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Abstract Periodic point sets model all solid crystalline materials (crystals) whose
atoms can be considered zero-sized points with or without atomic types. This pa-
per addresses the fundamental problem of checking whether claimed crystals are
novel, not noisy perturbations of known materials obtained by unrealistic atomic
replacements. Such near-duplicates have skewed ground-truth because past com-
parisons relied on unstable cells and symmetries. The proposed Lipschitz con-
tinuity under noise is a new essential requirement for machine learning on any
data objects that have ambiguous representations and live in continuous spaces.
For periodic point sets under isometry (any distance-preserving transformation),
we designed invariants that distinguish all known counter-examples to the com-
pleteness of past descriptors and detect thousands of (near-)duplicates in large
high-profile databases of crystals within two days on a modest desktop computer.
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1 The key questions of mathematical data science for real applications

Many real data objects have infinitely many different representations. For exam-
ple, any rigid object such as a solid crystalline material can be given by atomic
coordinates that strongly depend on a chosen basis in Euclidean space R3. Hence
the first question that mathematical data science should ask about any objects
is Same or different? [54]. To make this question meaningful, we should rigorously
define what objects can be called the same (or equivalent) as formalized below.
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An equivalence is a binary relation (denoted by S ~ Q) satisfying three ax-
ioms: (1) reflexivity: any object S ~ S; (2) symmetry: if S ~ @ then Q ~ S;
(3) transitivity: if S ~ @Q and Q ~ T then S ~ T. Any classification needs an
equivalence satisfying these axioms to split all objects into disjoint classes: the
equivalence class [S] of an object S consists of all Q equivalent to S. If two classes
[S] and [T] share a common object @, then [S] = [T] by the transitivity axiom.

For any collection of objects, one can consider many different equivalences.
For instance, any finite or periodic configurations of atoms (molecules or crystals)
can be called equivalent if they have the same chemical composition. However, we
know many polymorphic materials (such as diamond and graphite) that have the
same composition but differ by other properties. In this case, we need a stronger
equivalence that would split all atomic configurations into as many different classes
as practically necessary to uniquely identify all physical and chemical properties.

The following equivalence is crucial for many real objects, including molecules
and materials whose structures are determined in a rigid form [5]: a rigid motion
is a composition of translation and rotations in R"™, which preserves all object
properties under the same ambient conditions such as temperature and pressure.
Indeed, there is no sense in distinguishing atomic configurations that can be exactly
matched by rigid motion, but it is important to see differences in rigid shapes
(equivalence classes under rigid motion) that can affect their properties.

If we consider compositions of a rigid motion with mirror reflections, we get
a slightly weaker equivalence: an isometry (denoted by S ~ Q) is any distance-
preserving transformation. Since mirror images can be distinguished by a sign of
orientation, we focus on isometries, which form the full Euclidean group E(n).

After an equivalence (isometry in our case) is fixed, objects can be distinguished
by an isometry invariant I that is a function mapping a given object S to a
numerical value (vector or a matrix) I(S) preserved under any isometry, i.e. if
S ~ @, then I(S) = I(Q). An example invariant of a finite set S is its size
(the number of points). Any non-constant invariant I can distinguish some (not
necessarily) all non-isometric sets, i.e. if 1(S) # I(Q) then S % @ by definition.

The invariance is stronger than the equivariance requiring that any isometry
f maps I(S) to T¢(I(S)), where a transformation Tt depends on f. For example,
any linear combination e(S) of coordinates of a finite set S C R™ is equivariant,
not invariant, and hence allows a false negative that is a pair of objects S ~ @
with e(S) # e(Q). The invariance is much stronger by requiring that T is the
identity. Then I(S) # I(Q) always guarantees that S % @ are not isometric.

A full answer to the question ‘Same or different?’ requires a complete invariant
I satisfying the much harder inverse implication: if I(S) = I(Q) then S ~ Q. In
other words, I has no false positives that are pairs S % @ with I(S) = I(Q). All
triangles S (sets of three points) have a complete invariant I(S) of three inter-
point distances due to the side-side-side (SSS) theorem. Any complete invariant is
similar to a DNA-style code that uniquely identifies any object under isometry.

A simple input of real objects is a discrete set of points, which can represent
corners, edge pixels, or atomic centers in a molecule or a material. In the finite
case, if given points pi1,...,pm € R™ are ordered, they are uniquely determined
under isometry [551[35] by the matrix of pairwise Euclidean distances |p; — p;| or
the Gram matrix of scalar products p; - pj, see [62, chapter 2.9] and [61].
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However, most points in real objects are unordered, e.g. many materials con-
sist of indistinguishable atoms. A brute-force extension of distance matrices to m
unordered points is impractical due to the exponential cost of m! permutations.
In this unordered case, [9] proved that the vector of sorted pairwise distances is
generically complete meaning that this invariant distinguishes all non-isometric
finite sets in R™ outside some measure 0 subspace of singular sets of points.

After the case of 3 points was settled by the SSS theorem 2000+ years ago, even
m = 4 unordered points in R? did not have a better than a brute-force complete
isometry invariant based on 4! = 24 permutations, partially due to infinitely many
pairs of non-isometric 4-point clouds with the same 6 pairwise distances [12]. The
finite case was solved in 2023 [67] for any number m of unordered points under
rigid motion in R™, see [65, Theorem 5.3] for a simpler complete invariant for 4
points under isometry in R™. We now focus on the much harder periodic case.

Definition 1.1 (lattice, motif, l-periodic set) Vectors vi,...,vn € R™ form

n
a basis if any vector in R™ can be written asv = Y t;v; for unique t1,...,tn € R.
i=1

!
For 1 <1 <, the first | vectors define the lattice A = {> civ; | c1,...,¢c € Z}
i=1

n
and the unit cell U = {3 xv; | 21,...,2 € [0,1),2141,...,2n € R} C R™. If
i=1
Il =mn, then U is an n-dimensional parallelepiped. If | < n, then U is an infinite slab
over an l-dimensional parallelepiped on v1,...,v;. For any finite motif of points

McCU,thesum S=M+A={p+v|p€ M,veE A} is an l-periodic point set.

o 1. gl S (2. @ - another

tomd ato 3 atoms V; % atoms atoms tiny tiny 4

s\ g ) B * erturbation inima erturbation larggr

4atoms. V2lanother 3 atoms P minimal

e e e b 1 . ee A0,
cellv Aatams now,s . cell‘ l

Lo o el nontminimal
o . . . . . . . H
hexagonal lattice minima —

Fig. 1 Left: any periodic point set can be given by many pairs (cell, motif), see Definition|1.1
Any periodic set has vastly different finite subsets within boxes or balls of the same cut-off size.
Right: almost any perturbation can arbitrarily scale up a unit cell and break the symmetry.

A classification of periodic point sets under isometry cannot be easily reduced
to the finite case. Indeed, the hexagonal lattice of red points in Fig. [1| (left) has
many non-isometric finite subsets of points within differently positioned boxes or
balls of the same cut-off radii. A motif of points within a unit cell is also ambiguous
because any lattice can be generated by infinitely many different bases, which
span primitive (minimal by volume) unit cells of various shapes. Crystallographers
developed a unique Niggli cell [45] but any such cell discontinuously scales by
an arbitrary factor [66, Theorem 15] under almost all perturbations because of
experimental noise [39] and atomic vibrations, see Fig. [1] (right).

Even if a complete invariant distinguishes all different objects, the space of
equivalence classes is often continuous in the sense that a small perturbation pro-
duces a near-duplicate of a slightly different class. One past approach was to ignore
all perturbations up to a small threshold £ > 0. Then the transitivity axiom can
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make all sets of the same size equivalent through a long enough chain of pertur-
bations S1 ~ --- ~ Si, each time shifting points up to a fixed Euclidean distance
€ > 0. Similarly, adding a single outlier should make finite sets non-equivalent,
otherwise all sets of different sizes become equivalent by the transitivity axiom.

This sorites paradox [30] has been discussed from ancient times: while removing
grains from a heap of sand one by one, when will a heap of sand suddenly stop
being a heap? The discontinuity problem remained unresolved for materials [70]
because isometry classes of periodic crystals still have no well-defined continuous
metric. The challenges of continuous measurements are important for real objects
under many equivalences and motivate the second question ‘If different, by how
much?’ in Geometric Data Science, which we formalize below for periodic sets.

Problem 1.2 For all periodic sets S C R™ with up to m of points in a unit cell,
find an invariant I with values in a metric space satisfying the conditions below.

(a) Completeness (injectivity): any periodic point sets S,Q C R™ are isometric
if and only 1(S) = I(Q), i.e. I has no false negatives and no false positives.

