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Abstract Periodic point sets model all solid crystalline materials (crystals) whose
atoms can be considered zero-sized points with or without atomic types. This pa-
per addresses the fundamental problem of checking whether claimed crystals are
novel, not noisy perturbations of known materials obtained by unrealistic atomic
replacements. Such near-duplicates have skewed ground-truth because past com-
parisons relied on unstable cells and symmetries. The proposed Lipschitz con-
tinuity under noise is a new essential requirement for machine learning on any
data objects that have ambiguous representations and live in continuous spaces.
For periodic point sets under isometry (any distance-preserving transformation),
we designed invariants that distinguish all known counter-examples to the com-
pleteness of past descriptors and detect thousands of (near-)duplicates in large
high-profile databases of crystals within two days on a modest desktop computer.
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1 The key questions of mathematical data science for real applications

Many real data objects have infinitely many different representations. For exam-
ple, any rigid object such as a solid crystalline material can be given by atomic
coordinates that strongly depend on a chosen basis in Euclidean space R3. Hence
the first question that mathematical data science should ask about any objects
is Same or different? [54]. To make this question meaningful, we should rigorously
define what objects can be called the same (or equivalent) as formalized below.
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An equivalence is a binary relation (denoted by S ∼ Q) satisfying three ax-
ioms: (1) reflexivity: any object S ∼ S; (2) symmetry: if S ∼ Q then Q ∼ S;
(3) transitivity: if S ∼ Q and Q ∼ T then S ∼ T . Any classification needs an
equivalence satisfying these axioms to split all objects into disjoint classes: the
equivalence class [S] of an object S consists of all Q equivalent to S. If two classes
[S] and [T ] share a common object Q, then [S] = [T ] by the transitivity axiom.

For any collection of objects, one can consider many different equivalences.
For instance, any finite or periodic configurations of atoms (molecules or crystals)
can be called equivalent if they have the same chemical composition. However, we
know many polymorphic materials (such as diamond and graphite) that have the
same composition but differ by other properties. In this case, we need a stronger
equivalence that would split all atomic configurations into as many different classes
as practically necessary to uniquely identify all physical and chemical properties.

The following equivalence is crucial for many real objects, including molecules
and materials whose structures are determined in a rigid form [5]: a rigid motion
is a composition of translation and rotations in Rn, which preserves all object
properties under the same ambient conditions such as temperature and pressure.
Indeed, there is no sense in distinguishing atomic configurations that can be exactly
matched by rigid motion, but it is important to see differences in rigid shapes
(equivalence classes under rigid motion) that can affect their properties.

If we consider compositions of a rigid motion with mirror reflections, we get
a slightly weaker equivalence: an isometry (denoted by S ≃ Q) is any distance-
preserving transformation. Since mirror images can be distinguished by a sign of
orientation, we focus on isometries, which form the full Euclidean group E(n).

After an equivalence (isometry in our case) is fixed, objects can be distinguished
by an isometry invariant I that is a function mapping a given object S to a
numerical value (vector or a matrix) I(S) preserved under any isometry, i.e. if
S ≃ Q, then I(S) = I(Q). An example invariant of a finite set S is its size
(the number of points). Any non-constant invariant I can distinguish some (not
necessarily) all non-isometric sets, i.e. if I(S) ̸= I(Q) then S ̸≃ Q by definition.

The invariance is stronger than the equivariance requiring that any isometry
f maps I(S) to Tf (I(S)), where a transformation Tf depends on f . For example,
any linear combination e(S) of coordinates of a finite set S ⊂ Rn is equivariant,
not invariant, and hence allows a false negative that is a pair of objects S ≃ Q
with e(S) ̸= e(Q). The invariance is much stronger by requiring that Tf is the
identity. Then I(S) ̸= I(Q) always guarantees that S ̸≃ Q are not isometric.

A full answer to the question ‘Same or different? ’ requires a complete invariant
I satisfying the much harder inverse implication: if I(S) = I(Q) then S ≃ Q. In
other words, I has no false positives that are pairs S ̸≃ Q with I(S) = I(Q). All
triangles S (sets of three points) have a complete invariant I(S) of three inter-
point distances due to the side-side-side (SSS) theorem. Any complete invariant is
similar to a DNA-style code that uniquely identifies any object under isometry.

A simple input of real objects is a discrete set of points, which can represent
corners, edge pixels, or atomic centers in a molecule or a material. In the finite
case, if given points p1, . . . , pm ∈ Rn are ordered, they are uniquely determined
under isometry [55,35] by the matrix of pairwise Euclidean distances |pi − pj | or
the Gram matrix of scalar products pi · pj , see [62, chapter 2.9] and [61].
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However, most points in real objects are unordered, e.g. many materials con-
sist of indistinguishable atoms. A brute-force extension of distance matrices to m
unordered points is impractical due to the exponential cost of m! permutations.
In this unordered case, [9] proved that the vector of sorted pairwise distances is
generically complete meaning that this invariant distinguishes all non-isometric
finite sets in Rn outside some measure 0 subspace of singular sets of points.

After the case of 3 points was settled by the SSS theorem 2000+ years ago, even
m = 4 unordered points in R2 did not have a better than a brute-force complete
isometry invariant based on 4! = 24 permutations, partially due to infinitely many
pairs of non-isometric 4-point clouds with the same 6 pairwise distances [12]. The
finite case was solved in 2023 [67] for any number m of unordered points under
rigid motion in Rn, see [65, Theorem 5.3] for a simpler complete invariant for 4
points under isometry in Rn. We now focus on the much harder periodic case.

Definition 1.1 (lattice, motif, l-periodic set) Vectors v1, . . . , vn ∈ Rn form

a basis if any vector in Rn can be written as v =
n∑

i=1

tivi for unique t1, . . . , tn ∈ R.

For 1 ≤ l ≤ n, the first l vectors define the lattice Λ = {
l∑

i=1

civi | c1, . . . , cl ∈ Z}

and the unit cell U = {
n∑

i=1

xivi | x1, . . . , xl ∈ [0, 1), xl+1, . . . , xn ∈ R} ⊂ Rn. If

l = n, then U is an n-dimensional parallelepiped. If l < n, then U is an infinite slab
over an l-dimensional parallelepiped on v1, . . . , vl. For any finite motif of points
M ⊂ U , the sum S =M + Λ = {p+ v | p ∈M, v ∈ Λ} is an l-periodic point set.

Fig. 1 Left: any periodic point set can be given by many pairs (cell, motif), see Definition 1.1.
Any periodic set has vastly different finite subsets within boxes or balls of the same cut-off size.
Right: almost any perturbation can arbitrarily scale up a unit cell and break the symmetry.

A classification of periodic point sets under isometry cannot be easily reduced
to the finite case. Indeed, the hexagonal lattice of red points in Fig. 1 (left) has
many non-isometric finite subsets of points within differently positioned boxes or
balls of the same cut-off radii. A motif of points within a unit cell is also ambiguous
because any lattice can be generated by infinitely many different bases, which
span primitive (minimal by volume) unit cells of various shapes. Crystallographers
developed a unique Niggli cell [45] but any such cell discontinuously scales by
an arbitrary factor [66, Theorem 15] under almost all perturbations because of
experimental noise [39] and atomic vibrations, see Fig. 1 (right).

Even if a complete invariant distinguishes all different objects, the space of
equivalence classes is often continuous in the sense that a small perturbation pro-
duces a near-duplicate of a slightly different class. One past approach was to ignore
all perturbations up to a small threshold ε > 0. Then the transitivity axiom can
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make all sets of the same size equivalent through a long enough chain of pertur-
bations S1 ∼ · · · ∼ Sk, each time shifting points up to a fixed Euclidean distance
ε > 0. Similarly, adding a single outlier should make finite sets non-equivalent,
otherwise all sets of different sizes become equivalent by the transitivity axiom.

This sorites paradox [30] has been discussed from ancient times: while removing
grains from a heap of sand one by one, when will a heap of sand suddenly stop
being a heap? The discontinuity problem remained unresolved for materials [70]
because isometry classes of periodic crystals still have no well-defined continuous
metric. The challenges of continuous measurements are important for real objects
under many equivalences and motivate the second question ‘If different, by how
much? ’ in Geometric Data Science, which we formalize below for periodic sets.

Problem 1.2 For all periodic sets S ⊂ Rn with up to m of points in a unit cell,
find an invariant I with values in a metric space satisfying the conditions below.

(a) Completeness (injectivity): any periodic point sets S,Q ⊂ Rn are isometric
if and only I(S) = I(Q), i.e. I has no false negatives and no false positives.

(b) Invertibility (reconstruction): any periodic point set S ⊂ Rn can be recon-
structed from its invariant I(S), uniquely under isometry of Rn.

(c) Lipschitz continuity: there is a distance metric d on invariant values satisfy-
ing all metric axioms (1) d(a, b) = 0 if and only if a = b, (2) d(a, b) = d(b, a), (3)
triangle inequality d(a, b) + d(b, c) ≥ d(a, c) for all a, b, c; and a constant λ such
that, for any ε > 0, if a periodic point set Q is obtained by perturbing every point
of a periodic point set S up to Euclidean distance ε, then d(I(S), I(Q)) ≤ λε.

(d) Computability: for a fixed dimension n, the invariant I(S), the metric d and
the reconstruction of S ⊂ Rn can be obtained in polynomial time of the motif size.

The reconstruction in condition 1.2(b) is stronger than the completeness in
1.2(a) because a complete invariant can be too complicated with no explicit in-
version to an original object. For example, a DNA code is practically used for
identifying humans, but cannot (yet) grow a genetic replica of a living person.

Conditions 1.2(a,b) become practically meaningful only with a Lipschitz con-
tinuous metric in condition 1.2(c) because any noise makes all real objects at least
slightly different as in Fig. 1 (right). This discontinuity allowed anyone to claim
known materials as new [13] by perturbing atomic positions, scaling up a minimal
cell, and changing atomic types to make comparisons by symmetries, unit cells,
and chemical compositions unreliable. As a result, many simulated crystals can be
artificially generated, e.g. the report of “2.2 million new crystals – equivalent to
nearly 800 years’ worth of knowledge” from [26] was rebutted by experts [14,64].

The metric axioms are essential for recognizing isometric sets S ≃ Q by check-
ing if a complete invariant I satisfies d(I(S), I(Q)) = 0. If the triangle inequality
in 1.2(c) fails with any positive error, outputs of k-means and DBSCAN cluster-
ing may be pre-determined for a non-metric and hence are not trustworthy [52].
Polynomial-time condition 1.2(d) makes Problem 1.2 notoriously hard, else one
can design a complete infinite-size invariant by taking all isometric images of S.

An invariant I satisfying all the conditions above is similar to geographic coor-
dinates that continuously parametrize the surface of Earth. Hence, Problem 1.2 is
interpreted as geographic-style mapping of the Crystal Isometry Space CIS(Rn;m)
defined as the moduli space of all periodic sets with up to m points in a unit cell
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under isometry in Rn. An invariant I can be considered a function on the union⋃
m≥1

CIS(Rn;m) with values in a metric space, where all computations should be

faster than in CIS(Rn;m), i.e. in polynomial time in m for a fixed dimension n.

Contributions. We extend the Pointwise Distance Distribution (PDD) [63] to
stronger (also generically complete) invariants PDD(h) for higher orders h > 1 by
keeping the Lipschitz continuity under bounded noise and polynomial-time com-
putability for fixed n, h. The invariants PDD{2} distinguish all known examples
S ̸≃ Q with PDD(S) = PDD(Q) in R3 and experimentally confirm thousands of
near-duplicates in the world’s largest databases of periodic materials in section 6.

2 A review of open challenges in representations of periodic crystals

Problem 1.2 makes sense for many real objects (finite point sets, embedded graphs,
surfaces or complexes in Rn) under other practical equivalences (affine and pro-
jective transformations). The graph isomorphism problem [27] considers only con-
ditions 1.2(a,d) without a continuous metric, which is needed for real lengths of
edges. Since pairwise distances [9] distinguish all generic sets ofm unordered points
under isometry in Rn and the more recent complete invariants [67] continuously
distinguish all finite sets under rigid motion in Rn, we focus on periodic sets.

For n = 1, Theorem 4 in [28] justified complete invariants for periodic se-
quences given by rational angles of the unit circle (in the complex plane C) by
using 6-factor products of complex numbers. Since the circle (a period) was fixed,
these invariants are discontinuous under perturbations. Indeed, the sequence Z of
integers is infinitely close to S = {ε, 1, . . . ,m}+(m+1)Z ⊂ R for any small ε > 0,
though their minimum periods 1 and m + 1 are arbitrarily different. The much
simpler complete invariant of a periodic sequence S = {p1, . . . , pm} + LZ ⊂ R
with a period L, where 0 ≤ p1 < · · · < pm < L, is the list of inter-point distances
pi+1 − pi (under cyclic permutations) for i = 1, . . . ,m and pm+1 = p1 + L.

A continuous metric d(S,Q) on these cyclic classes of distance lists was intro-
duced in [38] but such a metric requires an expansion to the least common multiple
of the sizes |S|, |Q| of motifs and doesn’t come with a polynomial-time invariant.
The resulting brute force invariant for all periodic sequences S with motifs up
to m points needs an expansion to at least 2m points [24, Theorem 5(1)], which
violates condition 1.2(d). Problem 1.2 remained open even in dimension n = 1.

A finite approach to measuring the similarity between periodic point sets is
to compare their finite subsets within a box or a ball of a large but fixed cut-
off radius. However, any periodic point set has many non-isometric finite subsets
within differently positioned boxes or balls of the same size as in Fig. 1 (left).

Local clusters centered at all points in a motifM can be converted by Gaussian
blurring into smooth functions [8], which can be decomposed in the infinite basis of
spherical harmonics [56] and hence considered complete in the limit. [18] discusses
challenges of choosing several parameters (blurring, approximation, interaction
order), including a cut-off radius that can discontinuously change these clusters
due to new neighbors outside a smaller cut-off. Even if this cut-off is smoothed
out, a manually chosen value may not suffice or slow down computations [47,51].
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Atomic vibrations are natural to measure by deviations of atoms from their
initial positions, but a sum of small deviations over infinitely many points can be
infinite and also can give different values for different finite subsets. However, a
maximum deviation of atoms is well-defined as the bottleneck distance between
any sets via bijections between atoms, which can be displaced but cannot vanish.

Definition 2.1 (bottleneck distance dB) The bottleneck distance dB(S,Q) =
inf

g:S→Q
sup
p∈S

|p − g(p)| for any sets S,Q ⊂ Rn of the same cardinality is minimized

for all bijections g : S → Q and maximized for all points p ∈ S.

Here |p−q| denotes Euclidean distance between points p, q ∈ Rn. Though Defi-
nition 2.1 is impractical because of infinitely many bijections, dB can be efficiently
computed [21] for finite sets if |p− q| is replaced with L∞(p, q) = max

i=1,...,n
|pi− qi|.

If periodic point sets S,Q have different densities (motif size |S| divided by
the cell volume), then dB(S,Q) is infinite [63, Example 2.1]. Also, dB(S,Q) is
discontinuous under perturbations of 2D lattices [37]whose primitive cells have the
same minimum volume [63, Example 2.2]. Hence condition 1.2(c) of a Lipschitz
continuous metric made Problem 1.2 exceptionally hard in the periodic case.

Definition 2.2 (metrics vs pseudo-metrics) A distance d between objects un-
der an equivalence relation ∼ is a metric if the following axioms hold:

(1) coincidence: d(S,Q) = 0 if and only if S ∼ Q;
(2) symmetry: d(S,Q) = d(Q,S) for any objects S,Q;
(3) triangle inequality: d(S,Q) + d(Q,T ) ≥ d(S, T ) for any S,Q, T .

If the coincidence axiom (1) is replaced with (1′) d(S, S) = 0 for any S, then
non-equivalent S ̸∼ Q can have d(S,Q) = 0, and d is called a pseudo-metric.

Definition 2.2 guarantees positivity: 2d(S,Q) = d(S,Q) + d(Q,S) ≥ d(S, S) =
0. Many descriptors or invariants are compared by distances (such as Euclidean)
that satisfy all metric axioms on descriptor values but define only pseudo-metrics
on isometry classes due to the incompleteness of these invariants. If d(S,Q) > 0,
then S ̸∼ Q by (1′), so a fast pseudo-metric can distinguish between some but not
all objects. Pseudo-metrics are weaker than metrics, e.g. the difference ||S| − |Q||
of set sizes is a pseudo-metric not distinguishing any sets S ̸≃ Q of the same size.

