do this by any typical555

process of ’changing the pivot’ in the SNF algorithm, ensuring that we update R556

in tandem. As accounting for the previous values of i is trivial, it is the worst-case557

equivalent to calculating the SNF of an (n−i)×(n−i) matrix in time O(Nn−i), which558
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improves upon the naive calculation of SNF from scratch upon every alteration of A.559

Lemma 27. Updating the Smith Normal Form as above preserves its properties.560

Proof. As we only alter with elementary row and column operations, this preserves the561

Smith Normal Form. By multiplying the to-be-added row v by R before concatenating562

it as a new row to F , it is the same as performing those same elementary column563

operations upon a new matrix: [A0, ..,An,v] (i.e. v concatenated as a row onto A).564

We then continue to perform only elementary row and column operations, and we565

end with a matrix that satisfies the conditions of an SNF noted in Definition 15.566

To discuss this process any further is beyond the scope of this paper, though there567

are still some small tricks that take advantage of the way the ’new’ rows for consider-568

ation are intrinsically related to v, and how fi+1 divides fi.569
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Synopsis

We describe an efficient algorithm to compute the bridge length estimating the size of a
complete isoset invariant, which classifies all periodic point sets under Euclidean motion.
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