(b) Invertibility (reconstruction): any periodic point set S C R™ can be recon-
structed from its invariant 1(S), uniquely under isometry of R™.

(c) Lipschitz continuity: there is a distance metric d on invariant values satisfy-
ing all metric azioms (1) d(a,b) =0 if and only if a = b, (2) d(a,b) = d(b,a), (3)
triangle inequality d(a,b) + d(b,c) > d(a,c) for all a,b,c; and a constant A such
that, for any € > 0, if a periodic point set QQ is obtained by perturbing every point
of a periodic point set S up to Euclidean distance €, then d(1(S),1(Q)) < Ae.

(d) Computability: for a fized dimension n, the invariant I(S), the metric d and
the reconstruction of S C R™ can be obtained in polynomial time of the motif size.

The reconstruction in condition b) is stronger than the completeness in
a) because a complete invariant can be too complicated with no explicit in-
version to an original object. For example, a DNA code is practically used for
identifying humans, but cannot (yet) grow a genetic replica of a living person.

Conditions a,b) become practically meaningful only with a Lipschitz con-
tinuous metric in condition ¢) because any noise makes all real objects at least
slightly different as in Fig. ight). This discontinuity allowed anyone to claim
known materials as new [I3] by perturbing atomic positions, scaling up a minimal
cell, and changing atomic types to make comparisons by symmetries, unit cells,
and chemical compositions unreliable. As a result, many simulated crystals can be
artificially generated, e.g. the report of “2.2 million new crystals — equivalent to
nearly 800 years’ worth of knowledge” from [26] was rebutted by experts [141[64].

The metric axioms are essential for recognizing isometric sets S ~ @ by check-
ing if a complete invariant I satisfies d(1(S),I(Q)) = 0. If the triangle inequality
in c) fails with any positive error, outputs of k-means and DBSCAN cluster-
ing may be pre-determined for a non-metric and hence are not trustworthy [52].
Polynomial-time condition d) makes Problem notoriously hard, else one
can design a complete infinite-size invariant by taking all isometric images of S.

An invariant I satisfying all the conditions above is similar to geographic coor-
dinates that continuously parametrize the surface of Earth. Hence, Problem [I.2]is
interpreted as geographic-style mapping of the Crystal Isometry Space CIS(R™; m)
defined as the moduli space of all periodic sets with up to m points in a unit cell
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under isometry in R™. An invariant I can be considered a function on the union

U CIS(R™;m) with values in a metric space, where all computations should be
m>1
faster than in CIS(R"™;m), i.e. in polynomial time in m for a fixed dimension n.

Contributions. We extend the Pointwise Distance Distribution (PDD) [63] to
stronger (also generically complete) invariants PDD™ for higher orders h > 1 by
keeping the Lipschitz continuity under bounded noise and polynomial-time com-
putability for fixed n, h. The invariants pDD{?} distinguish all known examples
S o @ with PDD(S) = PDD(Q) in R® and experimentally confirm thousands of
near-duplicates in the world’s largest databases of periodic materials in section [0}

2 A review of open challenges in representations of periodic crystals

Problemmakes sense for many real objects (finite point sets, embedded graphs,
surfaces or complexes in R™) under other practical equivalences (affine and pro-
jective transformations). The graph isomorphism problem [27] considers only con-
ditions a,d) without a continuous metric, which is needed for real lengths of
edges. Since pairwise distances [9] distinguish all generic sets of m unordered points
under isometry in R™ and the more recent complete invariants [67] continuously
distinguish all finite sets under rigid motion in R™, we focus on periodic sets.

For n = 1, Theorem 4 in [28] justified complete invariants for periodic se-
quences given by rational angles of the unit circle (in the complex plane C) by
using 6-factor products of complex numbers. Since the circle (a period) was fixed,
these invariants are discontinuous under perturbations. Indeed, the sequence Z of
integers is infinitely close to S = {¢,1,...,m}+ (m+1)Z C R for any small ¢ > 0,
though their minimum periods 1 and m + 1 are arbitrarily different. The much
simpler complete invariant of a periodic sequence S = {p1,...,pm} + LZ C R
with a period L, where 0 < p; < -+ < pm < L, is the list of inter-point distances
pi+1 — p; (under cyclic permutations) for ¢ = 1,...,m and pm4+1 = p1 + L.

A continuous metric d(S, Q) on these cyclic classes of distance lists was intro-
duced in [38] but such a metric requires an expansion to the least common multiple
of the sizes |S|, |Q| of motifs and doesn’t come with a polynomial-time invariant.
The resulting brute force invariant for all periodic sequences S with motifs up
to m points needs an expansion to at least 2™ points [24, Theorem 5(1)], which
violates condition d). Problem remained open even in dimension n = 1.

A finite approach to measuring the similarity between periodic point sets is
to compare their finite subsets within a box or a ball of a large but fixed cut-
off radius. However, any periodic point set has many non-isometric finite subsets
within differently positioned boxes or balls of the same size as in Fig. [1] (left).

Local clusters centered at all points in a motif M can be converted by Gaussian
blurring into smooth functions [8], which can be decomposed in the infinite basis of
spherical harmonics [56] and hence considered complete in the limit. [I8] discusses
challenges of choosing several parameters (blurring, approximation, interaction
order), including a cut-off radius that can discontinuously change these clusters
due to new neighbors outside a smaller cut-off. Even if this cut-off is smoothed
out, a manually chosen value may not suffice or slow down computations [47L[51].
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Atomic vibrations are natural to measure by deviations of atoms from their
initial positions, but a sum of small deviations over infinitely many points can be
infinite and also can give different values for different finite subsets. However, a
maximum deviation of atoms is well-defined as the bottleneck distance between
any sets via bijections between atoms, which can be displaced but cannot vanish.

Definition 2.1 (bottleneck distance dg) The bottleneck distance dg (S, Q) =

inf sup|p — g(p)| for any sets S,Q C R"™ of the same cardinality is minimized
g:S—Q peS

for all bijections g : S — Q and mazimized for all points p € S.

Here |p— g| denotes Euclidean distance between points p, g € R™. Though Defi-
nition [2.1] is impractical because of infinitely many bijections, dp can be efficiently
computed [2]] for finite sets if |p — g| is replaced with Lo (p,q) = max |pi — qil-

1= P 1

If periodic point sets S, Q have different densities (motif size |S| divided by
the cell volume), then dg(S,Q) is infinite [63] Example 2.1]. Also, dg(S,Q) is
discontinuous under perturbations of 2D lattices [37]whose primitive cells have the
same minimum volume [63, Example 2.2]. Hence condition [1.2|c) of a Lipschitz
continuous metric made Problem exceptionally hard in the periodic case.

Definition 2.2 (metrics vs pseudo-metrics) A distance d between objects un-
der an equivalence relation ~ is a metric if the following axioms hold:
(1) coincidence: d(S,Q) =0 if and only if S ~ Q;
(2) symmetry: d(S, Q) = d(Q,S) for any objects S, Q;
(3) triangle inequality: d(S, Q) + d(Q,T) > d(S,T) for any S,Q,T.

If the coincidence aziom (1) is replaced with (1') d(S,S) = 0 for any S, then
non-equivalent S ¢ Q can have d(S,Q) = 0, and d is called a pseudo-metric.

Definition guarantees positivity: 2d(S, Q) = d(S, Q) + d(Q, S) > d(S,S) =
0. Many descriptors or invariants are compared by distances (such as Euclidean)
that satisfy all metric axioms on descriptor values but define only pseudo-metrics
on isometry classes due to the incompleteness of these invariants. If d(S, Q) > 0,
then S £ @ by (1'), so a fast pseudo-metric can distinguish between some but not
all objects. Pseudo-metrics are weaker than metrics, e.g. the difference ||.S| — |Q||
of set sizes is a pseudo-metric not distinguishing any sets S % @Q of the same size.

Hence metrics satisfying all axioms (similar to complete invariants) are much
more valuable than pseudo-metrics (similar to non-invariants or incomplete in-
variants). Any algorithm using an incomplete invariant I cannot predict different
properties of a false positive pair of non-isometric sets S % @ with I(S) = I(Q).

That is why the discriminative problem should be solved first (at least in
general position) by designing complete and Lipschitz continuous invariants before
generative attempts can succeed. Any non-complete invariant I is not invertible
in the sense that different sets S % @ (false positives) can have I(S) = I(Q).