Hence metrics satisfying all axioms (similar to complete invariants) are much
more valuable than pseudo-metrics (similar to non-invariants or incomplete in-
variants). Any algorithm using an incomplete invariant I cannot predict different
properties of a false positive pair of non-isometric sets S ̸≃ Q with I(S) = I(Q).

That is why the discriminative problem should be solved first (at least in
general position) by designing complete and Lipschitz continuous invariants before
generative attempts can succeed. Any non-complete invariant I is not invertible
in the sense that different sets S ̸≃ Q (false positives) can have I(S) = I(Q).

Now we review recent continuous invariants in the periodic case. Continuous
metrics on lattices under rigid motion are known for dimension n = 2 [11,10], not
yet for n = 3 [36]. A generically complete and Lipschitz continuous invariant of pe-
riodic point sets S ⊂ R3 [20] is the sequence of density functions ψk(S; t) measuring
the fractional volume of k-fold intersections

⋃
p1,...,pk∈S

(B̄(p1; t)∩· · ·∩ B̄(pk; t)∩U)
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for any k ≥ 1, where U is a unit cell of S, and B̄(p; t) is the closed ball with a
center p ∈ S and a variable radius t ≥ 0. The infinite sequence {ψk}+∞

k=1 allows
only an approximate distance and turned out to be incomplete [3, Example 11],
but was analytically described for all periodic sequences of intervals in R [4]. The
periodic merge tree [19] is a continuous isometry invariant of periodic graphs with
a slow interleaving pseudo-metric and a faster distance on simpler periodic 0-th
barcodes. The invariant below solved a weaker version of Problem 1.2 for finite and
periodic sets when completeness in (1.2a) is replaced with generic completeness.

Definition 2.3 (Pointwise Distance Distribution PDD) Let S ⊂ Rn be any
l-periodic point set with a motif M of m points. For any integer k ≥ 1 and p ∈M ,
let d1(p) ≤ · · · ≤ dk(p) be the list of Euclidean distances from p to its k nearest
neighbors within the whole set S. These lists become rows of the m × k matrix
D(S,M ; k). Any c > 1 identical rows are collapsed into a single row with the weight
c/m, which is written in the extra first column. The resulting matrix PDD(S; k)
of unordered rows with weights is called the Pointwise Distance Distribution [63].

For finite sets, the PDD was studied under the name of a local distribution
of distances [42]. The PDD can be considered a multiset of rows and a discrete
probability distribution with normalized weights interpreted as probabilities.

If a unit cell of S is extended by a factor of c, then any point p in the origi-
nal motif has c translationally equivalent copies in the extended motif Mc. Then
D(S,Mc; k) has c times more rows because each original row is expanded into c
identical rows but the invariant PDD(S; k) is the same weighted distribution of
rows, independent of an initial cell of S. The equality between weighted distribu-
tions is interpreted as a bijection between unordered sets respecting all weights.
This equality is best checked not by considering all bijections but by a metric
that vanishes only on equal distributions due to the first metric axiom. The PDD
is Lipschitz continuous, computable (for a fixed dimension) in a near-linear time
of k,m, and distinguishes all non-isometric sets in general position (away from a
measure 0 subspace), see [63, Theorems 3.2, 4.3, 4.4, 5.1] and proofs in [65].

Definition 2.4 (homometric sets) Finite or l-periodic sets S,Q ⊂ Rn are called
homometric [48] if they have the same Pair Distribution Function (PDF), which
is a single distribution of all inter-point distances of S (without considering their
periodic copies), equivalent to a powder diffraction pattern without a cut-off radius.

The PDF is easily extractable from X-ray diffraction patterns and can be split
into several distributions by fixing an atomic type (chemical element), say by listing
average distances from all (say) carbon atoms to their neighbors in the full crystal.
The PDD does this splitting by geometry (all identical distances to neighbors) and
is stronger than the PDF even for 1-dimensional periodic sequences in Fig. 2.

Almost any perturbation, as in Fig. 1 (right), can split every inter-point dis-
tance (say) d into many d1, . . . , dc, which are all close to d but are not copies of
each other because the initial minimal cell was scaled by the factor c. One attempt
to resolve this discontinuity was to blur each distance by a Gaussian deviation and
a smoothed PDF as a normalized sum of Gaussians around all distance values.

Discretizing the smoothed PDF for comparisons reduces its strength and cre-
ates the counter-intuitive pipeline: a discrete set S→ a smoothed PDF→ a discrete
sample of PDF(S). The discontinuity can be resolved by continuous metrics [33,
60] on PDDs interpreted as a probability distribution of rows of k distances.
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Fig. 2 For any 0 < r ≤ 1, the homometric sets S(r) = {0, r, 2+ r, 4}+8Z ̸∼= Q(r) = {0, r, 2+
r, 4}+8Z have identical PDFs from Definition 2.4 but different PDDs whose first columns we
write as unordered sets: PDD(S(r); 1) = {r, r, 2−r, 2−r} ̸= PDD(Q(r); 1) = {r, r, 2−r, 2+r}.

Fig. 3 The sets S,Q are 1-periodic in the x-axis with period 4, e.g. A denotes both (0, a),
(4, a). Right: distances between closest points from classes modulo shifts by 4 in x. Then

PDD(S; k) = PDD(Q; k) by Example 2.5 but PDD{2}(S; 1) ̸= PDD{2}(Q; 1) by Example 3.4.

Example 2.5 (sets with equal PDDs) The 1-periodic sets S ̸≃ Q in [50, Fig. 4]
were designed to fail all iterations of the Weisfeiler-Leman test [58]. Fig. 3 shows
their 2D versions with period 4 in the x-axis and free parameters a, b, c > 0.

The distances in Fig. 3 (right) are for the closest representatives of 6 points.

d1 = 2
√
a2 + 1, d2 =

√
a2 + b2, d3 =

√
a2 + (2− b)2,

d4 =
√

1 + (a− c)2, d5 =
√

1 + (a+ c)2, d6 =
√
(1− b)2 + c2,

d7 =
√

(3− b)2 + c2, d8 =
√

(1 + b)2 + c2, d9 = 2
√
c2 + 1.
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Then PDD(S; k) = PDD(Q; k) because the equalities between distances (shown
in the same color) in Fig. 3 (right) hold after adding any periodic translation, so
if d1 = d2 then

√
d21 + (4n)2 =

√
d22 + (4n)2 for any n ∈ Z.

Simpler non-isometric finite sets in R3 with equal PDDs were distinguished by
stronger invariants in [67], which extended PDD by recording distances to subsets
of more than one point. In the periodic case, pairs of points behave discontinuously
under cell extensions in Fig. 1. Doubling a motif M of m points leads to (2m)2

pairs including new distant neighbors from adjacent cells. This obstacle motivated
a ‘pointwise’ approach to both finite and periodic sets in the next section.

Another ‘pointwise’ isoset [2] was proved to be complete for all periodic point
sets in any Rn. A Lipschitz continuous metric on isosets was only approximated
in polynomial time [6,41], but condition (1.2d) requires an exact computation.

3 The new isometry invariants of finite and periodic sets of points

This section extends the PDD to higher order h > 1 in Definition 3.1 motivated by
pairs of non-isometric sets S ̸≃ Q with PDD(S; k) = PDD(Q; k) in Example 2.5.
Definition 3.1 makes sense for a finite set S =M in any metric space.

Definition 3.1 (higher order PDD{h}(S; k)) Let S ⊂ Rn be any l-periodic point
set with a motif M of m points. Fix a point p ∈ M and integers h, k ≥ 1.
Consider any h distinct points p1, . . . , ph ∈ S \ {p} and the h-order average

2

h(h+ 1)

∑
0≤i<j≤h

|pi−pj | of pairwise distances between the points p = p0, p1, . . . , ph.

Let a(p;h, 1) ≤ · · · ≤ a(p;h, k) be the list of k smallest averages for the fixed point
p and variable points p1, . . . , ph ∈ S \ {p}. These lists become rows of the m × k
matrix D(S,M ;h, k), where we can collapse any c > 1 equal rows to one row with
the weight c/m written in the extra first column. The final matrix of unordered
rows with weights is the h-order Pointwise Distance Distribution PDD{h}(S; k).

Lemma 3.3 will prove that PDD{h}(S; k) is independent of a motifM to justify
the notation without M . In Definition 3.1, we can keep m rows of average sums
with equal weights 1/m. The matrices PDD{1}, . . .PDD{h} can be concatenated
into a single matrix PDD(h)(S; k) of m unordered rows and kh ordered columns.

Example 3.2 (PDD(2) for the sequences in Fig. 2) The sum
∑

0≤i<j≤2

|pi−pj |

is the perimeter of the triangle on the points p0 ∈ M and p1, p2 ∈ S. The row of
a point p ∈ M in PDD(2)(S; k) consists of the k shortest distances followed by k
smallest perimeters (divided by 3) of triangles at p. In Fig. 2, the point p0 = 0 in
the motif of S(r) = {0, r, 2+r, 4}+8Z has the nearest neighbors p1 = r, p2 = 2+r
at the distances r, 2+ r, and two smallest averaged perimeters 2(2+ r)/3, 8/3. The
point p0 = 0 in Q(r) = {0, r, 2+r, 4}+8Z has the nearest neighbors at the distances
2 + r, 4 − r, and two smallest averaged perimeters 8

3 ,
8
3 . Then PDD(2)(S(r); 2) =

r 2 + r 2(2+r)
3

8
3

r 2 2(2+r)
3

2(4−r)
3

2− r 2 2(2+r)
3

2(4−r)
3

2− r 4− r 2(4−r)
3

8
3

 ̸= PDD(2)(Q(r); 2) =


2 + r 4− r 8

3
8
3

2− r 2 + r 4
3

8
3

r 2− r 4
3

8
3

r 2 4
3

8
3

, where

all rows have equal weights 1
4 , so we have skipped these weights for brevity.
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The factor
2

h(h+ 1)
was chosen to guarantee the Lipschitz continuity with

λ = 2 in (1.2c). Examples 3.4, 4.2 show that PDD{2} distinguishes all known
homometric sets for n = 2, 3, which have identical PDDs. Any increase in k adds
extra columns with larger values to PDD{h}(S; k) without changing any previous
values. So the number k is considered a degree of approximation, not a parameter
like a cut-off radius whose changes substantially affect local atomic clouds.

Lemma 3.3 proves the invariance of PDD(h) under isometry in Rn and under
changes of a cell. If k is greater than the number

(
m−1
h−1

)
of h-tuples with a fixed

p ∈ S, we set all non-existing sums in Definition 3.1 to the largest existing value.

Lemma 3.3 (invariance of PDD{h}(S; k)) For any integers h, k ≥ 1 ≤ l ≤ n
and any finite unordered set S in a metric space or any l-periodic point set S ⊂ Rn,
the higher-order PDD{h}(S; k) from Definition 3.1 is an isometry invariant of S.

Proof First, for any l-periodic point set S ⊂ Rn, we show that scaling up a unit
cell U to a non-primitive cell keeps PDD invariant. It suffices to scale up U by a
factor c, say along the first basis vector v1 of U , then the number m of motif points
of S is multiplied by c. Then the matrix D(S, S∩(cU);h, k) consisting of k smallest
average sums of pairwise distances between h+ 1 points in Definition 3.1 has the
larger size cm× k in comparison with the original m× k matrix D(S, S ∩ U ;h, k)
but each row is repeated c times for the shifted points p+ iv1, where p is any point
from the original motif M = S ∩ U of the l-periodic set S, for i = 0, . . . , c− 1.

Second, we show that the matrix D(S, S ∩U ;h, k) and hence PDD{h}(S; k) is
independent of a primitive cell U . Let U, V be primitive cells of any l-periodic set
S ⊂ Rn with a lattice Λ. Any point q ∈ S ∩ V can be translated by a vector of
Λ to a point p ∈ S ∩ U and vice versa. These translations preserve distances and
establish a bijection between the motifs S ∩ U ↔ S ∩ V , and a bijection between
all rows of the matrices D(S, S ∩ U ;h, k) ↔ D(S, S ∩ V ;h, k).

Third, we prove that PDD{h}(S; k) is preserved under any isometry f : S → Q
of l-periodic point sets. Any primitive cell U of S is bijectively mapped by f to the
unit cell f(U) of Q, which should be also primitive. Indeed, if Q is preserved by a
translation along a vector v that doesn’t have all integer coefficients in the basis
of f(U), then S = f−1(Q) is preserved by the translation along f−1(v), which
doesn’t have all integer coefficients in the basis of U , so U was non-primitive.
Since U and f(U) have the same number of points from S and Q = f(S), the
isometry f gives a bijection between the motifs S ∩ U ↔ Q ∩ f(U).

For any discrete sets S,Q, the k smallest average sums of all distances be-
tween any point p ∈ S ∩ U and p1, . . . , ph ∈ S, equal the same sums for f(p) ∈
Q ∩ f(U) and f(p1), . . . , f(ph) ∈ Q, respectively. These coincidences imply that
PDD(S; k1, . . . , kh) = PDD{h}(Q; k1, . . . , kh) up to a permutation of rows. ⊓⊔

Example 3.4 (PDD{2} distinguishes S,Q in Example 2.5) We start with sin-
gular cases when S,Q are identical. If c = 0, then C = D, C′ = D′, so S,Q are
identical in Fig. 3. If b ∈ {0, 1, 2}, then the periodic shifts of B ∪B′ (hence S,Q)
become mirror images with respect to the vertical line x = 2. We now assume that
1 < b < 2. Then d2 > d3, d5 > max{d4, d6}, and min{d7, d8, d9} > d6.

The set S in Fig. 3 has a motif of 6 points, which generate isometric triangles
△ABC ≃ △A′B′C′ with the perimeter d2 + d4 + d6, see details in Example 2.5.
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The other potentially smaller perimeters of triangles on points of S are d3+d5+d6,
d3 + d4 + d7. The smallest perimeter for S is the minimum of these sums. The
smallest perimeter for Q is min{d2 + d4 + d5, d2 + d5 + d6, d3 + d4 + d6}.
If t = d2 + d4 + d6 equals one of the last sums, one of the following cases holds: if
d2 = d3 then b = 1, if d4 = d5 then c = 0, if d6 = d7 then b = 2 or 0, so S ≃ Q.

If t = d3 + d5 + d6 is a minimal perimeter for S, then t cannot equal any of the
three sums for Q. Indeed, if t = d2+d5+d6 then d2 = d3. If t = d3+d4+d6 then
d4 = d5. The minimality of the sum t for the set S means that d3 + d6 < d2 + d4,
so t = d3 + d5 + d6 cannot equal d2 + d4 + d5 for Q.

If t = d3 + d4 + d7 is a minimal perimeter for S, then t cannot equal any of the
three sums for Q. Indeed, if t = d3+d4+d6 then d6 = d7. The minimality of t for
S means that d3+d7 < d2+d6 < d2+d5, so t = d3+d4+d7 < d2+d4+d5 for Q.
Similarly, if d4+d7 < d5+d6 then t = d3+d4+d7 < d3+d5+d6 < d2+d5+d6.

In all these cases, S,Q become isometric. Hence the smallest perimeters in
PDD{2} for k = 1 distinguish all pairs of the homometric sets S,Q. The same
conclusion holds for more general sets obtained from S,Q by periodic translations
in other directions (along the y-axis or even in any Rn), see [50, Fig. 10], when
extra periods are large and don’t affect any triangles with the smallest perimeters.

The rows of PDD{h}(S; k) are unordered to guarantee the continuity under
perturbations, though we can lexicographically order the rows for convenience.
Recall that u = (u1, . . . , un) is lexicographically smaller than v = (v1, . . . , vn) in
Rn (written u < v) if ui = vi for i = 1, . . . , k and uk+1 < vk+1 for some k < n.

We can convert any PDD{h} into a fixed-size matrix, which can be flattened
into a vector for easy comparisons, while keeping the continuity and almost all
invariant data. Any distribution of m unordered values can be reconstructed from
its m moments defined below. When all weights wi are rational as in our case, the
distribution can be expanded to equal-weighted values a1, . . . , am. Themmoments
can recover all a1, . . . , am as roots of a polynomial of degree m whose coefficients
are expressed via the m moments [40]. For example, any reals a, b are the roots of
the quadratic polynomial x2 − (a+ b)x+ ab, where ab = 1

2 ((a+ b)2 − (a2 + b2)).