Now we review recent continuous invariants in the periodic case. Continuous
metrics on lattices under rigid motion are known for dimension n = 2 [11[10], not
yet for n = 3 [36]. A generically complete and Lipschitz continuous invariant of pe-
riodic point sets S C R? [20] is the sequence of density functions vy (S;t) measuring

the fractional volume of k-fold intersections U  (B(p;t)N---NB(pr; t)NU)
P1,.-PRES
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for any k > 1, where U is a unit cell of S, and B(p;t) is the closed ball with a
center p € S and a variable radius ¢ > 0. The infinite sequence {15}/ allows
only an approximate distance and turned out to be incomplete [3, Example 11],
but was analytically described for all periodic sequences of intervals in R [4]. The
periodic merge tree [19] is a continuous isometry invariant of periodic graphs with
a slow interleaving pseudo-metric and a faster distance on simpler periodic 0-th
barcodes. The invariant below solved a weaker version of Problem [[2] for finite and
periodic sets when completeness in ) is replaced with generic completeness.

Definition 2.3 (Pointwise Distance Distribution PDD) Let S C R"™ be any
l-periodic point set with a motif M of m points. For any integer k > 1 andp € M,
let di(p) < -+ < di(p) be the list of Euclidean distances from p to its k nearest
neighbors within the whole set S. These lists become rows of the m x k matriz
D(S,M; k). Any ¢ > 1 identical rows are collapsed into a single row with the weight
c/m, which is written in the extra first column. The resulting matriz PDD(S; k)
of unordered rows with weights is called the Pointwise Distance Distribution [63].

For finite sets, the PDD was studied under the name of a local distribution
of distances [42]. The PDD can be considered a multiset of rows and a discrete
probability distribution with normalized weights interpreted as probabilities.

If a unit cell of S is extended by a factor of ¢, then any point p in the origi-
nal motif has ¢ translationally equivalent copies in the extended motif M.. Then
D(S, Mc; k) has ¢ times more rows because each original row is expanded into c¢
identical rows but the invariant PDD(S; k) is the same weighted distribution of
rows, independent of an initial cell of S. The equality between weighted distribu-
tions is interpreted as a bijection between unordered sets respecting all weights.
This equality is best checked not by considering all bijections but by a metric
that vanishes only on equal distributions due to the first metric axiom. The PDD
is Lipschitz continuous, computable (for a fixed dimension) in a near-linear time
of k,m, and distinguishes all non-isometric sets in general position (away from a
measure 0 subspace), see [63, Theorems 3.2, 4.3, 4.4, 5.1] and proofs in [65].

Definition 2.4 (homometric sets) Finite orl-periodic sets S,Q C R™ are called
homometric [£8] if they have the same Pair Distribution Function (PDF), which
is a single distribution of all inter-point distances of S (without considering their
periodic copies), equivalent to a powder diffraction pattern without a cut-off radius.

The PDF is easily extractable from X-ray diffraction patterns and can be split
into several distributions by fixing an atomic type (chemical element), say by listing
average distances from all (say) carbon atoms to their neighbors in the full crystal.
The PDD does this splitting by geometry (all identical distances to neighbors) and
is stronger than the PDF even for 1-dimensional periodic sequences in Fig. 2]

Almost any perturbation, as in Fig. [1] (right), can split every inter-point dis-
tance (say) d into many di,...,d, which are all close to d but are not copies of
each other because the initial minimal cell was scaled by the factor c¢. One attempt
to resolve this discontinuity was to blur each distance by a Gaussian deviation and
a smoothed PDF as a normalized sum of Gaussians around all distance values.

Discretizing the smoothed PDF for comparisons reduces its strength and cre-
ates the counter-intuitive pipeline: a discrete set S — a smoothed PDF — a discrete
sample of PDF(S). The discontinuity can be resolved by continuous metrics [33]
60] on PDDs interpreted as a probability distribution of rows of k distances.
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Fig. 2 For any 0 < r < 1, the homometric sets S(r) = {0,r,2+r,4} + 8Z % Q(r) = {0,7,2 +
r,4} + 8Z have identical PDF's from Deﬁnitionbut different PDDs whose first columns we
write as unordered sets: PDD(S(r); 1) = {r,r,2—7,2—r} # PDD(Q(r); 1) = {r,7,2—r,2+7}.

y periodic point set S SAABBZCC
A(4.a) Al Td,[d,]ds[d,]ds
A'ld, d,|d,|dg|d,

y periodic point set Q QA A BB DD
Bt A4a) Al [d,Jd,[dslds]d,

D'(d4|ds d; dg

Fig. 3 The sets S,Q are l-periodic in the z-axis with period 4, e.g. A denotes both (0,a),
(4,a). Right: distances between closest points from classes modulo shifts by 4 in z. Then

PDD(S; k) = PDD(Q; k) by Example 2.5 but PDD{2}(S; 1) # PDD{2}(Q; 1) by Example [3.4]

Example 2.5 (sets with equal PDDs) The I-periodic sets S # Q in [50, Fig. 4]
were designed to fail all iterations of the Weisfeiler-Leman test [58]. Fig. E shows
their 2D wversions with period 4 in the x-axis and free parameters a,b,c > 0.

The distances in Fig. @ (right) are for the closest representatives of 6 points.
di =2va? +1, d2 = va?+ b2, ds = \/a? + (2 — b)?,
di=+/1+(a—¢c)?, ds =\/1+(a+¢c)?, ds=+/(1-b)2+c2,
dr = /B2 T2 ds = /I + 2+ 2, dy = 2/ T 1.
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Then PDD(S; k) = PDD(Q; k) because the equalities between distances (shown
in the same color) in Fig. |3 (right) hold after adding any periodic translation, so
if di = da then \/d? + (4n)2 = \/d3% + (4n)2 for any n € Z.

Simpler non-isometric finite sets in R® with equal PDDs were distinguished by
stronger invariants in [67], which extended PDD by recording distances to subsets
of more than one point. In the periodic case, pairs of points behave discontinuously
under cell extensions in Fig. Il Doubling a motif M of m points leads to (2m)?
pairs including new distant neighbors from adjacent cells. This obstacle motivated
a ‘pointwise’ approach to both finite and periodic sets in the next section.

Another ‘pointwise’ isoset [2] was proved to be complete for all periodic point
sets in any R™. A Lipschitz continuous metric on isosets was only approximated
in polynomial time [6l[41], but condition (1.2(d) requires an exact computation.

3 The new isometry invariants of finite and periodic sets of points

This section extends the PDD to higher order A > 1 in Definition motivated by
pairs of non-isometric sets S % @ with PDD(S; k) = PDD(Q; k) in Example
Definition makes sense for a finite set S = M in any metric space.

Definition 3.1 (higher order PDD{h}(S; k)) Let S C R™ be any l-periodic point
set with a motif M of m points. Fiz a point p € M and integers h,k > 1.

Consider any h distinct points p1,...,pn € S\ {p} and the h-order average

2 3> |pi—pj| of pairwise distances between the points p = po,p1,- - -, Ph-
h(h+1) 0<iSi<n

Let a(p; h,1) < --- < a(p; h, k) be the list of k smallest averages for the fixed point

p and variable points pi,...,pn € S\ {p}. These lists become rows of the m X k

matriz D(S, M; h, k), where we can collapse any ¢ > 1 equal rows to one row with

the weight ¢/m written in the extra first column. The final matriz of unordered

rows with weights is the h-order Pointwise Distance Distribution PDD{"}(S; k).

Lemmawill prove that PDD{"} (S; k) is independent of a motif M to justify
the notation without M. In Definition [3.1} we can keep m rows of average sums
with equal weights 1/m. The matrices PDD{1, ... PDD{"} can be concatenated
into a single matrix PDD)(S; k) of m unordered rows and kh ordered columns.

Example 3.2 (PDD® for the sequences in Fig. El) The sum Y,  |pi—pj|
0<i<j<2
is the perimeter of the triangle on the points po € M and p1,p2 € S. %ﬁe row of
a point p € M in PDD(Q)(S; k) consists of the k shortest distances followed by k
smallest perimeters (divided by 3) of triangles at p. In Fig. @, the point po = 0 in
the motif of S(r) = {0,7,2+r,4} +8Z has the nearest neighbors p1 =, p2 = 2+r
at the distances r,2+r, and two smallest averaged perimeters 2(2+1)/3,8/3. The
point po = 0 in Q(r) = {0,r,2+4r,4}+8Z has the nearest neighbors at the distances
2+17,4—r, and two smallest averaged perimeters %, %. Then PDD®)(S(r); 2) =

r 2+7‘@ g 24 r4—p|88
, 9 |2@Hn) 2(d=r) ) 2_1“24_7“73
2_r o |2 26 | 7 PDD (@r):2) = |, 2—7“%% » where
2—7‘4—7"72(43_T) % r 2 |33

all rows have equal weights %, so we have skipped these weights for brevity.



10 Daniel Widdowson, Vitaliy Kurlin

2
The factor m was chosen to guarantee the Lipschitz continuity with

A= 2in ) Examples show that PDD{?} distinguishes all known
homometric sets for n = 2,3, which have identical PDDs. Any increase in k adds
extra columns with larger values to PDD{h}(S ; k) without changing any previous
values. So the number k is considered a degree of approximation, not a parameter
like a cut-off radius whose changes substantially affect local atomic clouds.

Lemma proves the invariance of PDD™ under isometry in R™ and under
changes of a cell. If k is greater than the number (7'")") of h-tuples with a fixed
p € S, we set all non-existing sums in Definition to the largest existing value.

Lemma 3.3 (invariance of PDD{h}(S; k)) For any integers hyk > 1 <1 <mn
and any finite unordered set S in a metric space or any l-periodic point set S C R™,
the higher-order PDD{h}(S; k) from Deﬁmtion is an isometry invariant of S.

Proof First, for any I-periodic point set S C R"™, we show that scaling up a unit
cell U to a non-primitive cell keeps PDD invariant. It suffices to scale up U by a
factor ¢, say along the first basis vector v; of U, then the number m of motif points
of S is multiplied by c. Then the matrix D(S, SN(cU); h, k) consisting of k smallest
average sums of pairwise distances between h 4 1 points in Definition [3.1] has the
larger size cm X k in comparison with the original m x k matrix D(S,SNU;h, k)
but each row is repeated c times for the shifted points p+ivi, where p is any point
from the original motif M = SN U of the [-periodic set S, for i =0,...,c— 1.

Second, we show that the matrix D(S,SNU;h, k) and hence PDD{h}(S; k) is
independent of a primitive cell U. Let U, V' be primitive cells of any [-periodic set
S C R™ with a lattice A. Any point ¢ € SNV can be translated by a vector of
A to a point p € SN U and vice versa. These translations preserve distances and
establish a bijection between the motifs SN U «+ SNV, and a bijection between
all rows of the matrices D(S,SNU;h,k) < D(S,SNV;h, k).

Third, we prove that PDD{h}(S; k) is preserved under any isometry f: S — Q
of [-periodic point sets. Any primitive cell U of S is bijectively mapped by f to the
unit cell f(U) of @, which should be also primitive. Indeed, if @ is preserved by a
translation along a vector v that doesn’t have all integer coefficients in the basis
of f(U), then S = f~(Q) is preserved by the translation along f~'(v), which
doesn’t have all integer coefficients in the basis of U, so U was non-primitive.
Since U and f(U) have the same number of points from S and @ = f(S), the
isometry f gives a bijection between the motifs SNU + Q N f(U).

For any discrete sets S, @, the k smallest average sums of all distances be-
tween any point p € SNU and p1,...,pn € 5, equal the same sums for f(p) €
QN f(U) and f(p1),...,f(pn) € Q, respectively. These coincidences imply that
PDD(S;k1,...,kn) = PDD{h}(Q; k1,...,kr) up to a permutation of rows. a

Example 3.4 (PDD{Q} distinguishes S, Q in Example We start with sin-
gular cases when S, Q are identical. If c = 0, then C = D, C' = D’, 50 S,Q are
identical in Fig. @ If b € {0,1,2}, then the periodic shifts of BU B’ (hence S, Q)
become mirror images with respect to the vertical line x = 2. We now assume that
1 <b< 2. Thendz > ds, ds > max{da,ds}, and min{dr,ds,dy} > ds.

The set S in Fig.[3 has a motif of 6 points, which generate isometric triangles
AABC ~ NA'B'C’ with the perimeter da + da + de, see details in Example [2.5,
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The other potentially smaller perimeters of triangles on points of S are ds+ds+ds,
ds + da + d7. The smallest perimeter for S is the minimum of these sums. The
smallest perimeter for @ is min{dz + da + ds, d2 + ds + ds, ds + dsa + ds}.

If t = da + da + des equals one of the last sums, one of the following cases holds: if
do =ds thenb=1, ifds =ds then c=0, if ds =d7 then b=2 or 0, so S ~ Q.

If t = ds + ds + des is a minimal perimeter for S, then t cannot equal any of the
three sums for Q. Indeed, if t = d2 + ds + dg then d2 = d3. If t = d3 + da + ds then
d4 = ds. The minimality of the sum t for the set S means that d3 + ds < d2 + d4,
sot =ds + ds + ds cannot equal d2 + da + ds for Q.

If t = d3 + da + d7 is a minimal perimeter for S, then t cannot equal any of the
three sums for Q. Indeed, if t = d3 4+ da + de then d¢ = d7. The minimality of t for
S means that d3+d7 < da+ds < da+ds, sot =ds+ds+d7 < da+ds+ds for Q.
Similarly, if da+d7 < ds+de thent =d3+da+d7 < ds+ds+ds < d2 +ds + ds.

In all these cases, S,Q become isometric. Hence the smallest perimeters in
PDD{?} for k = 1 distinguish all pairs of the homometric sets S,Q. The same
conclusion holds for more general sets obtained from S, Q by periodic translations
in other directions (along the y-azis or even in any R™), see [50, Fig. 10], when
extra periods are large and don’t affect any triangles with the smallest perimeters.

The rows of PDD{h}(S; k) are unordered to guarantee the continuity under
perturbations, though we can lexicographically order the rows for convenience.
Recall that u = (u1,...,un) is lezicographically smaller than v = (v1,...,v,) in
R™ (written u < v) if u; = v; for i =1,...,k and ug+1 < vgy1 for some k < n.

We can convert any PDD{"} into a fixed-size matrix, which can be flattened
into a vector for easy comparisons, while keeping the continuity and almost all
invariant data. Any distribution of m unordered values can be reconstructed from
its m moments defined below. When all weights w; are rational as in our case, the
distribution can be expanded to equal-weighted values a1, ..., anm. The m moments
can recover all ay,...,am as roots of a polynomial of degree m whose coefficients
are expressed via the m moments [40]. For example, any reals a, b are the roots of
the quadratic polynomial z* — (a + b)z + ab, where ab = ((a+ b)? — (a® +b%)).

Let A be any unordered set of real numbers a1, . . ., am with weights wi, . . ., wm,
m
respectively, such that > w; = 1. For any integer ¢t > 1 , the t-th moment [34]
i=1
m m
section 2.7) is pe(A) = Fmt=t 3" wial, so p1(A) = > wsa; is the usual aver-
i=1 i=1

age. For t > 2, we normalize the sum (before taking the ¢-th root) by the factor
m/H=1 ¢o prove continuity of all moments with the Lipschitz constant A\ = 2.

Definition 3.5 (the t~-moments matrix x®[PDD{"}]) Fiz any integers h, k, t >
1 <1 < n, and a finite or l-periodic point set S C R™. For every column A of
the matriz PDD{h}(S; k) from Deﬁm’tion which consists of unordered numbers
ai,...,am with weights, write the new column (u1(A), ..., ut(A)). The resulting t-
moments matriz of sizes t X k is denoted by O [PDDI"}(S; k)]. Fort =h =1, the

1 x k matriz fNV[PDD(S; k)] was called the vector of Average Minimum Distances
[66] and was also denoted by AMD(S;k) = (AMDy,...,AMDy).
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The matrix Y [PDD{"}(S; k)] has ¢ ordered rows and k ordered columns but is
a bit weaker than the original distribution pDD{"} (S; k) with the same parameters
h, k, because each column is reconstructable from its moments for £ > m only up
to a permutation. However, to faster filter distant crystals, we can flatten any
matrix pY [PDD(S; k)] with indexed entries to a vector of tk coordinates.

For a finite set S C R, a simple complete invariant under translations is the
ordered sequence of inter-point distances. However, a naive extension to periodic
sets is discontinuous, e.g. Z is e-close to {0,1 + ¢} 4+ 2Z but their periods 1 and
2 are not close. Definition [3.0] introduces a distribution whose completeness and
Lipschitz continuity for n = 1 will be proved by Theorem and Lemma [4.6

Definition 3.6 (Pointwise Shift Distribution PSD) For any periodic point set
(sequence) S C R with a motif M of m points, write down distances from each
p € M to its k nearest neighbors q > p in increasing order in a row of an m X k-
matriz. Collapse any ¢ > 1 equal rows to one row with the weight ¢/m in an extra
first column. The resulting matrix PSD(S; k) is the Pointwise Shift Distribution
and makes sense for any finite set S = M C R of m > k + 1 unordered points.

PSD(S; k) differs from PDD(S; k) because we consider only neighbors ¢ to the
right of a point p in the line R, so PSD consists of shifts (distances to the right).

Theorem 3.7 (completeness for n =1) (a) A finite set M C R of m un-
ordered points is reconstructable from PDD(M;m — 1) uniquely under isometry.
(b) For all periodic sets S C R with m points in a motif, PSD(S;m) is a complete
invariant under rigid motion and can be computed in time O(m?).