LetA be any unordered set of real numbers a1, . . . , am with weights w1, . . . , wm,

respectively, such that
m∑
i=1

wi = 1. For any integer t ≥ 1 , the t-th moment [34,

section 2.7] is µt(A) = t

√
m1−t

m∑
i=1

wiati, so µ1(A) =
m∑
i=1

wiai is the usual aver-

age. For t ≥ 2, we normalize the sum (before taking the t-th root) by the factor
m(1/t)−1 to prove continuity of all moments with the Lipschitz constant λ = 2.

Definition 3.5 (the t-moments matrix µ(t)[PDD{h}]) Fix any integers h, k, t ≥
1 ≤ l ≤ n, and a finite or l-periodic point set S ⊂ Rn. For every column A of
the matrix PDD{h}(S; k) from Definition 3.1, which consists of unordered numbers
a1, . . . , am with weights, write the new column (µ1(A), . . . , µt(A)). The resulting t-
moments matrix of sizes t×k is denoted by µ(t)[PDD{h}(S; k)]. For t = h = 1, the
1×k matrix µ(1)[PDD(S; k)] was called the vector of Average Minimum Distances
[66] and was also denoted by AMD(S; k) = (AMD1, . . . ,AMDk).
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The matrix µ(t)[PDD{h}(S; k)] has t ordered rows and k ordered columns but is
a bit weaker than the original distribution PDD{h}(S; k) with the same parameters
h, k, because each column is reconstructable from its moments for t ≥ m only up
to a permutation. However, to faster filter distant crystals, we can flatten any
matrix µ(t)[PDD(S; k)] with indexed entries to a vector of tk coordinates.

For a finite set S ⊂ R, a simple complete invariant under translations is the
ordered sequence of inter-point distances. However, a naive extension to periodic
sets is discontinuous, e.g. Z is ε-close to {0, 1 + ε} + 2Z but their periods 1 and
2 are not close. Definition 3.6 introduces a distribution whose completeness and
Lipschitz continuity for n = 1 will be proved by Theorem 3.7 and Lemma 4.6.

Definition 3.6 (Pointwise Shift Distribution PSD) For any periodic point set
(sequence) S ⊂ R with a motif M of m points, write down distances from each
p ∈ M to its k nearest neighbors q > p in increasing order in a row of an m× k-
matrix. Collapse any c > 1 equal rows to one row with the weight c/m in an extra
first column. The resulting matrix PSD(S; k) is the Pointwise Shift Distribution
and makes sense for any finite set S =M ⊂ R of m ≥ k + 1 unordered points.

PSD(S; k) differs from PDD(S; k) because we consider only neighbors q to the
right of a point p in the line R, so PSD consists of shifts (distances to the right).

Theorem 3.7 (completeness for n = 1) (a) A finite set M ⊂ R of m un-
ordered points is reconstructable from PDD(M ;m− 1) uniquely under isometry.
(b) For all periodic sets S ⊂ R with m points in a motif, PSD(S;m) is a complete
invariant under rigid motion and can be computed in time O(m2).

Proof (a) For a finite set S ⊂ R of m unordered points, we prove that S can be
reconstructed from PSD(S;m−1) uniquely under isometry. Indeed, the number m
can be assumed to be known as one plus the number of columns in PSD(S;m−1).
Find a row R whose last distance d is maximal in PSD(S;m − 1). This maximal
distance is achieved exactly for two most distant points of S, else PSD(S;m− 1)
is unrealizable by m distinct points. These two most distant points can be fixed at
the positions 0 and d up to isometry of R. All other m−2 points of S are uniquely
determined by the first m− 2 distances in the row R, which should be distinct.

(b) The time to compute PSD(S; k) is linear in the size m of a motif and in the
number k of neighbors. Let S have a motif M of m points 0 = p0 < p1 < · · · <
pm−1 < pm and period L = pm − p0. For any point pi ∈ M , the distance to its
k-th neighbor is pi+k−mN − pi + LN , where N = [k/m] is the integer part and
pj = pj−m + L for m ≤ j < 2m. So all k neighbors of pi are computed in linear
time in both k,m, hence the total time over m points of M is quadratic in m.

Now we prove that any periodic point set S ⊂ R can be reconstructed (uniquely
under translation) from any row a1 < · · · < am−1 < am of PSD(S;m) by writing
the points of a motif as pk = ak+1 − a1 for k = 0, . . . ,m − 1, where p0 = 0, and
setting the period of S to dm. The number m is given as the number of columns
of PSD(S;m). The completeness can be stated as follows: any periodic sequences
S,Q ⊂ R whose motifs have at most m points are related by translation if and
only if PSD(S;m) = PSD(Q;m) as weighted distributions of unordered rows. ⊓⊔

The invariant PSD(S; k) can be enhanced to a complete invariant under isom-
etry (including reflections) in R as follows. Let S̄ be the mirror image of S under
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reflection x 7→ −x. In any row a1 < · · · < ak of PSD(S; k) for k ≥ m, we can use
the m-th distance am equal to the period L to write the corresponding row

L− am−1 < · · · < L− a1 < 2L− am−1

in the matrix PSD(S̄; k). Then any periodic sequences S,Q are related by isometry
in R if and only if PSD(S;m) = PSD(Q;m) or PSD(S̄;m) = PSD(Q;m).

Theorem 3.7 with the Lipschitz continuity in Lemma 4.6 will show that the
PSD solves Problem 1.2 for all periodic sets (under rigid motion) for n = 1.

The generic completeness of PDD(S; k) (with a motif size |S| and a lattice of
S) in [63, Theorem 4.4] and Examples 3.4, 4.2 motivate the following conjecture.

Conjecture 3.8 (completeness of PDD(h) under isometry in Rh) For h ≥
1, any periodic point set S ⊂ Rh can be reconstructed (uniquely under isometry)
from the invariant PDD(h)(S; k) for a sufficiently large k in Definition 3.1.

4 Lipschitz continuous metrics on higher-order invariants

This section introduces metrics on PDD{h} invariants and proves their Lipschitz
continuity. Any vectors u, v ∈ Rm of distances or their average sums can be com-

pared by the Minkowski metric Lq(u, v) = (
m∑
i=1

|ui − vi|q)1/q for q ∈ [1,+∞) and

L∞(u, v) = max
i=1,...,m

|ui − vi| in the limit case q = +∞. The Root Mean Square

metric RMS(u, v) =
L2(u, v)√

m
is the Euclidean metric normalized by the (square

root of the) number m of coordinates. These metrics Lq and RMS controllably
change under perturbations of distances and will play the role of a ‘ground’ metric
d to compare unordered distributions PDD{h} by the EMD metric below.

Definition 4.1 (Earth Mover’s Distance EMD [53]) (a) Let X be a space
with a ground metric d. Any unordered set {(Ri, wi)}mi=1 of objects Ri ∈ X

with weights wi > 0 such that
m∑
i=1

wi = 1 is called a (normalized) weighted

distribution. For any such weighted distributions A = {(Ri(A), wi(A))}m(A)
i=1 and

B = {(Rj(B), wj(B))}m(B)
j=1 , the Earth Mover’s Distance is defined as

EMD(A,B) = min
fij∈[0,1]

m(A)∑
i=1

m(B)∑
j=1

fijd(Ri(A), Rj(B))

subject to
m(A)∑
i=1

fij ≤ wj(B),
m(B)∑
j=1

fij ≤ wi(A), and
m(A)∑
i=1

m(B)∑
j=1

fij = 1.

(b) For any real q ∈ [1,+∞], any integers n, h, k ≥ 1, and any periodic point sets

S,Q ⊂ Rn, the distance EMD
{h}
q [k](S,Q) is the EMD from part (a) between the

distributions PDD{h}(S; k) and PDD{h}(Q; k) with the ground metric Lq. Define

the distance EMD
(h)
q [k](S,Q) = max

i=1,...,h
{EMD

{i}
q [k](S,Q)}. The notation EMD

without a subscript q is used for the (default) ground metric RMS instead of Lq.
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Our experiments use RMS or the Minkowski metric L∞, because these ground
metrics will give the Lipschitz constant 2 for the EMD on PDD{h} in Theorem 4.3.

Definition 4.1(b) introduced the distance EMD
(h)
q [k](S,Q) as the maximum of

EMDs over orders 1, . . . , h to keep the Lipschitz constant small. This maximum
can be replaced with a sum or another metric transform, see [17, section 4.1].

Fig. 4 Left: a comparison of Pauling’s crystals P (±u) for u = 0.03 [49], by COMPACK [15],
which aligns subsets of 15 atoms. The atoms from different P (±0.03) are shown in green and

gray. Right: EMD∞ from Definition 4.1(b) is between PDD{h} for k = 100 and Pauling’s
crystals P (±u), which depend on u ∈ [0, 0.25] and are identical at the boundary values.

Example 4.2 (PDD{2} distinguishes Pauling’s crystals) Fig. 4 (left) shows
a pair of overlaid Pauling’s crystals P (±0.03) with 24 atoms in a cubic cell [49].
The importance of PDD{2} in comparison with PDD is demonstrated by the in-
finite series of periodic sets P (±u) ⊂ R3, which have the same PDD(P (u); k) =
PDD(P (−u); k) for all parameters u ∈ (0, 0.25) and k ≥ 1 but are distinguished

by PDD{h}(S; 100) due to EMD
{h}
∞ [100] > 0 for h = 2, 3 in Fig. 4 (right).

For any discrete set S ⊂ Rn, the packing radius r(S) is the minimum half-
distance between any points of S. Recall the brief notation from Definition 4.1(b):

EMD
{h}
q [k](S,Q) = EMDq

(
PDD{h}(S; k), PDD{h}(Q; k)

)
.

Theorem 4.3 (Lipschitz continuity of PDD{h}) Fix integers h, k ≥ 1 ≤ l ≤
n. Let Q be a finite or an l-periodic point set obtained from a finite or an l-periodic
point set S ⊂ Rn, respectively, by perturbing every point of S up to a Euclidean

distance ε ∈ [0, r(S)). Then EMD
{h}
q [k](S,Q) ≤ 2ε q

√
k, where q

√
k = 1 for q = +∞,

and EMD
(
PDD{h}(S; k), PDD{h}(Q; k)

)
≤ 2ε, where the ground metric is RMS.

Fig. 5 shows how EMD
{2}
∞ [100] continuously changes under perturbations.

Lemma 4.4 (perturbation of an ordered vector) Let v1 ≤ · · · ≤ vk be a
vector v of ordered real numbers. For some ε ≥ 0, let a map g perturb each ai to
ṽi = g(vi) so that |vi − ṽi| ≤ ε for i = 1, . . . , k. Let ṽ be the vector obtained by
putting ṽ1, . . . , ṽk in increasing order. Then L∞(v, ṽ) ≤ ε.
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Fig. 5 The distance EMD
{2}
∞ [100] between the 1-periodic sets S,Q in Fig. 3, which have

identical PDDs. The average and minimum of EMD
{2}
∞ [100] were computed for uniformly

sampled parameters a, b, c from Example 3.4. These sets S,Q are isometric for b ∈ {0, 1} but

EMD
{2}
∞ [100] > 0 for 0 < b < 1 experimentally confirms that S ̸≃ Q, see Example 3.4.

Proof It suffices to prove that the i-th number ui in the ordered vector ṽ is ε-
close to the i-th number vi in the original vector v, so vi − ε ≤ ui ≤ vi + ε for
i = 1, . . . , k. Assume by contradiction that ui < vi−ε. Since every component of v
was perturbed by at most ε, the i numbers u1 ≤ · · · ≤ ui < vi− ε can be obtained
only as perturbations of components from v that are strictly less than vi. However,
the ordered vector A has at most i−1 numbers that are less vi. This contradiction
proves that ui ≥ vi − ε. A similar argument proves that ui ≤ vi + ε. ⊓⊔

Lemma 4.5 (upper bound of EMD) Consider any weighted distributions A =
{(Ri(A), wi)}mi=1 and B = {(Ri(B), wi)}mi=1 of matched objects with equal weights
and ground distances d(Ri(A), Ri(B)) ≤ ε for i = 1, . . . ,m. Then EMD(A,B) ≤ ε.

Proof Define the flows fij from the m objects of A to the corresponding m objects

of B by setting fii =
1

m
and fij = 0 for i ̸= j, i, j = 1, . . . ,m. Then

EMD(A,B) ≤
m∑

i,j=1

fijd(Ri(S), Rj(Q)) =
1

m

m∑
i=1

d(Ri(S), Ri(Q)) ≤ 1

m

m∑
i=1

ε = ε

since EMD(A,B) is the minimum over all fij ∈ [0, 1], see Definition 4.1(a). ⊓⊔

Proof of Theorem 4.3. In the periodic case, if the perturbation satisfies
ε < r(S), [20, Lemma 4.1] and [6, Lemma 4.8] proved that S,Q have a common
lattice with a unit cell U such that S = Λ+ (S ∩ U) and Q = Λ+ (Q ∩ U). Then
S,Q share a unit cell U and have the same number m = m(S) = m(Q) of points
in U . The arguments below also work for any finite sets S,Q in a large enough U .

Expand PDD{h} of both S,Q to the matrices with m equally weighted rows.
Reorder all m rows of D(S, S ∩ U ;h, k) and D(Q,Q ∩ U ;h, k) according to the
bijection g : S ∩ U → Q ∩ U . Since any p ∈ S is perturbed up to ε, any distance
Lq(p, q) between p, q ∈ S and hence any average sum a from Definition 3.1 changes
by at most 2ε due to the triangle inequality for the Minkowski metric Lq.

Some of the average sums from the original matrixD(S, S∩U ;h, k) can increase
up to 2ε and will be outside the k smallest average sums in the new matrixD(S, S∩
U ;h, k). In this case, for each row i = 1, . . . ,m, let ki ≥ k be the maximum
index such that the ki-th smallest average sum (of pairwise distances between
h + 1 points including pi ∈ S) for S is at most 2ε plus the largest average sum
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on h + 1 points from the original matrix D(S, S ∩ U ;h, k) in the i-th row. Set
k′ = max

i=1,...,m
ki ≥ k. Then the i-th row of D(Q,Q ∩ U ;h, k′) is obtained from the

i-th row of D(S, S ∩ U ;h, k′) of k′ numbers by changing every value by at most
2ε, putting them in increasing order, and taking the first k ≤ k′ smallest values.

For each i = 1, . . . ,m, Lemma 4.4 implies that the corresponding components
in the extended i-th rows of k′ numbers in D(S, S∩U ;h, k′) and D(Q,Q∩U ;h, k′)
differ by at most 2ε. The same conclusion holds for the shorter i-th rows Ri(S) and
Ri(Q) of k values in the matrices D(S, S ∩ U ;h, k) and D(Q,Q ∩ U ;h, k), respec-
tively. Then Lq(Ri(S), Ri(Q)) ≤ q

√
k(2ε)q = 2ε q

√
k. The Euclidean L2 normalized

with the factor 1√
k
has the upper bound RMS(Ri(S), Ri(Q)) ≤ 2ε. By Lemma 4.5,

the distributions of rows Ri(S) and Ri(Q) have the same upper bound for their
EMD metrics: EMDq

(
PDD{h}(S; k),PDD{h}(Q; k)

)
≤ 2ε q

√
k and EMD ≤ 2ε. ⊓⊔

Lemma 4.6 (Lipschitz continuity of PSD) For all finite or periodic sequences
S ⊂ R, for the ground metrics RMS and Lq, define the EMD and EMDq respec-
tively, on distributions PSD(S; k) for k ≥ 1, see Definition 3.6. Let Q ⊂ R be a fi-
nite or periodic sequence obtained by perturbing every point of S up to ε ∈ [0, r(S)).
Then EMDq

(
PSD(S; k),PSD(Q; k)

)
≤ 2ε q

√
k, EMD

(
PSD(S; k),PSD(Q; k)

)
≤ 2ε.

Proof Since ε is less than the packing radius r(S), the given ε-perturbation defines
a bijection g : S → Q, which changes inter-point distance by at most 2ε. The bijec-
tion g induces a 1-1 correspondence between rows Ri(S) and Ri(Q) of PSD(S; k)
and PSD(Q; k), respectively with ground distances Lq(Ri(S), Ri(Q)) ≤ 2ε q

√
k and

RMS(Ri(S), Ri(Q)) ≤ 2ε, which guarantee the required bounds by Lemma 4.5.

Recall the brief notation of a maximum metric from Definition 4.1(b):

EMD
(h)
q [k](S,Q) = max

i=1,...,h

{
EMDq

(
PDD{i}(S; k), PDD{i}(Q; k)

)}
.

Lemma 4.7 (lower bounds of EMD) Fix any real q ∈ [1,+∞] and integers
h, k ≥ 1 ≤ l ≤ n. Let S,Q ⊂ Rn be any finite or l-periodic point sets. Then

(a) EMD
(h)
q [k](S,Q) ≥ EMDq

(
PDD(g)(S; k), PDD(g)(Q; k)

)
for 1 ≤ g ≤ h;

(b) EMD
{h}
q [k](S,Q) ≥ EMDq

(
PDD{h}(S; k′), PDD{h}(Q; k′)

)
for 1 ≤ k′ ≤ k;

(c) EMD
{h}
q [k](S,Q) ≥ Lq

(
µ(1)[PDD{h}(S; k)], µ(1)[PDD{h}(Q; k)]

)
.

The same inequalities hold for the ground metric RMS instead of Lq.

Proof (a) If the order h drops to g, the maximum of a fewer number of distances

cannot become larger by Definition 4.1(b): EMD
(h)
q [k](S,Q) ≥ EMD

(g)
q [k](S,Q).

(b) Let fij ∈ [0, 1] be the parameters that minimize the EMD in Definition 4.1(b):

EMD{h}
q [k](S,Q) =

m(S)∑
i=1

m(Q)∑
j=1

fijLq(Ri(S), Rj(Q)),

where Ri(S), Rj(Q) are rows in the distributions PDD{h}(S; k),PDD{h}(Q; k), re-
spectively. If k drops to k′, the smaller distributions PDD{h}(S; k′),PDD{h}(Q; k′)
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are obtained from PDD{h}(S; k),PDD{h}(Q; k) by removing the last k−k′ columns.
The shortened rows R′

i(S), R
′
j(Q) of k′ ≤ k components in the smaller distributions

PDD{h}(S; k′),PDD{h}(Q; k′) satisfy Lq(Ri(S), Rj(Q)) ≥ Lq(R
′
i(S), R

′
j(Q)). Then

EMD
{h}
q [k](S,Q) ≥

m(S)∑
i=1

m(Q)∑
j=1

fijLq(Ri(S), Rj(S)) ≥

min
fij∈[0,1]

m(S)∑
i=1

m(Q)∑
j=1

fijLq(R
′
i(S), R

′
j(Q)) = EMD

{h}
q [k′](S,Q).

(c) Considering PDD{h}(S; k) as a weighted distribution of rows, µ(1)[PDD{h}(S; k)]
is its centroid from [16, section 3]. The argument below follows the proof for
q = +∞ of [16, Theorem 1]. Below we use the inequality ||u||q + ||v||q|| ≥ ||u+v||q
for the q-norm ||v||q =

( ∑
i=1

|vi|q
)1/q

of the Minkowski metric Lq. Let fij ∈ [0, 1]

be the parameters that minimize the EMD in Definition 4.1(b):

EMDq(PDD{h}(S; k),PDD{h}(Q; k)) =
m(S)∑
i=1

m(Q)∑
j=1

fijLq(Ri(S), Rj(Q)) =

m(S)∑
i=1

m(Q)∑
j=1

||fij
(
Ri(S)−Rj(Q)

)
||q ≥ ||

m(S)∑
i=1

m(Q)∑
j=1

fij(Ri(S)−Rj(Q))||q =

||
m(S)∑
i=1

(m(Q)∑
j=1

fijRi(S)
)
−

m(Q)∑
j=1

(m(S)∑
i=1

fijRj(Q)
)
||q =

||
m(S)∑
i=1

wi(S)Ri(S)−
m(Q)∑
j=1

wj(Q)Rj(Q)||q =

Lq

(
µ(1)[PDD{h}(S; k)], µ(1)[PDD{h}(Q; k)]

)
.

All proofs are the same for the ground metric RMS =
L2√
k

instead of Lq. ⊓⊔

Corollary 4.8 extends the case h = 1 from [66, Theorem 9], where AMD(S; k) =
µ(1)[PDD(S; k)] is the vector of Average Minimum Distances, to any order h ≥ 1.

Corollary 4.8 (Lipschitz continuity of µ(1)[PDD{h}]) Fix integers h, k ≥ 1 ≤
l ≤ n. Let Q be a finite or an l-periodic set obtained from a finite or an l-periodic
point set S ⊂ Rn, respectively, by perturbing every point of S up to a Euclidean
distance ε ∈ [0, r(S)). Then Lq

(
µ(1)[PDD{h}(S; k)], µ(1)[PDD{h}(Q; k)]

)
≤ 2ε q

√
k

and RMS
(
µ(1)[PDD{h}(S; k)], µ(1)[PDD{h}(Q; k)]

)
≤ 2ε.

Proof The required bounds follow from Theorem 4.3 and Lemma 4.7(c). ⊓⊔

We conjecture that higher moments µ(t)[PDD{h}] for t > 1 are continuous
under perturbations of points, possibly in a weaker (than Lipschitz) sense.

5 The asymptotic curves and computational complexity of PDD{h}

To analyze the asymptotic of PDD{h}(S; k) as k → +∞, we choose a real b ≥ h

such that

(
b
h

)
=
b(b− 1) . . . (b− h+ 1)

h!
belongs to the interval (k − 1, k]. Then
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set b(h, k) = b+1 e.g. b(1, k) = k+1, b(2, k) = 1.5+
√
2k. Let Vn be the unit ball

volume in Rn, e.g. V2 = π. Any periodic set S ⊂ Rn with a motif of m points and

unit cell of volume vol[U ] has the point packing coefficient PPC(S) = n

√
vol[U ]

mVn
.

Theorem 5.1 (asymptotic of PDD{h}(S; k) as k → +∞) Let a periodic point
set S ⊂ Rn have a cell with a longest diagonal d. For any integers h, k ≥ 1, let
a(h, k) be the average sum of the k-th column of PDD{h}(S; k) from Definition 3.1.

Then
2

h+ 1

(
PPC(S) n

√
b(h, k)− d

)
≤ a(h, k) ≤ 2h

h+ 1

(
PPC(S) n

√
b(h, k) + d

)
for any k ≥ 1. If h = 1, then lim

k→+∞

a(1, k)
n
√
k

= PPC(S). If h = 2, then we have the

bounds
2

3
PPC(S) ≤ a(2, k)

2n
√
2k

≤ 4

3
PPC(S) for large enough k.

Since any lattice Λ ⊂ Rn has a single point in a motif, any Pointwise Distance
Distribution PDD{h}(Λ; k) is a single row of the k numbers, which coincides with
the vector µ(1)[PDD{h}(Λ; k)] and can be visualized as a piecewise linear curve
through k points. Fig. 6 shows six 2D lattices illustrating the asymptotic behavior
of PDD{h} for h = 2, 3 in Fig. 7. Theorem 5.1 supports the following conjecture.

Conjecture 5.2 (h-order limit) In the notations of Theorem 5.1 for any peri-

odic point set S ⊂ Rn, lim
k→+∞

a(h, k)
hn
√
h!k

exists for any h ≥ 2. If this limit differs from

PPC(S), it can be called the h-order point packing coefficient PPC(S;h).

Fig. 6 The six 2-dimensional lattices whose invariants appeared in Fig. 7. 1st: a generic black

lattice Λ1 with the basis (1.25, 0.25), (0.25, 0.75) and PPC(Λ1) =

√
7

8π
≈ 0.525. 2nd: the blue

hexagonal lattice Λ2 with the basis (1, 0), (1/2,
√
3/2) and PPC(Λ2) =

√√
3

2π
≈ 0.528. 3rd: the

orange rhombic lattice Λ3 with the basis (1, 0.5), (1,−0.5) and PPC(Λ3) =

√
1

π
≈ 0.564. 4th:

the purple rhombic lattice Λ4 with the basis (1, 1.5), (1,−1.5) and PPC(Λ4) =

√
3

π
≈ 0.977.

5th: the red square lattice Λ5 with the basis (1, 0), (0, 1) and PPC(Λ5) =

√
1

π
≈ 0.564. 6th:

the green rectangular lattice Λ6 with the basis (2, 0), (0, 1) and PPC(Λ6) =

√
2

π
≈ 0.798.

Theorem 5.1 justifies that there is no need to substantially increase the number
k of neighbors since PDD{h}(S; k) largely depends on PPC(S) when k → +∞.
The practical advice is to choose k depending on the size of a motif or constituent
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Fig. 7 The asymptotic behavior of the higher-order PDD{2}(Λ; k) and PDD(3)(Λ; k) for the
six lattices Λ ⊂ R2 in Fig. 6, see their bases in the legends. Top: h = 2. Bottom: h = 3.

molecules so that all atoms have enough neighbors to capture the periodic connec-
tivity. We consider k a degree of approximation similar to the number of decimal
places on a calculator. Theorem 5.1 implies similar bounds for all t-moments and
means that PDD{h}(S; k) and µ(t)[PDD{h}](S; k) are most discriminative for small
values of k, so we used k = 100, t ≤ 10, and h ≤ 3 in all experiments later.

Lemma 5.3 (distance bounds) Let S ⊂ Rn be any periodic point set. For any
h, k ≥ 1 and a point p ∈ S, let a(h, k) be the k-th smallest average sum achieved
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for of all pairwise distances between p and h other points p1, . . . , ph ∈ S, see

Definition 3.1. Set R = max
i=1,...,h

|pi − p|. Then 2R

h+ 1
≤ a(h, k) ≤ 2hR

h+ 1
.

Proof After translating p ∈ S to the origin 0 ∈ Rn, one can assume that p = 0. Let
p1 ∈ S be a point such that R = |p1| = max

i=1,...,h
|pi|. For any other point pi ̸= p1,

the triangle inequalities |pi|+ |p1 − pi| ≥ |p1| = R imply that

a(h, k) =
2

h(h+ 1)

∑
0≤i<j≤h

|pi − pj | ≥

≥ 2

h(h+ 1)

(
|p1|+

h∑
i=2

(|pi|+ |p1 − pi|)

)
≥ 2

h(h+ 1)

(
R+

h∑
i=2

R

)
=

2R

h+ 1
.

For the upper bound of a(h, k), we use |pi| ≤ R and the triangle inequalities
|pi − pj | ≤ |pi|+ |pj | ≤ 2R as follows:

a(h, k) =
2

h(h+ 1)

 h∑
i=1

|pi|+
∑

1≤i<j≤h

|pi − pj |

 ≤

≤ 2

h(h+ 1)

 h∑
i=1

R+
∑

1≤i<j≤h

2R

 =
2

h(h+ 1)

(
hR+

h(h− 1)

2
2R

)
=

2hR

h+ 1
,

which finishes the proof of the upper bound. ⊓⊔

For h = 1, the bounds of Lemma 5.3 give the exact equality a(1, k) = R.
Lemma 5.4 was proved in a slightly more general form in Lemma 11 from [66].

Lemma 5.4 (number of points in a ball) Let S ⊂ Rn be any periodic point
set with a unit cell U , which has m points of S, generates a lattice Λ, and has a
longest diagonal of a length d. For any point p ∈ S ∩ U and a radius r, consider

U−(p; r) =
⋃
v∈Λ

{(U + v) such that (U + v) ⊂ B̄(p; r)},

U+(p; r) =
⋃
v∈Λ

{(U + v) such that (U + v) ∩ B̄(p; r) ̸= ∅}.

Then the number of points of S in the closed ball B̄(p; r) has the bounds(
r − d

PPC(S)

)n

≤ m
vol[U−(p; r)]

vol[U ]
≤ |S∩B̄(p; r)| ≤ m

vol[U+(p; r)]

vol[U ]
≤
(

r + d

PPC(S)

)n

.

Lemma 5.5 (increasing binomial coefficient) For any fixed integer h ≥ 1,

the binomial coefficient

(
b
h

)
=

b(b− 1) . . . (b− h+ 1)

h!
is strictly increasing for

any real b ≥ h so that if h ≤ b < c then

(
b
h

)
<

(
c
h

)
.
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Proof The derivative
d

dx

(
x
h

)
> 0 for any x ≥ h.

Proof of Theorem 5.1. To prove the lower bound for the k-th smallest sum

a(h, k), set r =
h+ 1

2
a(h, k). For any point p in a motif of S, consider the closed

ball B̄(p; r) with the center p and radius r. By the lower bound of Lemma 5.3,
all points p1, . . . , ph ∈ S that are used for computing a(h, k) have the maximum

distance R = max
i=1,...,h

|pi − p| ≤ h+ 1

2
a(h, k) = r and hence belong to B̄(p; r).

By the upper bound of Lemma 5.4, if this ball contains c points of S (excluding

p), then c+1 ≤
(

r + d

PPC(S)

)n

. By using p and any other h distinct points p1, . . . , ph

among c points in S ∩ B̄(p; r), we can form

(
c
h

)
=
c(c− 1) . . . (c− h+ 1)

h!
tuples

p, p1, . . . , ph whose average sums of all pairwise distances should include all k

smallest values up to the k-th sum a(h, k). Hence

(
c
h

)
≥ k.

For c ≥ h = 2, the last inequality is
c(c− 1)

2
≥ k, c2 − c − 2k ≥ 0, c ≥

1 +
√
1 + 8k

2
≥ 0.5 +

√
2k. For any h ≥ 1, let b(h, k) = b + 1 satisfy b ≥ h and(

b
h

)
=
b(b− 1) . . . (b− h+ 1)

h!
∈ (k − 1, k], e.g. one can set b(2, k) = 1.5 +

√
2k.

By Lemma 5.5,

(
c
h

)
≥ k for c ≥ h implies that c ≥ b = b(h, k)− 1. Then(

r + d

PPC(S)

)n

≥ c+ 1 ≥ b(h, k),
r + d

PPC(S)
≥ n
√
b(h, k),

h+ 1

2
a(h, k) = r ≥ PPC(S) n

√
b(h, k)−d, a(h, k) ≥ 2

h+ 1

(
PPC(S) n

√
b(h, k)−d

)
.

To prove the upper bound for the k-th sum a(h, k), set R =
h+ 1

2h
a(h, k)

and consider any r < R. By the upper bound of Lemma 5.3, p with any other

h points p1, . . . , ph ∈ S ∩ B̄(p; r) have average sums that are at most
2hr

h+ 1
<

2hR

h+ 1
= a(h, k), which is less than the k-th smallest sum a(h, k). If the ball

B̄(p; r) contains c points of S (excluding p), then these points can form at most

k − 1 tuples consisting of p and h (of c) other vertices, so

(
c
h

)
≤ k − 1. Since(

b
h

)
=

b(b− 1) . . . (b− h+ 1)

h!
∈ (k − 1, k] says that

(
b
h

)
> k − 1 ≥

(
c
h

)
,

Lemma 5.5 for b = b(h, k)− 1 ≥ h implies that b > c. Lemma 5.4 gives(
r − d

PPC(S)

)n

≤ c+ 1 < b+ 1 = b(h, k),
r − d

PPC(S)
< n
√
b(h, k).

Since the resulting inequality r < PPC(S) n
√
b(h, k) + d holds for all r < R, where

R =
h+ 1

2h
a(h, k) is fixed, we get

h+ 1

2h
a(h, k) = R ≤ PPC(S) n

√
b(h, k) + d and
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a(h, k) ≤ 2h

h+ 1

(
PPC(S) n

√
b(h, k)+d

)
. If h = 1, both bounds have the same term:

PPC(S) n
√
b(1, k)− d ≤ a(h, k) ≤ PPC(S) n

√
b(1, k) + d.

If we divide both sides of the last inequality by n
√
k, we get lim

k→+∞

a(1, k)
n
√
k

=

PPC(S). We replaced k + 1 with k in b(1, k), because lim
k→+∞

n
√
k + 1
n
√
k

= 1 for

any fixed dimension n. For similar reasons and h = 2, the ratio
a(2, k)

2n
√
2k

has the

asymptotic bounds
2

3
PPC(S) and

4

3
PPC(S) as k → +∞. ⊓⊔

Since the average sums a(h, k) are increasing according to Theorem 5.1 for h =
1, 2, comparing raw distances or sums for large k is affected by deviating asymp-
totics. To neutralize the effect of increasing deviations in k, [65, Definition 3.7]
adjusted PDD(S; k) by subtracting PPC(S) n

√
k from distances to k-th neighbors.