Proof (a) For a finite set S C R of m unordered points, we prove that S can be
reconstructed from PSD(S; m— 1) uniquely under isometry. Indeed, the number m
can be assumed to be known as one plus the number of columns in PSD(S;m—1).
Find a row R whose last distance d is maximal in PSD(S; m — 1). This maximal
distance is achieved exactly for two most distant points of S, else PSD(S;m — 1)
is unrealizable by m distinct points. These two most distant points can be fixed at
the positions 0 and d up to isometry of R. All other m — 2 points of S are uniquely
determined by the first m — 2 distances in the row R, which should be distinct.

(b) The time to compute PSD(S; k) is linear in the size m of a motif and in the
number k of neighbors. Let S have a motif M of m points 0 = po < p1 < -+ <
Pm—1 < pm and period L = p,, — po. For any point p; € M, the distance to its
k-th neighbor is pitx—mn — pi + LN, where N = [k/m] is the integer part and
pj = Pj—m + L for m < j < 2m. So all k neighbors of p; are computed in linear
time in both k, m, hence the total time over m points of M is quadratic in m.

Now we prove that any periodic point set S C R can be reconstructed (uniquely
under translation) from any row a1 < -+ < @m—1 < am of PSD(S;m) by writing
the points of a motif as pr = ax4+1 — a1 for k =0,...,m — 1, where pp = 0, and
setting the period of S to d,,. The number m is given as the number of columns
of PSD(.S;m). The completeness can be stated as follows: any periodic sequences
S, C R whose motifs have at most m points are related by translation if and
only if PSD(S;m) = PSD(Q;m) as weighted distributions of unordered rows. 0O

The invariant PSD(S; k) can be enhanced to a complete invariant under isom-
etry (including reflections) in R as follows. Let S be the mirror image of S under
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reflection  — —z. In any row a1 < --- < ay of PSD(S; k) for k > m, we can use
the m-th distance a,, equal to the period L to write the corresponding row

L—am-1<---<L—a1<2L—am-1

in the matrix PSD(S; k). Then any periodic sequences S, Q are related by isometry
in R if and only if PSD(S;m) = PSD(Q;m) or PSD(S; m) = PSD(Q; m).

Theorem [3.7] with the Lipschitz continuity in Lemma [£.6] will show that the
PSD solves Problem for all periodic sets (under rigid motion) for n = 1.

The generic completeness of PDD(S; k) (with a motif size |S| and a lattice of
S) in [63, Theorem 4.4] and Examples motivate the following conjecture.

Conjecture 3.8 (completeness of PDD" under isometry in Rh) For h >

1, any periodic point set S C R" can be reconstructed (uniquely under isometry)
from the invariant PDD(h)(S; k) for a sufficiently large k in Definition .

4 Lipschitz continuous metrics on higher-order invariants

This section introduces metrics on PDD"} invariants and proves their Lipschitz
continuity. Any vectors u,v € R™ of distances or their average sums can be com-
m
pared by the Minkowski metric Lq(u,v) = (3. |ui — v;|9)*/? for q € [1,400) and
i=
Loo(u,v) = max |u; — vi| in the limit case ¢ = 400. The Root Mean Square
i=1,..., m
Lo (ua U)
m
root of the) number m of coordinates. These metrics Ly and RMS controllably
change under perturbations of distances and will play the role of a ‘ground’ metric
d to compare unordered distributions PDD "} by the EMD metric below.

metric RMS(u,v) = is the Euclidean metric normalized by the (square

Definition 4.1 (Earth Mover’s Distance EMD [53]) (a) Let X be a space
with a ground metric d. Any unordered set {(R;,w;)}i~, of objects R; € X

with weights w; > 0 such that ) w; = 1 is called a (normalized) weighted
i=1
distribution. For any such weighted distributions A = {(Ri(4A), wl(A))}m(A) and

B = {(R;(B),w; (B))};%:(f?), the Earth Mover’s Distance is defined as

m(A) m(B)
EMD(A, B) iid(Ri(A), R
( = min Z Z fijd(Ri(A), Rj(B))
m(A) m(B) m(A) m(B)
subject to > fij < w;(B), Z fis Swi(A), and > > fi; =1.
i=1 i=1 j=1

(b) For any real q € [1,4+00], any integers n,h,k > 1, and any periodic point sets
S,Q C R", the distance EMDéh}[k](S, Q) is the EMD from part (a) between the
distributions PDD"}(S: k) and PDDY}(Q; k) with the ground metric Ly. Define
the distance EMD((Ih) [k](S,Q) = _max {EMD{ }[ k](S,Q)}. The notation EMD

.....

without a subscript q is used for the (default) ground metric RMS instead of Lq.
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Our experiments use RMS or the Minkowski metric L, because these ground
metrics will give the Lipschitz constant 2 for the EMD on PDD" in Theorem
Definition b) introduced the distance EMDgh)[k](S, Q) as the maximum of
EMDs over orders 1,...,h to keep the Lipschitz constant small. This maximum
can be replaced with a sum or another metric transform, see [I7, section 4.1].

“ ) g
-bL‘,ib 2

-

A M A

0.00 0.05 0.10 0.15 0.20 0.25
parameter u

Fig. 4 Left: a comparison of Pauling’s crystals P(du) for v = 0.03 [49], by COMPACK [15],
which aligns subsets of 15 atoms. The atoms from different P(40.03) are shown in green and

gray. Right: EMDs, from Definition b) is between PDD{"} for k = 100 and Pauling’s
crystals P(+u), which depend on u € [0,0.25] and are identical at the boundary values.

Example 4.2 (PDD{2} distinguishes Pauling’s crystals) Fig. |4 (left) shows
a pair of overlaid Pauling’s crystals P(£0.03) with 24 atoms in a cubic cell [[9].
The importance of PDD?} in comparison with PDD is demonstrated by the in-
finite series of periodic sets P(+u) C R®, which have the same PDD(P(u);k) =
PDD(P(—u); k) for all parameters u € (0,0.25) and k > 1 but are distinguished

by PDD" (S;100) due to EMDE[100] > 0 for h = 2,3 in Fig. 4] (right).

For any discrete set S C R", the packing radius r(S) is the minimum half-
distance between any points of S. Recall the brief notation from Definition b):

EMD{™ [K](S, Q) = EMD, ( PDD{"} (S: ), PDD{"} (Q: k) ).

Theorem 4.3 (Lipschitz continuity of PDD{h}) Fiz integers h,k > 1 <1 <
n. Let Q be a finite or an l-periodic point set obtained from a finite or an l-periodic
point set S C R™, respectively, by perturbing every point of S up to a Euclidean
distance € € [0,7(S5)). Then EMD{h}[k'](S, Q) < 2eVk, where 'k = 1 for ¢ = +o0,
and EMD(PDD{h}(S’; k), PDD{hq} (@ k) ) < 2e, where the ground metric is RMS.

Fig. |5| shows how EMDg} [100] continuously changes under perturbations.

Lemma 4.4 (perturbation of an ordered vector) Let v1 < -+ < v be a
vector v of ordered real numbers. For some € > 0, let a map g perturb each a; to
i = g(vi) so that |v; — 03] < € fori =1,...,k. Let  be the vector obtained by
putting U1, ..., 0k in increasing order. Then Loo(v,7) < e.
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Fig. 5 The distance EMDg}[l()O] between the 1-periodic sets S,Q in Fig. which have

identical PDDs. The average and minimum of EMDg}[IOO} were computed for uniformly
sampled parameters a, b, ¢ from Example These sets S, Q are isometric for b Eﬁ, 1} but

EMDg?[lOO] > 0 for 0 < b < 1 experimentally confirms that S 2 Q, see Example

Proof 1t suffices to prove that the i-th number u; in the ordered vector v is e-
close to the i-th number v; in the original vector v, so v; — e < u; < v; 4+ € for
i=1,..., k. Assume by contradiction that u; < v; —e. Since every component of v
was perturbed by at most ¢, the ¢ numbers u1 < --- < u; < v; —e can be obtained
only as perturbations of components from v that are strictly less than v;. However,
the ordered vector A has at most 7 — 1 numbers that are less v;. This contradiction
proves that u; > v; — e. A similar argument proves that u; < v; + €. a

Lemma 4.5 (upper bound of EMD) Consider any weighted distributions A =
{(Ri(A),w;)}ix, and B = {(Ri(B),w;)}i%1 of matched objects with equal weights
and ground distances d(R;(A), Ri(B)) < e fori=1,...,m. Then EMD(A, B) < ¢

Proof Define the flows f;; from the m objects of A to the corresponding m objects
1

of B by setting fi; = — and f;; =0 fori#j,4,j =1,...,m. Then
m

m

EMD(A,B) < 3 fyd(Ri(S), Ry(Q) = . D d(Ri(S). Ri(@)) < - Y e =e

i,j=1 i=1
since EMD(A, B) is the minimum over all f;; € [0, 1], see Definition a). O

Proof of Theorem In the periodic case, if the perturbation satisfies
e < r(9), [20, Lemma 4.1] and [6, Lemma 4.8] proved that S, Q have a common
lattice with a unit cell U such that S=A+ (SNU) and Q = A+ (Q NU). Then
S, @ share a unit cell U and have the same number m = m(S) = m(Q) of points
in U. The arguments below also work for any finite sets S, Q) in a large enough U.