While Conjecture 5.2 remains open for h ≥ 2, supported by Fig. 8, we find a coef-

ficient c minimizing the sum of squared deviations E(c) =
k∑

j=1

(a(h, k)− c hn
√
h!k)2.

The polynomial E(c) has the derivative E′(c) = 2
k∑

j=1

hn
√
h!k(c hn

√
h!k−a(h, k)) and

a global minimum at c =

∑k
j=1 a(h, j)

hn
√
h!j∑k

j=1(
hn
√
h!j)2

. Definition 5.6 uses this c to subtract

from every row of PDD{h} the fitted sequence C(j) = c hn
√
h!j for j = 1, . . . , k.

Definition 5.6 (Average/Pointwise Deviations from Asymptotic) (a) Fix
any integers n, k ≥ 1 and h ≥ 2. For a finite or periodic point set S ⊂ Rn and
a point p ∈ S, let a(h, 1) ≤ · · · ≤ a(h, k) be the k column averages of the higher-
order distribution PDD{h}(S; k), considered a matrix of m unordered rows. Set

c(S;h, k) =

∑k
j=1 a(h, j)

hn
√
h!j∑k

j=1(
hn
√
h!j)2

. Let A(S;h, k) denote the matrix of m identical

rows, each consisting of the k ordered elements c(S;h, k) hn
√
h!j for j = 1, . . . , k.

(b) The Pointwise Deviation from Asymptotic PDA{h}(S; k) = PDD{h}(S; k) −
A(S;h, k) is a distribution of unordered rows with the same weights as PDD{h}(S; k).
The t-moments from Definition 3.5 give the t× k matrix µ(t)[PDA{h}(S; k)] of m
ordered rows, which can be flattened to a vector of tk coordinates. The Average De-
viation from Asymptotic is the vector ADA{h}(S; k) = µ(1)[PDA{h}(S; k)] consist-
ing of k column averages (counted with weights) of the m×k matrix PDA{h}(S; k).

Definition 5.6 for h = 1 uses the Point Packing Coefficient c(S; 1, k) = PPC(S),
which depends only on S (independent of k), so PDA{1}(S; k) coincides with
the previously defined PDA(S; k) in [65, Definition 3.7]. We adapt EMD from
Definition 4.1(a) to PDA{h}(S; k) with the ground metric Lq on rows below.

Definition 5.7 (EMD for PDA{h}, PDA(h) and Local Novelty Distances)
(a) For any real q ∈ [1,+∞], any integers n, h, k ≥ 1, and any periodic point
sets S,Q ⊂ Rn, Definition 4.1(a) introduces the distances EMD, EMDq between
PDA{h}(S; k) and PDA{h}(Q; k) with the ground metrics RMS, Lq, respectively.
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Fig. 8 By Definition 5.6, any lattice Λ ⊂ Rn has the vector ADA{h}(Λ; k) consisting of the

differences a(h; k)− c(S;h, k)
hn
√
h!k, which converge to 0 in the plots. Here a(h, k) is the k-th

smallest average sum of pairwise distances from 0 ∈ Λ to h other points in Λ. The coefficient
c(S;h, k) was experimentally fitted for h ≥ 2 but should be independent of k by Conjecture 5.2.
Top: six 2D lattices from Fig. 6 and h = 2. Bottom: cubic lattice Z3 and h = 1, 2, 3, 4.

(b) The joint invariant PDA(h)(S; k) is obtained by concatenating PDA{i}(S; k)
for i = 1, . . . , h. Define the max metric between PDA(h)(S; k) and PDA(h)(Q; k)
as the maximum of all distances EMDq

(
PDA{i}(S; k),PDA{i}(Q; k)

)
for i =

1, . . . , h, similarly for the EMD based on the ground distance RMS instead of Lq.

(c) Fix an invariant distribution I with a metric d, e.g. I(S) = PDA{h}(S; k) and
d = EMD for all periodic point sets S ⊂ Rn. Given a finite dataset D of periodic
sets, the [I, d]-based Local Novelty Distance LND[I, d](S;D) = min

Q∈D
d(I(S), I(Q))

is the shortest distance from S to some Q ∈ D in the metric d on values of I.
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Lemma 5.8 justifies computations with smaller h, k to filter out distant crystals.

Lemma 5.8 (bounds for metrics on PDA{h}) Let S,Q ⊂ Rn be any periodic
point sets. Fix any real q ∈ [1,+∞] and any integers 1 ≤ g ≤ h, 1 ≤ k′ ≤ k. Then
EMDq

(
PDA(h)(S; k),PDA(h)(Q; k)

)
≥ EMDq

(
PDA(g)(S; k′),PDA(g)(Q; k′)

)
. The

same inequality holds for EMD with the ground metric RMS instead of Lq.

Proof follows similar to Lemma 4.7ab after replacing PDD{h} with PDA{h}. ⊓⊔

Corollary 5.9 (Lipschitz continuity of PDA{h}) Fix any integers n, k, h ≥ 1
and q ∈ [1,+∞]. Let Q be a periodic point set obtained from a periodic point set
S ⊂ Rn by perturbing every point of S up to a Euclidean distance ε ∈ [0, r(S)).

(a) We have that
∣∣c(S;h, k)−c(Q;h, k)

∣∣ ≤ 2ρkε for ρk =

∑k
j=1

hn
√
h!j∑k

j=1(
hn
√
h!j)2

. If h = 1,

then c(S; 1, k) = PPC(S) and c(Q; 1, k) = PPC(Q) are equal, so we set ρ1 = 0.

(b) Let h = 1. Then the following identities hold:

EMD(PDA(S; k),PDA(Q; k)) = EMD(PDD(S; k),PDD(Q; k)),

EMDq(PDA(S; k),PDA(Q; k)) = EMDq(PDD(S; k),PDD(Q; k)),

RMS(ADA(S; k),ADA(Q; k)) = RMS(AMD(S; k),AMD(Q; k)),

Lq(ADA(S; k),ADA(Q; k)) = Lq(AMD(S; k),AMD(Q; k)).

Under given ε-perturbations, the Lipschitz constants of the metrics EMD, EMDq,
RMS, Lq above are 2, 2 q

√
k, 2, 2 q

√
k, respectively, for any parameter q ∈ [1,+∞].

(c) For h ≥ 2, the upper bounds EMDq(PDA{h}(S; k),PDA{h}(Q; k)) ≤ 4ε q
√
k

and EMD(PDA{h}(S; k),PDA{h}(Q; k)) ≤ 4ε hold for the ground metric RMS.

(d) To get a known crystal Q ∈ D from a new crystal S, some atom of S should
be perturbed by at least 0.5LND(S;D) for LND with the ground metric EMD∞.

Proof (a) [20, Lemma 4.1] proved that S,Q have a common lattice with a unit
cell U such that S = Λ+(S∩U) and Q = Λ+(Q∩U). Then S,Q share a unit cell
U and have the same number m = m(S) = m(Q) of points in U , so PPC(S) =
PPC(Q), which proves the case h = 1. For h ≥ 2, by Definition 5.6(a), we estimate

the difference
∣∣c(S;h, k)− c(Q;h, k)

∣∣ ≤ ∑k
j=1

∣∣a(S;h, j)− a(Q;h, j)
∣∣ hn
√
h!j∑k

j=1(
hn
√
h!j)2

. Since

every point of S is obtained as an ε-perturbation of a point of Q, there is a
bijection S → Q that shifts every point by at most ε. This bijection induces a 1-1
map between pairwise distances in S,Q, which changes every distance up to 2ε.

By Lemma 4.4, after writing the k smallest 2ε-perturbed average sums in
increasing order in every row of PDD{h}(S; k), the corresponding ordered sums

still differ by at most 2ε, so
∣∣PDD

{h}
i,j (S; k)−PDD

{h}
i′,j (Q; k)

∣∣ ≤ 2ε. Then the column
averages a(h, j) from Definition 5.6(a) also differ by at most 2ε.

Finally, |a(S;h, j)− a(Q;h, j)| ≤ 2ε gives the required upper bound

∣∣c(S;h, k)− c(Q;h, k)
∣∣ ≤ ∑k

j=1 2ε
hn
√
h!j∑k

j=1(
hn
√
h!j)2

= 2ρkε for ρk =

∑k
j=1

hn
√
h!j∑k

j=1(
hn
√
h!j)2

.
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(b) For h = 1, part (a) proved that PPC(S) = PPC(Q). By Definition 5.6, the
matrices PDA(S; k),PDA(Q; k) are obtained from PDD(S; k),PDD(Q; k), respec-
tively, by subtracting the same vector consisting of PPC(S) n

√
j, j = 1, . . . , k. Then

any RMS or Lq distance between a row in PDD(S; k) and a row in PDD(Q; k) has
the same value as between the corresponding rows in PDA(S; k) and PDA(Q; k).

The minimisation in Definition 4.1 gives the same values EMD and EMDq

when PDD is replaced with PDA. The same argument proves that RMS and Lq

remain the same when AMD is replaced with ADA. Hence the Lipschitz constants
are the same as in Theorem 4.3 and Corollary 4.8 restricted to order h = 1.

(c) By Definition 5.6, any element PDA
{h}
i,j (S; k) in a row i, and a column j of

PDA{h}(S; k) equals PDD
{h}
i,j (S; k) − c(S;h, k) hn

√
h!j. Estimate the difference of

i-th elements from the same column j in PDA{h}(S; k) and PDA{h}(Q; k).

∆ =
∣∣PDA

{h}
i,j (S; k)− PDA

{h}
i,j (Q; k)

∣∣ =
=
∣∣(PDD

{h}
i,j (S; k)− c(S;h, k) hn

√
h!j
)
−
(
PDD

{h}
i,j (Q; k)− c(Q;h, k) hn

√
h!j
)∣∣

=
∣∣(PDD

{h}
i,j (S; k)− PDD

{h}
i,j (Q; k)

)
−
(
c(S;h, k)− c(Q;h, k)

)
hn
√
h!j
∣∣ ≤

≤
∣∣PDD

{h}
i,j (S; k)− PDD

{h}
i,j (Q; k)

∣∣+ ∣∣c(S;h, k)− c(Q;h, k)
∣∣ hn
√
h!j ≤

≤ 2ε+ 2ρkε
hn
√
h!j = 2(1 + ρk

hn
√
h!j)ε ≤ 4ε,

where we used the upper bounds from part (a) and also ρk
hn
√
h!j ≤ 1 for any j =

1, . . . , k. Let Ri(S), Ri(Q) denote the i-th rows of PDA{h}(S; k), PDA{h}(Q; k),
respectively. Then Lq(Ri(S), Ri(Q)) ≤ q

√
k(4ε)q = 4ε q

√
k. The same proof for

RMS =
L2√
k

multiplies the Lipschitz constant by the factor
1√
k
. Lemma 4.5 guar-

antees the same upper bounds 4ε q
√
k and 4ε for EMD and EMDq, respectively. If

h = 1, then ρ1 = 0 by part (a), so 4ε can be replaced with 2ε.

(d) Assume the contrary that Q can be obtained from S by perturbing every atom
of S by at most ε = 0.5LND(S;D) = min

Q∈D
EMD∞(PDA{h}(S; k),PDA{h}(Q; k)).

Part (c) for q = +∞ implies that EMD∞(PDA{h}(S; k),PDA{h}(Q; k)) ≤ 2ε =
LND(S;D), which contradicts the assumption and hence proves the lemma. ⊓⊔

Theorem 5.10 (time of PDD{h}) For any h, k ≥ 1 and a periodic point set
S ⊂ Rn with a motif of m points and a unit cell U with a longest diagonal d, let

a = max

{
h
(
1 +

2.5d

PPC(S)

)
,

h
√
16

}
, b = log(2h!) + log(PPC(S) + d)− log r(S),

where r(S) is the packing radius of S. Then PDD{h}(S; k) is computable in time

O
(
28nan

h
√
h!k(b+ log k) + 212nm(log k) log(h!k) + ahnmk log k

)
.

Proof Fix the origin 0 ∈ Rn at the center of the unit cell U . Then any point
p ∈ M = S ∩ U is covered by the closed ball B̄(0, 0.5d). By Theorem 5.1, the
distance a(1, k) from any point p ∈ M to its k-th nearest neighbor in S has the
upper bound a(1, k) ≤ PPC(S) n

√
k + 1 + d. Then all k neighbors of p in S are

covered by the single ball B̄(0; r) of the radius r = PPC(S) n
√
k + 1 + 1.5d.
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For a fixed point p and any h > 1, to find a similar ball including all points
that are needed to compute the k smallest average sums a(h, 1) ≤ · · · ≤ a(h, k),
we start from the integer number c = ⌈b(h, k)− 1⌉ of closest neighbors p1, . . . , pc

of p, where b(h, k) is any real b + 1 such that b ≥ h and

(
b
h

)
∈ (k − 1, k]. Then(

c
h

)
≥ k by Lemma 5.5. Since the c + 1 points p, p1, . . . , pc are covered by the

ball B̄(p;R) of the radius R = max
i=1,...,c

|pi−p|, the lower bound of Lemma 5.4 gives(
R− d

PPC(S)

)n

≤ c+ 1 ≤ γ, where we set γ = b(h, k) + 1, so R ≤ PPC(S) n
√
γ + d.

All

(
c
h

)
≥ k average sums of pairwise distances between p and any h of c

points from S ∩ B̄(p;R) have the upper bound
2hR

h+ 1
by Lemma 5.3. If the k

smallest values of these sums are not greater than
2R

h+ 1
, which clearly holds for

h = 1, these k smallest values form the required row a(h, 1) ≤ · · · ≤ a(h, k) of the
point p = p0 in PDD{h}(S; k). Indeed, in this case for any h points p1, . . . , ph ∈ S
with at least one distance (say) |ph − p0| > R, the lower bound of Lemma 5.3

implies that the average sum
2

h(h+ 1)

∑
0≤i<j≤h

|pi−pj | >
2R

h+ 1
cannot be among

the sought after k smallest values a(h, 1) ≤ · · · ≤ a(h, k). If we could not find k

smallest sums up to
2R

h+ 1
, we extend the radius R to hR.

Similar to the above argument for the smaller radius R, the lower bound of
Lemma 5.3 guarantees than any average sum involving at least one point at a

distance |ph−p0| > hR is greater than
2hR

h+ 1
and hence cannot be among k ≤

(
c
h

)
smallest sums that were already considered for the smaller ball B̄(p;R). So the
larger ball B̄(p;hR) is guaranteed to contain the required k smallest sums.

To cover the necessary neighbors of all points p from a motif M = S ∩ U ,
we further increase the radius hR by 0.5d and will use the earlier upper bound
R ≤ PPC(S) n

√
b+ d for γ = b(h, k) + 1 ≥ 1. Let the ball B̄(p;hR + 0.5d) contain

ν points of S, including its center p. The upper bound ν ≤
(
hR+ 1.5d

PPC(S)

)n

from

Lemma 5.4 and the earlier upper bound R ≤ PPC(S) n
√
γ + d imply that

ν ≤
(
hR+ 1.5d

PPC(S)

)n

≤
(
h n
√
γ +

(h+ 1.5)d

PPC(S)

)n

= hnγ

(
1 +

(1 + 1.5/h)d

PPC(S) n
√
γ

)n

≤

≤ hnγ

(
1 +

2.5d

PPC(S)

)n

≤ anγ for a = max

{
h
(
1 +

2.5d

PPC(S)

)
, h
√
16

}
.

To find ν nearest neighbors of all m points p from the motif M = S ∩ U , we
gradually extend the cell U in spherical layers by adding shifted copies of U until
we get the upper union of shifted unit cells from Lemma 5.4:

U+ = U+(0; PPC(S)h n
√
γ + 1.5d) ⊃ B̄(0;hR+ 0.5d).

To estimate the neighbor search time [22], we build a compressed cover tree on
ν points of U+ in time O(νc8min log

2R
dmin

) by [23, Theorem 3.7], where cmin ≤ 2n
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is the minimized expansion constant of T , and
R

r(S)
is the upper bound for the

ratio of max/min inter-point distances. Recall that γ = b(h, k) + 1 = b + 2 and(
b
h

)
∈ (k−1, k]. If h = 1, then γ = k+2 = O(k). For any h ≥ 2, we have

(
b
h

)
=

O(bh)

h!
≤ k. The rough upper bounds are γ ≤ O( h

√
h!k) and log γ ≤ O(log(h!k))

for any fixed h and k → +∞. Then R ≤ PPC(S) n
√
γ + d gives

log(2R) ≤ log( n
√
γ(2PPC(S) + 2d)) = log(2PPC(S) + 2d) + log γ.