Expand PDD{"} of both S, Q to the matrices with m equally weighted rows.
Reorder all m rows of D(S,S NU;h,k) and D(Q,Q N U;h,k) according to the
bijection g : SNU — Q NU. Since any p € S is perturbed up to ¢, any distance
L4(p, q) between p, g € S and hence any average sum a from Deﬁnitionchanges
by at most 2¢ due to the triangle inequality for the Minkowski metric L.

Some of the average sums from the original matrix D(S, SNU; h, k) can increase
up to 2¢ and will be outside the k smallest average sums in the new matrix D(S, SN
U; h,k). In this case, for each row i = 1,...,m, let k; > k be the maximum
index such that the k;-th smallest average sum (of pairwise distances between
h + 1 points including p; € S) for S is at most 2e plus the largest average sum
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on h + 1 points from the original matrix D(S,S N U;h,k) in the i-th row. Set
k' = max k; > k. Then the i-th row of D(Q,Q NU;h, k") is obtained from the

1=1,....m
i-th row of D(S,S NU;h, k") of k¥’ numbers by changing every value by at most
2¢, putting them in increasing order, and taking the first £ < k’ smallest values.

For each ¢ =1,...,m, Lemma @ implies that the corresponding components
in the extended i-th rows of ¥’ numbers in D(S, SNU;h, k') and D(Q,QNU;h, k")
differ by at most 2e. The same conclusion holds for the shorter i-th rows R;(.S) and
R;(Q) of k values in the matrices D(S,SNU;h,k) and D(Q,Q NU;h, k), respec-
tively. Then Lq(R;(S), Ri(Q)) < ¢/k(2¢)4 = 2¢Vk. The Euclidean Lo normalized
with the factor ﬁ has the upper bound RMS(R;(5), R:(Q)) < 2. By Lemma
the distributions of rows R;(S) and R;(Q) have the same upper bound for their
EMD metrics: EMD, (PDD{"} (S; k), PDD"}(Q; k)) < 2¢¥/k and EMD < 2¢. O

Lemma 4.6 (Lipschitz continuity of PSD) For all finite or periodic sequences
S C R, for the ground metrics RMS and Lq, define the EMD and EMD, respec-
tively, on distributions PSD(S; k) for k > 1, see Definition . Let Q C R be a fi-
nite or periodic sequence obtained by perturbing every point of S up to € € [0,r(S)).
Then EMD, (PSD(S; k), PSD(Q; k) < 2e¥/k, EMD(PSD(S; k), PSD(Q; k) < 2e.

Proof Since ¢ is less than the packing radius r(S), the given e-perturbation defines
a bijection g : S — @, which changes inter-point distance by at most 2¢. The bijec-
tion g induces a 1-1 correspondence between rows R;(S) and R;(Q) of PSD(S; k)
and PSD(Q; k), respectively with ground distances Ly (R;:(S), Ri(Q)) < 2¢ vk and
RMS(R;(S), Ri(Q)) < 2¢, which guarantee the required bounds by Lemma [4.5]

Recall the brief notation of a maximum metric from Definition b):

EMD{"[K](S,Q) = max {EMD,(PDD{ (S;k), PDD{ (Qs5k)) }.

1=1,...,

Lemma 4.7 (lower bounds of EMD) Fiz any real ¢ € [1,+00] and integers
h,k>1<1<n. Let S,Q CR" be any finite or l-periodic point sets. Then

(a) EMD{" [k](S, Q) > EMD, (PDD(S; k), PDDW(Q;k)) for 1 < g < h;
(b) EMD{" k] (S, Q) > EMD, (PDD"}(S; &), PDDU}H(Q; k")) for 1 < K < k;
(¢) EMD{" [K](S, Q) > Lo (n™M[PDDM (85 k)], u [PDD (@5 R)] ).

The same inequalities hold for the ground metric RMS instead of L.

Proof (a) If the order h drops to g, the maximum of a fewer number of distances
cannot become larger by Definition [4.1(b): EMDY" [k](S, Q) > EMD{?[£](S, Q).

(b) Let f;; € [0,1] be the parameters that minimize the EMD in Definition 4.1(b):

m(S) m(Q)
EMD{MK(S,Q) = > 3" fijLe(Ri(S), R;(Q)),
i=1 j=1

where R;(S), R;(Q) are rows in the distributions PDD"}(S; k), PDD{"}(Q; k), re-
spectively. If k drops to k', the smaller distributions PDD{"} (S; k"), PDD*}(Q; k')
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are obtained from PDD{"} (S; k), PDD"}(Q; k) by removing the last k—k’ columns.
The shortened rows R;(S), R;(Q) of k" < k components in the smaller distributions

PDD (S5 k'), PDD}(Q; k) satisty Lq(R:(S), R;(Q)) > Lq(R}(S), Rj(Q)). Then

m(S) m(Q

EMD{" [k](S, Q) > z z FiiLa(Ri(S), Rj(S)) >
m(8) m(Q) ) ) B}y
i35 fiLa(RIS), R5(Q)) = BMDI (S, Q)

(c) Considering PDD{"}(S; k) as a weighted distribution of rows, u(*) [PDD{"} (S; k)]
is its centroid from [I6, section 3]. The argument below follows the proof for
q = 400 of [16, Theorem 1]. Below we use the inequality ||u||q +||v]|ql| > ||u+v]lq
for the g-norm |[[v|[q = ( 2 |vi|q)1/q of the Minkowski metric Lq. Let f;; € [0,1]

1=

be the parameters that minimize the EMD in Definition b):

m(S) m(Q)
EMDq(PDD{h}(S;k%PDD{h}(Q;k)) Z Z fijLq(Ri(S), R;(Q)) =
m(s) (& m Q):
; ; ||f”(R () - Rj(Q))HqZH ; ; i (Ri(S) — R (Q)llq =
m(S) m(Q) m
1S Y raris) =Y (Y @)l =

j=1 j=1
m(S)

m(Q)
I Z w;(S)Ri(9) — Z w; (Q)R;(Q)lq =
L ( <1>[PDD{h}(5 k)] pOPDDM(Q; k).

L
All proofs are the same for the ground metric RMS = =2 instead of Ly. a

Vk

Corollaryﬂextends the case h = 1 from [66, Theorem 9], where AMD(S; k) =
p Y [PDD(S; k)] is the vector of Average Minimum Distances, to any order h > 1.

Corollary 4.8 (Lipschitz continuity of ,u(l)[PDD{h}]) Fiz integers h,k > 1 <
I <n. Let Q be a finite or an l-periodic set obtained from a finite or an l-periodic
point set S C R™, respectively, by perturbing every point of S up to a FEuclidean
distance e € [0,7(S)). Then Lq( p™™ [PDDY(S; k)], u¥ [PDD (Q; k)]) < 2eVk
and RMS (M [PDD(S; k)], ™ [PDDYH(Q; k)]) < 2.

Proof The required bounds follow from Theorem and Lemma c). O

We conjecture that higher moments u(t) [PDD{h}] for ¢t > 1 are continuous
under perturbations of points, possibly in a weaker (than Lipschitz) sense.

5 The asymptotic curves and computational complexity of PDD{"}

To analyze the asymptotic of PDD{h}(S; k) as k — 400, we choose a real b > h

such that (b> — bb—1)...(b—h+1)

h ol belongs to the interval (k — 1, k]. Then
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set b(h,k) =b+1eg b(1,k) =k+1, b(2,k) = 1.5+ v2k. Let V,, be the unit ball

volume in R", e.g. Vo = 7. Any periodic set S C R™ with a motif of m points and

./ vol[U]
mVy

unit cell of volume vol[U] has the point packing coefficient PPC(S) =

Theorem 5.1 (asymptotic of PDD{"}(S: k) as k — +o00) Let a periodic point
set S C R™ have a cell with a longest diagonal d. For any integers h,k > 1, let
a(h, k) be the average sum of the k-th column of PDD"}(S; k) from Deﬁm’tion.

Then —2 (PPC(S) /b(h, k) — d) <a(h,k) < ﬂ(PpC(S) b(h, k) + d)

h+1 ~h+1
forany k> 1. Ifh =1, then lim al, k) = PPC(S). If h = 2, then we have the
- ’ k—+o0 \"/E ’
2 a(2,k) 4
- < < = .
bounds 3PPC(S’) S =on S 3PPC(S) for large enough k

Since any lattice A C R™ has a single point in a motif, any Pointwise Distance
Distribution PDD"}(A; k) is a single row of the k numbers, which coincides with
the vector uV[PDD"}(A; k)] and can be visualized as a piecewise linear curve
through k points. Fig. [6] shows six 2D lattices illustrating the asymptotic behavior
of PDD" for h =2,3 in Fig. [7l Theorem supports the following conjecture.

Conjecture 5.2 (h-order limit) In the notations of Them“emfor any peri-

odic point set S C R"™, kErfoo % ezists for any h > 2. If this limit differs from

PPC(S), it can be called the h-order point packing coefficient PPC(S; h).

Fig. 6 The six 2-dimensional lattices whose invariants appeared in Fig.lz 1st: a generic black

lattice A1 with the basis (1.25,0.25), (0.25,0.75) and PPC(A1) = 4/ 81 ~ 0.525. 2nd: the blue
T

3
hexagonal lattice Az with the basis (1,0), (1/2,+/3/2) and PPC(A2) = 2£ ~ 0.528. 3rd: the
vy

1
orange rhombic lattice A3 with the basis (1,0.5), (1, —0.5) and PPC(A3) = 4/ — &~ 0.564. 4th:
w
3
the purple rhombic lattice A4 with the basis (1,1.5), (1, —1.5) and PPC(A4) = 4/ — ~ 0.977.
™
1
5th: the red square lattice A5 with the basis (1,0), (0,1) and PPC(A5) = 4/ — ~ 0.564. 6th:
™

2
the green rectangular lattice Ag with the basis (2,0), (0,1) and PPC(A4g) = 4/ — ~ 0.798.

™

Theorem [5.1] justifies that there is no need to substantially increase the number
k of neighbors since PDD{"}(S; k) largely depends on PPC(S) when k — +oc.
The practical advice is to choose k depending on the size of a motif or constituent
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— (1,0),(0,1)

— (2,0),(0,1)
2.5
2.0
1.5
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k

3.01 — (1.25,0.25),(0.25,0.75)

—— (1,0),(0.5, 0.866)

(1,0.5),(1, - 0.5)

— (1,1.5),(1, — 1.5)

— (1,0),(0,1)
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1.5 y 7 y, ’
1.0 0 20 40 60 80 100

k

Fig. 7 The asymptotic behavior of the higher-order PDD2}(A; k) and PDD®) (A; k) for the
six lattices A C R? in Fig. @ see their bases in the legends. Top: h = 2. Bottom: h = 3.

molecules so that all atoms have enough neighbors to capture the periodic connec-
tivity. We consider k a degree of approximation similar to the number of decimal
places on a calculator. Theorem implies similar bounds for all t~-moments and
means that PDD"}(S; k) and 1 [PDD{"}](S; k) are most discriminative for small
values of k, so we used k = 100, ¢t < 10, and h < 3 in all experiments later.

Lemma 5.3 (distance bounds) Let S C R™ be any periodic point set. For any
h,k > 1 and a point p € S, let a(h, k) be the k-th smallest average sum achieved
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Definition . Set R= max |p; —p|. Then <a(h,k) <

for of all pairwise distances between p and h other points pi,...,pn € S, see
- i=1,...,h h+1 h+1

Proof After translating p € S to the origin 0 € R"™, one can assume that p = 0. Let
p1 € S be a point such that R = |p1| = r{lax |p2| For any other point p; # p1,

the triangle inequalities |p;| + |[p1 — pi| > |p1]| = R imply that

2
ath k) = 155 > Ipi—pil>

0<i<j<h

h

2
> ) (|P1|+Z(|Pz‘|+|P1 —Pz‘)) > h(h+1 (R+ZR> h+1

i=2
For the upper bound of a(h,k), we use |p;] < R and the triangle inequalities
Ipi — pjl < |pil + |pj| < 2R as follows:

a(h, k) = h(h+1) Z\pzu > pi—pil| <

1<i<j<h

2 h(h —1) 2hR
< E R+ E 2R zi(hR—FiQR):i’
h(h+1 <iTien h(h+1) 2 h+1
which finishes the proof of the upper bound. a

For h = 1, the bounds of Lemma give the exact equality a(1,k) = R.
Lemma was proved in a slightly more general form in Lemma 11 from [66].

Lemma 5.4 (number of points in a ball) Let S C R" be any periodic point
set with a unit cell U, which has m points of S, generates a lattice A, and has a
longest diagonal of a length d. For any point p € SNU and a radius r, consider

U_(p;r) = U {(U +v) such that (U +v) C B(p;r)},
veEA

Ut(p;r) = U {(U +v) such that (U +v) N B(p;r) # 0}.
veA
Then the number of points of S in the closed ball B(p;r) has the bounds

r—d \" vol[U— (p; )] =, vol[U4 (p; r)] r+d \"
<PPC(S)> <Sm—o7 - S ISNBlin)| < m—mra= < <PPC(S)> '

Lemma 5.5 (increasing binomial coefficient) For any fized integer h > 1,

b) _bo-1)...(b—h+1)

the binomial coefficient is strictly increasing for

h h!

any real b > h so that if h < b < c then (2) < (2)
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T

Proof The derivative % ( h

>>0foranyw2h.

Proof of Theorem To prove the lower bound for the k-th smallest sum
h+1

a(h, k), set r =

ball B(p;r) with the center p and radius r. By the lower bound of Lemma

a(h, k). For any point p in a motif of S, consider the closed

all points p1,...,pn € S that are used for computing a(h, k) have the maximum
h+1 -
distance R = max lpi —p| < %a(h, k) = r and hence belong to B(p;r).

By the upper bound of Lemma if this ball contains ¢ points of S (excluding

p), then c+1 < ( r+d

W(S)) . By using p and any other h distinct points p1,...,pn

_ —1)...(c— 1
among ¢ points in S N B(p;r), we can form (;) = ole ) hgc h+1) tuples
D, P1,-..,Pn Whose average sums of all pairwise distances should include all &
smallest values up to the k-th sum a(h, k). Hence (Z) > k.

-1
For ¢ > h = 2, the last inequality is 0(02 ) >k c2—c—2k>0,¢>

1+ Vit sk ”21+8k > 0.5 + v2k. For any h > 1, let b(h, k) = b + 1 satisfy b > h and
b) _bb—1)...(b—h+1)

h A € (k—1,k], e.g. one can set b(2,k) = 1.5 + v2k.

By Lemma <;) > k for ¢ > h implies that ¢ > b = b(h, k) — 1. Then

(%(ds)) > c+1 > b(h, k), % > /b ),

h ; La(h k) = r > PPC(S) /b(h, k) —d, a(h, k) > %H(PPC(S) /o, k:)—d).
To prove the upper bound for the k-th sum a(h, k), set R = h_'}—lla(h,k)

and consider any r < R. By the upper bound of Lemma [5.3] p with any other

_ 2h
h points pi1,...,pn € SN B(p;r) have average sums that are at most L

h+1
hQL—i—Rl = a(h,k), which is less than the k-th smallest sum a(h, k). If the ball

B(p;r) contains ¢ points of S (excluding p), then these points can form at most

k — 1 tuples consisting of p and h (of ¢) other vertices, so <Z) < k — 1. Since

(Z) = b(b_l)"hgb_h“) € (k — 1,k] says that <Z) >k—1> (Z)

Lemma [5.5| for b = b(h, k) — 1 > h implies that b > c. Lemma[5.4] gives

r—d \" r—d
= < _ r-a n/ )
(PPC(S)) Setl<bt1=>b(h k), PPC(S) < Vb(h, k)

Since the resulting inequality » < PPC(S) {/b(h, k) + d holds for all r < R, where

R = h;lla(h,k:) is fixed, we get h;};la(h,kj) = R < PPC(S) {/b(h,k) + d and
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a(h, k) < % (PPC(S) Y/b(h, k) —|—d>. If h = 1, both bounds have the same term:

PPC(S) ¥/b(1, k) — d < a(h, k) < PPC(S) {/b(1, k) + d.