Then O

(
log

R

r(S)

)
≤ b+ log k for b = log(2h!) + log(PPC(S) + d)− log r(S).

Then the time for a compressed cover tree on T is O
(
νc8min log

R
r(S)

)
≤

O
(
νc8min(b + log k)

)
. Below we use the upper bounds ν ≤ anγ ≤ anO( h

√
h!k)

and log ν ≤ log γ + n log a ≤ O(log(h!k)), where the second term was absorbed by
the first one. Using [23, Theorem 4.9], we find k neighbors of m points among ν
points of T in time O(mc2(log k)(c10min log ν+ck)), where cmin ≤ c ≤ 2n are expan-
sion constants of T . Then we can compute all distances from each ofm points from
the motif S ∩ U to their k nearest neighbors in T in a time bounded as follows:

O
(
νc8min(b+ log k)

)
+O

(
mc2 log k(c10min log ν + ck)

)
≤

O
(
28nan

h
√
h!k(b+ log k)

)
+O

(
m22n log k(210n(log(h!k) + 22nk)

)
≤

O
(
28nan

h
√
h!k(b+ log k) + 212nm(log k) log(h!k) + 24nmk log k

)
. (∗)

By Definition 3.1, to compute the k smallest average sums a(h, 1) ≤ · · · ≤
a(h, k), we consider all unordered h-tuples of points among the found ν neighbors.

Due to ν ≤ anγ ≤ anO( h
√
h!k), the number of these h-tuples is N =

(
ν
h

)
≤

νh

h!
≤ ahn

h!
(O( h

√
h!k))h = ahnO(k). For each of m points in the motif S ∩ U , we

sort N average sums in time O(N logN) = ahnO(k log k) and select the k smallest
average sums in time ahnO(mk log k). When adding the latest time to the upper
bound in (∗), we use ahn ≥ 24n, ah ≥ 16, a ≥ h

√
16 to get the expected total time:

O
(
28nan

h
√
h!k(b+ log k) + 212nm(log k) log(h!k) + ahnmk log k

)
. ⊓⊔

For small dimensions n = 2, 3 and orders h = 2, 3, the upper bound for the
time of PDD{h} becomes O(mk log k + k h

√
k), which is close to be linear in both

key inputs sizes: the motif size m and the number k of smallest average sums.

For any h ≥ 1 and a periodic set S ⊂ Rn of up to m points in a unit cell,
PDD{h}(S; k), the exact EMD can be found in time O(m3 logm) [46]. By [63,
Theorem 4.4], PDD(S; k) for a large enough k (and hence the stronger PDD(h))
together with a lattice of S and the minimum numberm of points in a unit cell of S
can be inverted to any generic S (outside a subspace of measure 0), uniquely under
isometry. Then by Lemma 3.3 and Theorems 4.3, 5.10, PDD{h} satisfies almost
all conditions of Problem 1.2 with generic completeness instead of completeness.
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6 Big-scale experiments on high-profile databases of inorganic crystals

This section applies new invariants to quantify the novelty of materials reported
by A-lab [59] and MatterGen [69], and then reports pairwise comparisons by the
hierarchy of new invariants across three large databases of inorganic crystals:

ICSD: Inorganic Crystal Structure Database [68], 170,206 entries
http://icsd.products.fiz-karlsruhe.de/en (version of February 25, 2025).

MP: Materials Project by the Berkeley lab [31], 153,235 entries
http://next-gen.materialsproject.org (version v2023.11.1).

GNoME: Graph Network Materials Exploration [43], 384,938 entries,
http://github.com/google-deepmind/materials discovery (November 29, 2023).

Only experimentally measured non-disordered inorganic crystals from the ICSD
were included. The Materials Project contains theoretical and experimental struc-
tures (including some sourced from the ICSD), but all entries undergo simulations
which change their geometry before being added to the database. The GNoME
dataset was generated by AI trained on crystals from the Materials Project.

We start by comparing the recently released crystals by MatterGen [69] with
the already available structures in the ICSD and MP. Tables 1, 2 show several
distances (based on the past PDD and new invariants PDD{2}) from MatterGen
crystals to their three nearest neighbors in the ICSD and MP respectively.

All distances are measured in Angstroms, where 1Å is approximately the small-
est inter-atomic distance. The physical meaning of all computed distances is justi-
fied by the Lipschitz continuity, which was proved for the past invariants ADA [66,
Theorem 9], PDA [64, Theorem 6], and new invariants PDA{h}, see Theorem 4.3,
as follows. If every atom of a periodic crystal S is perturbed up to ε = 0.1Å,
then all our distances between each invariant of S and its perturbation is at most
2ε = 0.2Å. Conversely, if a distance is d = 0.2Å, to match underlying crystals
exactly, at least of their atoms should be shifted by at least d/2 = 0.1Å.

[32] suggested that the MatterGen crystal TaCr2O6 is “identical” to ICSD
entry 9516, which was reported in 1972 [7]. However, these crystals have L∞[100] =

0.089Å, EMD∞[100] = 0.098Å, and EMD
(2)
∞ [100] = 0.196Å, which are larger than

the distances in the last three rows of Table 1. In fact, entry 9516 is outside the

first 1000 neighbors of TaCr2O6 by EMD
(2)
∞ in the ICSD. Tables 3 and 4 show the

first neighbors of 43 A-lab crystals [59] in the ICSD and MP, respectively.

The distance EMD
(2)
∞ [k] between crystals S,Q is defined as the maximum of

EMD∞(PDA{h}(S; k),PDA{h}(Q; k)) for two orders h = 1, 2. In most cases, the
maximum distance is achieved for order h = 2, because the 2nd order invariant
PDA{2} collects geometric data for triples of atoms instead of pairs (inter-atomic
distances). However, very symmetric crystals can have many equal triangles, so
the same number k of smallest inter-atomic distances can be more separating than
k smallest perimeters of triangles. For example, the A-lab crystal KMn3O6 has
the nearest neighbors K1.39Mn3O6 (ICSD id 261406) and KMn2O4 (mp-2765485
in the Materials Project) with EMD∞[100] distances 0.103Å and 0.51Å, which are

larger than the EMD
{2}
∞ [100] distances 0.19Å and 0.444Å, respectively.

One reason that it was previously impossible to detect geometric duplicates in
each of these databases and find substantial overlaps between different databases
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MatterGen ID ICSD composition ICSD ID L∞[100] EMD∞[100] EMD
(2)
∞ [100]

Cr2MoO6 LiMgFeF6 193630 0.022 0.037 0.074
Cr2MoO6 Cr2WO6 24793 0.017 0.032 0.075
Cr2MoO6 V2WO6 2576 0.045 0.064 0.098
LaMoO4 SmTaO4 59218 0.065 0.117 0.146
LaMoO4 SmTaO4 32996 0.056 0.125 0.188
LaMoO4 NdTaO4 79498 0.063 0.104 0.195
Mn3NiO6 MgMnO3 690439 0.030 0.052 0.088
Mn3NiO6 MgGeO3 171790 0.050 0.071 0.122
Mn3NiO6 MgGeO3 171788 0.048 0.070 0.126
Ta0.67Cr1.33O4 MgF2 9164 0.009 0.012 0.020
Ta0.67Cr1.33O4 MgF2 117472 0.017 0.022 0.022
Ta0.67Cr1.33O4 MgF2 8121 0.017 0.022 0.022
TaCr2O6 TiCr SbO6 81932 0.014 0.025 0.047
TaCr2O6 MgF2 8121 0.021 0.031 0.050
TaCr2O6 MgF2 117472 0.021 0.031 0.050

Table 1 Column 1: IDs of 5 MatterGen crystals [69] in the folder ‘experimental’ [44].
Columns 2-3: compositions and IDs of three nearest neighbors in the ICSD, found by the new
invariants, see column 6. Column 4: distance L∞ on vector invariants ADA(S; 100). Column

5: distance EMD∞ on matrix invariants PDA(S; 100). Column 6: max distance EMD
(2)
∞ on

new invariants PDA{h}(S; 100) for orders h = 1, 2. All distances are in Angstroms.

MatterGen ID MP composition MP ID L∞[100] EMD∞[100] EMD
(2)
∞ [100]

Cr2MoO6 Cr2VO6 mp-1101261 0.010 0.018 0.032
Cr2MoO6 Cr2WO6 mp-19894 0.033 0.042 0.058
Cr2MoO6 Ga2WO6 mp-770737 0.018 0.028 0.059
LaMoO4 NdTaO4 mp-4718 0.065 0.108 0.207
LaMoO4 NbCeO4 mp-7550 0.083 0.133 0.233
LaMoO4 SmTaO4 mp-3756 0.077 0.131 0.269
Mn3NiO6 MnMgO3 mp-770618 0.028 0.055 0.099
Mn3NiO6 MnCoO3 mp-20641 0.032 0.062 0.110
Mn3NiO6 FeMgO3 mp-754508 0.059 0.093 0.127
Ta0.67Cr1.33O4 MgF2 mp-1249 0.029 0.037 0.038
Ta0.67Cr1.33O4 NiF2 mp-559798 0.050 0.063 0.063
Ta0.67Cr1.33O4 TiO2 mp-2657 0.051 0.067 0.067
TaCr2O6 LiNiRhF6 mp-1222366 0.027 0.048 0.051
TaCr2O6 MgF2 mp-1249 0.033 0.046 0.058
TaCr2O6 TiVO4 mp-690490 0.019 0.029 0.061

Table 2 Column 1: IDs of 5 MatterGen crystals [69] in the folder ‘experimental’ [44].
Columns 2-3: compositions and IDs of three nearest neighbors in the MP, found by the new
invariants, see column 6. Column 4: distance L∞ on vector invariants ADA(S; 100). Column

5: distance EMD∞ on matrix invariants PDA(S; 100). Column 6: max distance EMD
(2)
∞ on

new invariants PDA{h}(S; 100) for orders h = 1, 2. All distances are in Angstroms.

is their huge size and the slow speed of traditional comparisons. Our experiments
were on a typical desktop (AMD Ryzen 5 5600X 6-core, 32GB RAM).

Another drawback of any distance is very limited information (a single num-
ber) per pair of crystals, while invariants such as PDD{h} include many more nu-
merical values per crystal. Detecting near-duplicates by invariants is much faster
than by distances due to the hierarchy starting with vectors ADA{h}(S; 100),
which quickly filter out distant crystals with L∞ > 0.01Å. The stronger invariants
PDD{h}(S; 100) cannot have smaller distances due to Lemma 4.7(c).
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A-lab ID ICSD composition ICSD ID EMD∞ EMD
(2)
∞

Ba2ZrSnO6 B2Ho2Pd6 44417 < 0.001 < 0.001
Ba6Na2Ta2V2O17 Ba6Na2Ru2V2O17 97524 0.092 0.132
Ba6Na2Sb2V2O17 Ba6Na2Ru2V2O17 97524 0.081 0.147
Ba9Ca3La4(Fe4O15)2 Ba10Ca2Pr4(Fe4O15)2 405911 0.187 0.212
CaCo(PO3)4 Cd0.5Co1.5(PO3)4 81574 0.144 0.236
CaFe2P2O9 CaV2P2O9 79735 0.073 0.093
CaGd2Zr(GaO3)4 Fe5Tb3O12 80550 0.108 0.168
CaMn(PO3)4 Cd2(PO3)4 260975 0.168 0.220
CaNi(PO3)4 Cd0.5Co1.5(PO3)4 81574 0.157 0.235
FeSb3Pb4O13 Ni0.666Sb3.33Pb4O13 88959 0.048 0.116
Hf2Sb2Pb4O13 Ru4Pb4O13 49531 0.095 0.183
InSb3(PO4)6 Sc4(SeO4)6 1729 0.201 0.240
InSb3Pb4O13 Ru4Pb4O13 49531 0.149 0.284
K2TiCr(PO4)3 K1.928Ti1.515Fe0.485(PO4)3 418185 0.037 0.055
K4MgFe3(PO4)5 K4MgFe3(PO4)5 161484 0.075 0.109
K4TiSn3(PO5)4 K4Ti1.88Sn2.12(PO5)4 250087 0.091 0.163
KBaGdWO6 K2NaF4NbO2 183827 0.004 0.010
KBaPrWO6 H8F6N2NaV 246824 0.004 0.009
KMn3O6 K1.39Mn3O6 261406 0.103 0.103
KNa2Ga3(SiO4)3 Na3Ga3(SiO4)3 46861 0.110 0.146
KNaP6(PbO3)8 KNaP6(PbO3)8 182501 0.005 0.006
KNaTi2(PO5)2 K1.04Na0.96Ti2(PO5)2 71239 0.062 0.105
KPr9(Si3O13)2 Sr1.91Nd8.09(Si3O13)2 238283 0.144 0.172
Mg3MnNi3O8 Mg1.2MnNi4.8O8 80303 0.020 0.031
Mg3NiO4 Mg4O4 690939 0.000 0.000
MgCuP2O7 Mg1.08Co0.92P2O7 69576 0.218 0.227
MgNi(PO3)4 Mg2(PO3)4 4280 0.082 0.097
MgTi2NiO6 Mn0.64Ti2Ni1.36O6 238957 0.045 0.056
MgTi4(PO4)6 FeTi4(PO12)6 290966 0.132 0.152
MgV4Cu3O14 V4Cu4O14 164189 0.146 0.193
Mn2VPO7 Mn2V0.91P1.09O7 250126 0.219 0.333
Mn4Zn3(NiO6)2 Mg6Ti3O12 65793 0.128 0.186
Mn7(P2O7)4 Fe7(P2O7)4 67514 0.126 0.155
MnAgO2 MnAgO2 670065 0.097 0.142
Na3Ca18Fe(PO4)14 K2Sr18Mg2(PO4)14 127462 0.173 0.252
Na7Mg7Fe5(PO4)12 Na8Ni8Fe4(PO4)12 169444 0.157 0.157
NaCaMgFe(SiO3)4 V0.28Cr0.49Mn0.004Ti0.002

Na0.792Ca1.208Mg1.17
Fe0.016Si3.98O12

117172 0.066 0.096

NaMnFe(PO4)2 Na1.17Mg0.19Mn0.46Fe1.35
(PO4)2

168037 0.232 0.232

Sn2Sb2Pb4O13 Ru4Pb4O13 49531 0.088 0.188
Y3In2Ga3O12 Y2.74Sc2.19Ga3.01O12 39834 0.018 0.041
Zn2Cr3FeO8 Mg2Cr4O8 160954 0.022 0.035
Zn3Ni4(SbO6)2 CoLi2Ti2.8O8 19999 0.173 0.211
Zr2Sb2Pb4O13 Ru4Pb4O13 49531 0.106 0.218

Table 3 Column 1: IDs of 43 A-lab crystals reported in [59]. Columns 2-3: compositions
and IDs of the nearest neighbor in the ICSD, found by the new invariants, see column 5.
Column 4: distance EMD∞ on matrix invariants PDA(S; 100). Column 5: max distance

EMD
(2)
∞ on new invariants PDA{h}(S; 100) for orders h = 1, 2. All distances are in Angstroms.

The invariants PDA(h) obtained by concatenating PDA,PDA{2}, . . . ,PDA{h}

form a natural hierarchy so that increasing the order h = 1, 2, . . . adds more
invariant information to better distinguish given crystals under isometry.
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A-lab ID MP composition MP ID EMD∞ EMD
(2)
∞

Ba2ZrSnO6 Hf2KPrO6 mp-1522216 < 0.001 < 0.001
Ba6Na2Ta2V2O17 Ba6Na2Ta2V2O17 mp-1214664 0.029 0.051
Ba6Na2Sb2V2O17 Ba6Na2Sb2V2O17 mp-1214658 0.021 0.030
Ba9Ca3La4(Fe4O15)2 Ba9Ca3La4(Fe4O15)2 mp-1228537 0.136 0.141
CaCo(PO3)4 CaCo(PO3)4 mp-1045787 0.090 0.090
CaFe2P2O9 CaV2P2O9 mp-21541 0.061 0.088
CaGd2Zr(GaO3)4 CaGd2Zr(GaO3)4 mp-686296 0.069 0.072
CaMn(PO3)4 CaTi(PO3)4 mp-1045626 0.071 0.097
CaNi(PO3)4 CaCo(PO3)4 mp-1045787 0.105 0.121
FeSb3Pb4O13 FeSb3Pb4O13 mp-1224890 0.027 0.034
Hf2Sb2Pb4O13 Hf2Sb2Pb4O13 mp-1224490 0.012 0.022
InSb3(PO4)6 InSb3(PO4)6 mp-1224667 0.011 0.018
InSb3Pb4O13 InSb3Pb4O13 mp-1223746 0.029 0.036
K2TiCr(PO4)3 K2TiCr(PO4)3 mp-1224541 0.009 0.019
K4MgFe3(PO4)5 K4MgFe3(PO4)5 mp-532755 0.076 0.088
K4TiSn3(PO5)4 K4TiSn3(PO5)4 mp-1224290 0.014 0.025
KBaGdWO6 NaSmEuWO6 mp-1523299 0.001 0.003
KBaPrWO6 NaNiRb2F6 mp-556353 0.003 0.007
KMn3O6 KMn2O4 mp-2765485 0.510 0.510
KNa2Ga3(SiO4)3 KNa2Ga3(SiO4)3 mp-1211711 0.022 0.032
KNaP6(PbO3)8 Na2P6(PbO3)8 mp-690977 0.090 0.121
KNaTi2(PO5)2 KNaTi2(PO5)2 mp-1211611 0.012 0.016
KPr9(Si3O13)2 KPr9(Si3O13)2 mp-1223421 0.009 0.021
Mg3MnNi3O8 Mg3MnNi3O8 mp-1222170 0.029 0.032
Mg3NiO4 Mg3CuO4 mp-1099249 0.001 0.002
MgCuP2O7 MgCuP2O7 mp-1041741 0.093 0.088
MgNi(PO3)4 MgNi(PO3)4 mp-1045786 0.018 0.024
MgTi2NiO6 MgTi2NiO6 mp-1221952 0.009 0.023
MgTi4(PO4)6 MgTi4(PO4)6 mp-1222070 0.075 0.076
MgV4Cu3O14 MgV4Cu3O14 mp-1222158 0.060 0.070
Mn2VPO7 Mn2VPO7 mp-1210613 0.125 0.153
Mn4Zn3(NiO6)2 Mn4Zn3(NiO6)2 mp-1222033 0.054 0.063
Mn7(P2O7)4 Mn7(P2O7)4 mp-778008 0.123 0.132
MnAgO2 MnAgO2 mp-996995 0.098 0.112
Na3Ca18Fe(PO4)14 Na3Ca18Fe(PO4)14 mp-725491 0.031 0.038
Na7Mg7Fe5(PO4)12 Na7Mg7Fe5(PO4)12 mp-1173791 0.028 0.036
NaCaMgFe(SiO3)4 NaCaMgFe(SiO3)4 mp-1221075 0.026 0.032
NaMnFe(PO4)2 NaMnFe(PO4)2 mp-1173592 0.032 0.034
Sn2Sb2Pb4O13 Sn2Sb2Pb4O13 mp-1219056 0.025 0.038
Y3In2Ga3O12 Y3In2Ga3O12 mp-1207946 0.008 0.028
Zn2Cr3FeO8 Mg2Ga4O8 mp-4590 0.022 0.040
Zn3Ni4(SbO6)2 Zn3Ni4(SbO6)2 mp-1216023 0.092 0.108
Zr2Sb2Pb4O13 Zr2Sb2Pb4O13 mp-1215826 0.025 0.042

Table 4 Column 1: IDs of 43 A-lab crystals reported in [59]. Columns 2-3: compositions
and IDs of the nearest neighbor in the MP, found by the new invariants, see column 5. Column

4: distance EMD∞ on matrix invariants PDA(S; 100). Column 5: max distance EMD
(2)
∞ on

new invariants PDA{h}(S; 100) for orders h = 1, 2. All distances are in Angstroms.

In addition to L∞-based distances in Tables 1- 4, below we also use metrics
based on RMS (Root Mean Square) between vectors or rows of PDA matrices, so
the resulting EMD on PDA{h} is written without a subscript for simplicity. The
RMS-based metrics have Lipschitz constant 2 (or 4 for h > 1) by Corollary 5.9.

Since any computations accumulate arithmetic errors, we start by finding ge-
ometric near-duplicates (under isometry including reflections) with the threshold
10−10Å = 10−18m for all distances. Then we gradually increase the threshold
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to 0.01Å, which is about 1% of the smallest interatomic distance and consid-
ered experimental noise. Tables 5-10 summarize all-vs-all comparisons across the
databases ICSD, MP, and GNoME by using two distances on the new PDA(2).

Table 5 Count and percentage of pure periodic crystals in each database (left) found to have a

near-duplicate in other databases (top) by EMD and EMD∞ under 10−6Å on PDA(2)(S; 100).

Data ICSD MP GNoME
L∞ RMS L∞ RMS L∞ RMS

count % count % count % count % count % count %
ICSD 9454 8.05 9462 8.05 53 0.05 154 0.13 1 0.00 8 0.01
MP 26 0.02 87 0.06 80 0.05 293 0.19 10 0.01 21 0.01
GNoME 1 0.00 8 0.00 10 0.00 20 0.01 4351 1.13 4392 1.14

Table 6 Count and percentage of pure periodic crystals in each database (left) found to have a

near-duplicate in other databases (top) by EMD and EMD∞ under 10−5Å on PDA(2)(S; 100).

Data ICSD MP GNoME
L∞ RMS L∞ RMS L∞ RMS

count % count % count % count % count % count %
ICSD 9509 8.09 9779 8.32 273 0.23 1021 0.87 18 0.02 84 0.07
MP 176 0.11 764 0.50 545 0.36 2067 1.35 41 0.03 161 0.11
GNoME 14 0.00 55 0.01 38 0.01 138 0.04 4432 1.15 4590 1.19

Table 7 Count and percentage of pure periodic crystals in each database (left) found to have a

near-duplicate in other databases (top) by EMD and EMD∞ under 10−4Å on PDA(2)(S; 100).

Data ICSD MP GNoME
L∞ RMS L∞ RMS L∞ RMS

count % count % count % count % count % count %
ICSD 10411 8.86 12845 10.93 1910 1.63 4708 4.01 170 0.14 636 0.54
MP 1595 1.04 5182 3.38 3709 2.42 7018 4.58 343 0.22 1289 0.84
GNoME 122 0.03 393 0.10 268 0.07 507 0.13 4808 1.25 5070 1.32

Tables 5-9 count near-duplicates (under isometry not distinguishing mirror im-
ages) within each database, which can be filtered out for any analysis or training,
else the data becomes skewed. The ultra-fast ADA(S; 100) finds nearest neighbors
within and between all databases using KD-trees [25]. All pairs within a given
threshold by ADA(S; 100) were re-compared by the stronger ADA(2)(S; 100), fol-
lowed by PDA(S; 100) and finally PDA(2)(S; 100), each time keeping only the pairs
with distances within the threshold. To avoid repeated calculations, all invariants
were computed separately before making comparisons, see Fig. 9 and Table 11.

Some experimental materials of different compositions may have very close
geometries because their structures were determined under different conditions,
such as temperature and pressure, which will be discussed in future work.



Higher-order isometry invariants of periodic sets 33

Table 8 Count and percentage of pure periodic crystals in each database (left) found to have a

near-duplicate in other databases (top) by EMD and EMD∞ under 10−3Å on PDA(2)(S; 100).

Data ICSD MP GNoME
L∞ RMS L∞ RMS L∞ RMS

count % count % count % count % count % count %
ICSD 16052 13.66 21073 17.94 6722 5.72 9975 8.49 1263 1.08 3637 3.10
MP 7228 4.72 9275 6.05 8301 5.42 10511 6.86 2460 1.61 5821 3.80
GNoME 589 0.15 793 0.21 625 0.16 906 0.24 5581 1.45 8049 2.09

Table 9 Count and percentage of pure periodic crystals in each database (left) found to have a

near-duplicate in other databases (top) by EMD and EMD∞ under 0.01Å on PDA(2)(S; 100).

Data ICSD MP GNoME
L∞ RMS L∞ RMS L∞ RMS

count % count % count % count % count % count %
ICSD 30855 25.9 27898 23.4 12540 10.5 12004 10.1 6120 5.14 5853 4.92
MP 12607 5.99 12588 5.98 18466 8.77 18047 8.57 11283 5.35 11296 5.36
GNoME 1379 0.36 1230 0.32 4645 1.21 4998 1.30 35314 9.17 49403 12.8

Table 10 Each database has thousands of (near-)duplicates (by L∞) whose all atomic posi-
tions can be matched by tiny perturbations. Duplication with different compositions is unex-
pected for very low thresholds as replacing an atom with a different one should affect geometry.

near-duplicates database 10−10Å 10−6Å 10−5Å 10−4Å 10−3Å 10−2Å
pairs of entries

within a threshold

by EMD on PDA(2)

ICSD 8994 8995 9036 10353 33314 259169
MP 5 40 283 2718 26703 278739

GNoME 1852 2482 2524 2719 3284 39487
percentage of all entries

in close pairs vs
the full database

ICSD 8.05 8.05 8.09 8.86 13.66 26.24
MP 0.01 0.05 0.36 2.42 5.42 9.42

GNoME 0.84 1.13 1.15 1.25 1.45 9.17
percentage of close
pairs with different

chemical compositions

ICSD 46.91 46.90 46.70 45.36 51.96 71.19
MP 60.00 85.00 97.53 99.01 99.88 99.93

GNoME 33.86 47.38 46.71 44.28 47.05 90.96

Fig. 9 Time in milliseconds to compare invariants ADA (left) and PDA (right). Blue: average
over pairwise comparisons of 10 random crystals from 3 databases for k = 100 and a fixed sizem
of an asymmetric unit. Orange: average per atom over 500 random crystals for k = 1, . . . , 100.

Table 12 shows five pairs that were found in the Materials Project within
10−10Å for L∞ on ADA(S; 100). Three pairs with different compositions have iden-
tical numerical data and likely need updating because changing chemical elements
should perturb geometry. Two pairs with identical compositions have identical
cells and atomic coordinates that can be matched by reflection, see the appendix.
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Table 11 Times (hours:minutes:seconds) to calculate PDA and PDA{2} for each database,
and times to compare each pair of databases by the metric EMD∞ to produce Table 9. The
vectors ADA and ADA{2} are near-instantly computable from PDA and PDA{2}, respectively.

data Invariants Comparisons Sum of

PDA PDA{2} ICSD MP GNoME times
ICSD 0:01:07 5:57:26 0:04:02 0:04:47 0:00:50 6:08:12
MP 0:04:35 25:44:33 0:04:10 0:05:32 0:01:44 26:00:34
GNoME 0:03:47 9:54:48 0:00:43 0:01:51 0:14:53 10:16:02

Table 12 Geometrically identical entries in MP, three of which have different compositions.

MP id 1 MP id 2 composition 1 composition 2 compositional distance [29]
mp-1100417 mp-631388 VSbRh CdIrRu 8
mp-1013559 mp-1013733 Sr3As2 Ca3BiSb 1.2
mp-1013536 mp-1013552 Sr3PN Sr3P2 0.2
mp-771976 mp-1345479 Rb2Be2O3 Rb2Be2O3 0
mp-29783 mp-1338697 B5H9 B5H9 0

7 Discussion of limitations, scientific integrity, and growing significance

Diffraction patterns helped predict cell-based representations of crystals for 100+
years. Recently, [57] showed how to convert any crystal into many different homo-
metric structures that have identical diffraction. Fig. 1 (right) illustrated how any
known crystal can be easily disguised by changing or expanding its cell, perturbing
atoms to make the new cell primitive, and changing chemical elements.

As a result, artificially generated structures threaten the integrity of experi-
mental databases [13], which are already skewed by previously undetectable near-
duplicates in other databases [1]. These practical challenges motivated us to for-
malize the fundamental questions Same or different, and by how much? [54]. Prob-
lem 1.2 asked for a complete, Lipschitz continuous, and polynomial-time invariant
of all periodic point sets with up to m points in a unit cell, and is being addressed
for other real objects in the emerging area of Geometric Data Science [38].

While diffraction patterns and PDDs cannot distinguish infinitely many ho-
mometric crystals, PDD{2} distinguished all known (infinitely many) counter-
examples to the completeness of the PDD under isometry in Examples 3.4 and 4.2.
For practical dimensions and orders n, h ≤ 3, the time of PDD{h} is near-linear
in both key input sizes k,m by Theorem 5.10. The new hierarchy of ADA{h} and
PDA{h} for h ≥ 1 allows us to use the stronger invariants PDA{2} only in rare
cases to confirm exact duplicates after much faster filtering by ADA,PDA.

The limitations are Conjectures 3.8 (completeness of PDD(h) in Rh) and 5.2
(exact asymptotic of PDD{h} for h > 1), which we plan to tackle in future work.

Before Theorem 3.7, there was no complete, continuous, and polynomial-time
invariant of periodic sets even in dimension n = 1. The developed hierarchy quickly
detects near-duplicates of any newly claimed materials in existing databases and
hence becomes an efficient barrier for noisy disguises of known crystals.

This research was supported by the Royal Society APEF fellowship “New geo-
metric methods for mapping the space of periodic crystals’ ’(APX/R1/231152) and
EPSRC New Horizons grant “ Inverse design of periodic crystals” (EP/X018474/1).
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A Appendix: details of hierarchical comparisons across three databases

Fig. 10-11 include screenshots (from https://text-compare.com) of different CIFs
for the pairs from the last two rows of Table 12. Though distance-based invariants,
such as PDA{h}, cannot distinguish mirror images, our slower metric on isosets
[6], which are complete under rigid motion, has approximate values 0.468Å and
0.33552Å, so these mirror images are not related by translations and rotations.

Fig. 10 The CIFs of the MP entries mp-771976 (left) and mp-1345479 (right) have identical
cells and different coordinates, which can be matched under reflection (x, y, z) 7→ (x, y, 1− z).
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Fig. 11 The CIFs of the MP entries mp-29783 (left) and mp-1338697 (right) have identical
compositions and unit cells, but different fractional coordinates of atoms, which can be exactly
matched under reflection (x, y, z) 7→ (x, 1− y, z − 0.25), where z − 0.25 is taken modulo 1.

Tables 13–18 include the running times and numbers of compared pairs and
resulting unique entries for two versions of (L∞ and RMS-based) distances between
the invariants ADA(S; 100), PDA(S; 100), ADA(2)(S; 100), PDA(2)(S; 100).

The smallest threshold 10−10Å in Table 13 is considered a floating-point error,
and the resulting pairs of geometric duplicates are available by request. At the
higher threshold 10−6Å in Table 14 only a few extra duplicates appear. However,
the further tables show that the numbers of near-duplicates substantially grow for
larger thresholds up to 0.01Å, which is still considered experimental noise.

In the bottom section of Table 13, the number 3248 of geometric duplicates
in the GNoME was previously found in [5, Table 1] by comparisons of CIFs by
numerical data (unit cell parameters and atomic coordinates) than by invariants.
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Table 13 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the
threshold 10−10Å and k = 100 atomic neighbors with sequentially stronger invariants.

L∞ RMS

ADA PDA ADA(2) PDA(2) ADA PDA ADA(2) PDA(2)

ICSD
vs

ICSD

Pairs 8994 8994 8994 8994 8994 8994 8994 8994
Entries 9452 9452 9452 9452 9452 9452 9452 9452

% 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05
Time (s) 3.1 2.6 0.0 2.2 6.5 1.8 0.0 1.9

ICSD
vs
MP

Pairs 33 33 33 33 33 33 33 33
Entries 33 33 33 33 33 33 33 33

% 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Time (s) 4.3 0.0 0.0 0.0 4.9 0.0 0.0 0.0

ICSD
vs

GNoME

Pairs 0 0 0 0 0 0 0 0
Entries 0 0 0 0 0 0 0 0

% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) 11.2 0.0 0.0 0.0 10.5 0.0 0.0 0.0

MP
vs

ICSD

Pairs 33 33 33 33 33 33 33 33
Entries 15 15 15 15 15 15 15 15

% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Time (s) 3.6 0.0 0.0 0.0 4.7 0.0 0.0 0.0

MP
vs
MP

Pairs 5 5 5 5 5 5 5 5
Entries 10 10 10 10 10 10 10 10

% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Time (s) 5.1 0.0 0.0 0.0 7.6 0.0 0.0 0.0

MP
vs

GNoME

Pairs 4 4 4 4 4 4 4 4
Entries 4 4 4 4 4 4 4 4

% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) 8.7 0.0 0.0 0.0 11.2 0.0 0.0 0.0

GNoME
vs

ICSD

Pairs 0 0 0 0 0 0 0 0
Entries 0 0 0 0 0 0 0 0

% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) 4.3 0.0 0.0 0.0 8.5 0.0 0.0 0.0

GNoME
vs
MP

Pairs 4 4 4 4 4 4 4 4
Entries 4 4 4 4 4 4 4 4

% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) 5.2 0.0 0.0 0.0 9.7 0.0 0.0 0.0

GNoME
vs

GNoME

Pairs 1852 1852 1852 1852 1852 1852 1852 1852
Entries 3248 3248 3248 3248 3248 3248 3248 3248

% 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
Time (s) 14.5 0.5 0.0 0.5 21.4 0.5 0.0 0.5
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Table 14 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the
threshold 10−6Å and k = 100 atomic neighbors with sequentially stronger invariants.

L∞ RMS

ADA PDA ADA(2) PDA(2) ADA PDA ADA(2) PDA(2)

ICSD
vs

ICSD

Pairs 8999 8998 8996 8995 9036 9027 9003 8999
Entries 9462 9460 9456 9454 9510 9493 9470 9462

% 8.05 8.05 8.05 8.05 8.09 8.08 8.06 8.05
Time (s) 3.1 1.9 0.0 1.9 8.3 5.2 0.1 4.7

ICSD
vs
MP

Pairs 102 101 53 53 310 283 168 163
Entries 102 101 53 53 292 265 159 154

% 0.09 0.09 0.05 0.05 0.25 0.23 0.14 0.13
Time (s) 3.3 0.1 0.0 0.0 6.2 0.2 0.0 0.1

ICSD
vs

GNoME

Pairs 3 3 1 1 15 15 8 8
Entries 3 3 1 1 15 15 8 8

% 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01
Time (s) 8.8 0.0 0.0 0.0 13.5 0.0 0.0 0.0

MP
vs

ICSD

Pairs 102 101 53 53 310 283 168 163
Entries 57 56 26 26 186 169 91 87

% 0.04 0.04 0.02 0.02 0.12 0.11 0.06 0.06
Time (s) 2.8 0.0 0.0 0.0 4.9 0.1 0.0 0.0

MP
vs
MP

Pairs 91 90 40 40 290 279 148 148
Entries 182 180 80 80 558 537 293 293

% 0.12 0.12 0.05 0.05 0.36 0.35 0.19 0.19
Time (s) 7.1 0.1 0.0 0.0 8.7 0.3 0.0 0.1

MP
vs

GNoME

Pairs 12 12 10 10 44 42 22 22
Entries 12 12 10 10 43 41 21 21

% 0.01 0.01 0.01 0.01 0.03 0.03 0.01 0.01
Time (s) 12.3 0.0 0.0 0.0 19.1 0.2 0.0 0.1

GNoME
vs

ICSD

Pairs 3 3 1 1 15 15 8 8
Entries 3 3 1 1 13 13 8 8

% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) 4.7 0.0 0.0 0.0 13.1 0.1 0.0 0.0

GNoME
vs
MP

Pairs 12 12 10 10 44 42 22 22
Entries 12 12 10 10 40 38 20 20

% 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01
Time (s) 8.0 0.0 0.0 0.0 10.5 0.1 0.0 0.0

GNoME
vs

GNoME

Pairs 2511 2490 2489 2482 2547 2516 2513 2504
Entries 4406 4367 4365 4351 4477 4416 4410 4392

% 1.14 1.13 1.13 1.13 1.16 1.15 1.15 1.14
Time (s) 18.4 3.3 0.0 2.5 30.2 3.5 0.0 2.6
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Table 15 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the
threshold 10−5Å and k = 100 atomic neighbors with sequentially stronger invariants.

L∞ RMS

ADA PDA ADA(2) PDA(2) ADA PDA ADA(2) PDA(2)

ICSD
vs

ICSD

Pairs 9173 9143 9041 9036 10400 10190 9397 9339
Entries 9661 9620 9511 9509 10465 10294 9843 9779

% 8.22 8.19 8.10 8.09 8.91 8.76 8.38 8.32
Time (s) 4.9 5.4 0.1 4.7 9.5 5.7 0.1 5.0

ICSD
vs
MP

Pairs 788 774 291 291 2641 2486 1245 1199
Entries 702 690 273 273 1946 1848 1066 1021

% 0.60 0.59 0.23 0.23 1.66 1.57 0.91 0.87
Time (s) 5.0 0.6 0.0 0.2 7.3 1.6 0.0 0.7

ICSD
vs

GNoME

Pairs 67 61 18 18 191 171 89 85
Entries 67 61 18 18 173 159 88 84

% 0.06 0.05 0.02 0.02 0.15 0.14 0.07 0.07
Time (s) 14.5 0.1 0.0 0.0 16.6 0.1 0.0 0.1

MP
vs

ICSD

Pairs 788 774 291 291 2641 2486 1245 1199
Entries 490 477 176 176 1628 1537 788 764

% 0.32 0.31 0.11 0.11 1.06 1.00 0.51 0.50
Time (s) 4.4 0.3 0.0 0.1 7.0 0.8 0.0 0.4

MP
vs
MP

Pairs 821 792 289 283 2746 2659 1309 1285
Entries 1430 1378 557 545 3740 3620 2104 2067

% 0.93 0.90 0.36 0.36 2.44 2.36 1.37 1.35
Time (s) 6.3 0.7 0.0 0.2 9.8 1.5 0.0 0.7

MP
vs

GNoME

Pairs 116 111 44 42 381 368 170 169
Entries 110 106 43 41 346 333 162 161

% 0.07 0.07 0.03 0.03 0.23 0.22 0.11 0.11
Time (s) 14.9 0.1 0.0 0.0 17.6 0.3 0.0 0.1

GNoME
vs

ICSD

Pairs 67 61 18 18 191 171 89 85
Entries 41 36 14 14 123 115 57 55

% 0.01 0.01 0.00 0.00 0.03 0.03 0.01 0.01
Time (s) 6.6 0.1 0.0 0.0 12.7 0.2 0.0 0.1

GNoME
vs
MP

Pairs 116 111 44 42 381 368 170 169
Entries 99 94 40 38 271 262 139 138

% 0.03 0.02 0.01 0.01 0.07 0.07 0.04 0.04
Time (s) 8.1 0.1 0.0 0.0 12.7 0.3 0.0 0.1

GNoME
vs

GNoME

Pairs 2640 2564 2549 2524 2721 2678 2648 2606
Entries 4658 4506 4479 4432 4809 4726 4674 4590

% 1.21 1.17 1.16 1.15 1.25 1.23 1.21 1.19
Time (s) 22.1 3.7 0.0 2.7 28.5 3.4 0.0 2.6
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Table 16 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the
threshold 10−4Å and k = 100 atomic neighbors with sequentially stronger invariants.

L∞ RMS

ADA PDA ADA(2) PDA(2) ADA PDA ADA(2) PDA(2)

ICSD
vs

ICSD

Pairs 14009 13669 10360 10353 33936 31231 18669 18021
Entries 12045 11857 10425 10411 15732 15004 13061 12845

% 10.25 10.09 8.87 8.86 13.39 12.77 11.12 10.93
Time (s) 4.5 6.7 0.1 5.0 5.5 10.8 0.1 6.7

ICSD
vs
MP

Pairs 7304 7087 2586 2586 26146 24318 11831 11481
Entries 3795 3729 1910 1910 6852 6645 4833 4708

% 3.23 3.17 1.63 1.63 5.83 5.66 4.11 4.01
Time (s) 4.6 3.5 0.0 1.3 9.3 14.2 0.2 7.3

ICSD
vs

GNoME

Pairs 504 481 184 184 1892 1725 844 820
Entries 434 416 170 170 1285 1173 656 636

% 0.37 0.35 0.14 0.14 1.09 1.00 0.56 0.54
Time (s) 16.0 0.9 0.0 0.3 18.0 2.3 0.5 1.0

MP
vs

ICSD

Pairs 7304 7087 2586 2586 26146 24318 11831 11481
Entries 3881 3828 1595 1595 7275 7115 5266 5182

% 2.53 2.50 1.04 1.04 4.75 4.64 3.44 3.38
Time (s) 3.1 4.2 0.0 1.7 6.3 11.1 0.1 4.9

MP
vs
MP

Pairs 7843 7710 2718 2718 27091 26019 12634 12426
Entries 6196 6121 3709 3709 8406 8176 7107 7018

% 4.04 3.99 2.42 2.42 5.49 5.34 4.64 4.58
Time (s) 4.2 3.5 0.0 1.4 8.9 9.4 0.1 5.3

MP
vs

GNoME

Pairs 1083 1067 378 377 3855 3689 1743 1713
Entries 883 873 344 343 2470 2368 1312 1289

% 0.58 0.57 0.22 0.22 1.61 1.55 0.86 0.84
Time (s) 12.7 1.6 0.0 0.6 13.5 2.6 0.0 1.3

GNoME
vs

ICSD

Pairs 504 481 184 184 1892 1725 844 820
Entries 292 280 122 122 589 565 403 393

% 0.08 0.07 0.03 0.03 0.15 0.15 0.10 0.10
Time (s) 6.1 0.7 0.0 0.3 10.9 1.5 0.0 0.7

GNoME
vs
MP

Pairs 1083 1067 378 377 3855 3689 1743 1713
Entries 456 453 269 268 629 601 516 507

% 0.12 0.12 0.07 0.07 0.16 0.16 0.13 0.13
Time (s) 7.1 1.4 0.0 0.6 12.6 2.5 0.0 1.0

GNoME
vs

GNoME

Pairs 2859 2804 2741 2719 3461 3144 2955 2901
Entries 5038 4941 4845 4808 5830 5366 5159 5070

% 1.31 1.28 1.26 1.25 1.51 1.39 1.34 1.32
Time (s) 14.6 4.7 0.1 3.6 28.5 4.1 0.0 3.8
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Table 17 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the
threshold 10−3Å and k = 100 atomic neighbours with sequentially stronger invariants.

L∞ RMS

ADA PDA ADA(2) PDA(2) ADA PDA ADA(2) PDA(2)

ICSD
vs

ICSD

Pairs 82033 78770 33672 33314 258044 227421 119734 115102
Entries 20066 18893 16352 16052 27894 24479 22104 21073

% 17.08 16.08 13.92 13.66 23.74 20.84 18.81 17.94
Time (s) 4.7 27.0 0.5 14.2 9.8 75.9 1.0 36.7

ICSD
vs
MP

Pairs 75607 73226 25476 25416 275005 251022 121371 117451
Entries 9455 9320 6759 6722 11921 11406 10130 9975

% 8.05 7.93 5.75 5.72 10.15 9.71 8.62 8.49
Time (s) 4.0 23.6 0.4 9.6 9.0 88.7 3.3 38.4

ICSD
vs

GNoME

Pairs 6255 5751 1881 1853 27803 23438 10315 9543
Entries 3036 2755 1279 1263 5814 5359 3952 3637

% 2.58 2.35 1.09 1.08 4.95 4.56 3.36 3.10
Time (s) 12.5 3.4 0.0 1.3 15.7 10.5 0.8 5.1

MP
vs

ICSD

Pairs 75607 73226 25476 25416 275005 251022 121371 117451
Entries 9014 8884 7240 7228 11124 10415 9414 9275

% 5.88 5.80 4.72 4.72 7.26 6.80 6.14 6.05
Time (s) 4.4 25.0 0.4 10.2 10.3 75.1 2.0 36.1

MP
vs
MP

Pairs 79298 77364 26760 26703 284625 267243 127150 124642
Entries 10482 9973 8369 8301 14386 12798 10962 10511

% 6.84 6.51 5.46 5.42 9.39 8.35 7.15 6.86
Time (s) 6.0 25.1 0.4 9.5 13.2 82.5 1.3 37.6

MP
vs

GNoME

Pairs 12057 11622 3890 3864 44774 41267 19263 18717
Entries 5011 4823 2475 2460 7959 7345 6016 5821

% 3.27 3.15 1.62 1.61 5.19 4.79 3.93 3.80
Time (s) 13.8 5.7 0.1 2.5 21.6 16.0 0.3 8.2

GNoME
vs

ICSD

Pairs 6255 5751 1881 1853 27803 23438 10315 9543
Entries 802 760 603 589 1224 1059 838 793

% 0.21 0.20 0.16 0.15 0.32 0.28 0.22 0.21
Time (s) 6.1 3.9 0.0 1.5 16.5 10.6 0.1 4.1

GNoME
vs
MP

Pairs 12057 11622 3890 3864 44774 41267 19263 18717
Entries 930 848 638 625 1655 1317 981 906

% 0.24 0.22 0.17 0.16 0.43 0.34 0.25 0.24
Time (s) 7.3 5.8 0.1 2.4 18.9 15.3 0.2 6.5

GNoME
vs

GNoME

Pairs 9932 4542 3595 3284 74039 14086 9894 5781
Entries 13720 6889 6016 5581 49640 14993 12992 8049

% 3.56 1.79 1.56 1.45 12.90 3.89 3.38 2.09
Time (s) 19.9 11.1 0.0 4.5 44.7 51.0 0.1 8.7
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Table 18 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the
threshold 10−2Å and k = 100 atomic neighbors with sequentially stronger invariants.

L∞ RMS

ADA PDA ADA(2) PDA(2) ADA PDA ADA(2) PDA(2)

ICSD
vs

ICSD

Pairs 687635 631318 268187 259169 2342691 1976021 1047622 966117
Entries 46723 37356 33746 30831 68312 53203 50481 43508

% 39.77 31.80 28.72 26.24 58.15 45.29 42.97 37.03
Time (s) 9.1 193.4 3.5 81.6 54.5 581.1 6.7 251.7

ICSD
vs
MP

Pairs 851607 792015 273619 269722 3467416 2888095 1359712 1274212
Entries 19875 15834 12968 12398 47467 28057 23532 18785

% 16.92 13.48 11.04 10.55 40.40 23.88 20.03 15.99
Time (s) 10.0 209.3 4.8 60.6 60.6 819.0 10.7 316.2

ICSD
vs

GNoME

Pairs 164605 125416 35516 30837 1307587 779813 299214 223812
Entries 10637 9094 6460 6079 25425 16358 12792 10833

% 9.05 7.74 5.50 5.17 21.64 13.92 10.89 9.22
Time (s) 15.3 49.8 1.4 12.8 49.6 323.2 2.6 71.3

MP
vs

ICSD

Pairs 851607 792015 273619 269722 3467416 2888095 1359712 1274212
Entries 17575 14364 11759 11156 38866 23146 19735 16263

% 11.47 9.37 7.67 7.28 25.36 15.10 12.88 10.61
Time (s) 10.0 227.8 6.1 76.4 76.0 794.3 10.3 310.4

MP
vs
MP

Pairs 903434 828727 285041 278739 3906101 3071761 1404598 1324840
Entries 28806 19177 16067 14430 66908 34277 30425 23452

% 18.80 12.51 10.49 9.42 43.66 22.37 19.86 15.30
Time (s) 13.4 259.7 5.1 84.1 110.1 1417.2 11.5 335.9

MP
vs

GNoME

Pairs 202503 156999 51103 47040 1646545 928066 364659 291505
Entries 13362 10681 8411 7894 29364 18680 15365 12422

% 8.72 6.97 5.49 5.15 19.16 12.19 10.03 8.11
Time (s) 16.7 62.7 1.0 14.4 61.9 441.8 3.4 87.8

GNoME
vs

ICSD

Pairs 164605 125416 35516 30837 1307587 779813 299214 223812
Entries 4702 2515 1624 1374 60377 11310 6923 3631

% 1.22 0.65 0.42 0.36 15.68 2.94 1.80 0.94
Time (s) 8.6 47.6 0.8 13.1 103.2 326.8 2.7 70.2

GNoME
vs
MP

Pairs 202503 156999 51103 47040 1646545 928066 364659 291505
Entries 11124 3401 2282 1733 97553 19661 14347 5792

% 2.89 0.88 0.59 0.45 25.34 5.11 3.73 1.50
Time (s) 9.8 61.5 0.8 14.7 116.5 439.3 3.6 91.3

GNoME
vs

GNoME

Pairs 1815980 174478 123171 39487 30732727 2059788 1726547 421833
Entries 197340 82859 73733 35315 326550 216030 208265 127820

% 51.27 21.53 19.15 9.17 84.83 56.12 54.10 33.21
Time (s) 33.5 880.8 0.9 67.8 549.5 21659.9 12.7 1061.5
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