If we divide both sides of the last inequality by ¥k, we get lim a(1, k) =
k—+oco {/E
. . . Vk+1
PPC(S). We replaced k 4+ 1 with k in b(1,k), because kgrfoo TE T 1 for
any fixed dimension n. For similar reasons and h = 2, the ratio a2(2, k) has the
) A V2k
asymptotic bounds gPPC(S’) and gPPC(S) as k — +oo. O

Since the average sums a(h, k) are increasing according to Theorem for h =
1,2, comparing raw distances or sums for large k is affected by deviating asymp-
totics. To neutralize the effect of increasing deviations in k, [65, Definition 3.7]
adjusted PDD(S; k) by subtracting PPC(S) ¥/k from distances to k-th neighbors.
While Conjecture remains open for h > 2, supported by Fig. [§] we find a coef-

k
ficient ¢ minimizing the sum of squared deviations E(c) = 3 (a(h, k) — ¢ "Vh'k)?.

Jj=1
k
The polynomial E(c) has the derivative E'(c) =2 5. "Vh!k(c "V/hlk—a(h,k)) and
j=1
k . ;
_ya(h,j) /!
a global minimum at ¢ = 2j=10(h.5) d . Definition uses this ¢ to subtract

Z?:l( hn/h!j)Q
from every row of PDD"} the fitted sequence C(j) = ¢ "{/Alj for j =1,..., k.

Definition 5.6 (Average/Pointwise Deviations from Asymptotic) (a) Fix
any integers n,k > 1 and h > 2. For a finite or periodic point set S C R™ and
a point p € S, let a(h,1) < --- < a(h,k) be the k column averages of the higher-
order distribution PDD{h}(S; k), considered a matriz of m unordered rows. Set
>y alh, §) /AT
31 (W/AT)?

rows, each consisting of the k ordered elements c(S;h, k) "/hlj for j=1,... k.
(b) The Pointwise Deviation from Asymptotic PDA{"} (S k) = PDD"}(S; k) —
A(S; h, k) is a distribution of unordered rows with the same weights as PDD}(S; k).
The t-moments from Deﬁm’tion give the t x k matriz u® [PDA{h}(S; k)] of m
ordered rows, which can be flattened to a vector of tk coordinates. The Average De-
viation from Asymptotic is the vector ADAYY(S; k) = (W [PDAM (S k)] consist-
ing of k column averages (counted with weights) of the m x k matriz PDA{h}(S; k).

c(S;h, k) =

. Let A(S;h,k) denote the matriz of m identical

Definition[5.6]for h = 1 uses the Point Packing Coefficient ¢(S; 1, k) = PPC(S),
which depends only on S (independent of k), so PDA{I}(S; k) coincides with
the previously defined PDA(S;k) in [65, Definition 3.7]. We adapt EMD from
Definition a) to PDA{"}(S; k) with the ground metric L, on rows below.

Definition 5.7 (EMD for PDA"}, PDA(™™) and Local Novelty Distances)
(a) For any real q¢ € [1,4c0], any integers n,h,k > 1, and any periodic point
sets S,Q C R™, Definition (a) introduces the distances EMD, EMD, between
PDA{h}(S; k) and PDA{h}(Q; k) with the ground metrics RMS, Lq, respectively.
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— (1.25,0.25),(0.25,0.75)
0.8 — (1,0),(0.5,0.866)
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Fig. 8 By Deﬁnition any lattice A C R™ has the vector ADA{h}(A; k) consisting of the
differences a(h; k) — ¢(S; h, k) "V/hlk, which converge to 0 in the plots. Here a(h, k) is the k-th
smallest average sum of pairwise distances from 0 € A to h other points in A. The coefficient
¢(S; h, k) was experimentally fitted for h > 2 but should be independent of k by Conjecture
Top: six 2D lattices from Fig. El and h = 2. Bottom: cubic lattice Z3 and h = 1, 2, 3, 4.

(b) The joint invariant PDA™ (S; k) is obtained by concatenating PDAY(S; k)
fori =1,... h. Define the max metric between PDA(h)(S; k) and PDA( (Q; k)
as the mazimum of all distances EMDq(PDA{i}(S;k)7PDA{i}(Q;k)) for 1 =
1,...,h, similarly for the EMD based on the ground distance RMS instead of L.

(¢) Fiz an invariant distribution I with a metric d, e.g. I(S) = PDAT (S k) and

d = EMD for all periodic point sets S C R™. Given a finite dataset D of periodic

sets, the [I,d]-based Local Novelty Distance LND([I, d](S; D) = éni% d(1(S),1(Q))
€

is the shortest distance from S to some QQ € D in the metric d on values of I.
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Lemmalb.8|justifies computations with smaller h, k to filter out distant crystals.

Lemma 5.8 (bounds for metrics on PDA{h}) Let S,Q C R™ be any periodic
point sets. Fiz any real q € [1,+00] and any integers 1 < g < h, 1 <k’ < k. Then
EMD, (PDA™ (S; k), PDA™(Q; k)) > EMDy (PDA@ (S; k), PDAW (Q; k')). The
same inequality holds for EMD with the ground metric RMS instead of L.

Proof follows similar to Lemma b after replacing PDD with PDA . O

Corollary 5.9 (Lipschitz continuity of PDA{h}) Fiz any integers n,k,h > 1
and q € [1,400]. Let Q be a periodic point set obtained from a periodic point set
S C R™ by perturbing every point of S up to a Euclidean distance € € [0,7(S5)).

5or A
(a) We have that }C(S; h, k)fc(Q;h,k‘)| < 2pie for pr, = W Ifh =

then ¢(S;1,k) = PPC(S) and ¢(Q;1,k) = PPC(Q) are equal so we set p1 = 0.

(b) Let h = 1. Then the following identities hold:

EMD(PDA(S; k), PDA(Q; k)) = EMD(PDD(S; k), PDD(Q; k)),

EMD,(PDA(S; k), PDA(Q; k)) = EMD,(PDD(S; k), PDD(Q; k)),

RMS(ADA(S; k), ADA(Q; k)) = RMS(AMD(S; k), AMD(Q; k)),

L,(ADA(S; k), ADA(Q; k)) = Lg(AMD(S; k), AMD(Q; k)).

Under given e-perturbations, the Lipschitz constants of the metrics EMD, EMDy,
RMS, L4 above are 2, 2VE, 2,2k, respectively, for any parameter q € [1,4+00].

(c) For h > 2, the upper bounds EMDy(PDA"}(S; k), PDAT"(Q; k) < 4e¥/k
and EMD(PDA}(S; k), PDAT" (Q; k)) < 4e hold for the ground metric RMS.

(d) To get a known crystal Q € D from a new crystal S, some atom of S should
be perturbed by at least 0.5LND(S; D) for LND with the ground metric EMDoo

Proof (a) [20, Lemma 4.1] proved that S, @ have a common lattice with a unit

cell U such that S = A+ (SNU) and Q = A+ (QNU). Then S, Q share a unit cell

U and have the same number m = m(S) = m(Q) of points in U, so PPC(S) =

PPC(Q), which proves the case h = 1. For h > 2, by Definition a), we estimate

iy |a(Ssh, ) — a(Q; by 5)| /AT
Y (/RlG)?

every point of S is obtained as an e-perturbation of a point of @, there is a

bijection S — @ that shifts every point by at most €. This bijection induces a 1-1
map between pairwise distances in S, Q), which changes every distance up to 2e.

the difference |C(S; h, k) —c(Q; h, k)} <

ince

By Lemma [£4] after writing the k smallest 2e-perturbed average sums in
increasing order in every row of PDD{h}(S k), the corresponding ordered sums
still differ by at most 2¢, so |PDD;{]?}(S, k)— PDD{h} (Q; k) | < 2¢. Then the column
averages a(h, j) from Definition a) also dlffer by at most 2¢.

Finally, |a(S;h,7) — a(Q;h, j)| < 2¢ gives the required upper bound

Sk 2e /AT Sk /AT
_ ] 1 . — j=1
S R) = el@iho K| < i e = 2 o o = S e
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(b) For h = 1, part (a) proved that PPC(S) = PPC(Q). By Definition the
matrices PDA(S; k), PDA(Q); k) are obtained from PDD(S; k), PDD(Q; k), respec-
tively, by subtracting the same vector consisting of PPC(S){/7,j = 1,...,k. Then
any RMS or L4 distance between a row in PDD(S; k) and a row in PDD(Q; k) has
the same value as between the corresponding rows in PDA(S; k) and PDA(Q; k).

The minimisation in Definition gives the same values EMD and EMD,
when PDD is replaced with PDA. The same argument proves that RMS and L
remain the same when AMD is replaced with ADA. Hence the Lipschitz constants
are the same as in Theorem and Corollary restricted to order h = 1.

(¢) By Definition any element PDAZ{Z}(S; k) in a row ¢, and a column j of
PDA{"}(8; k) equals PDD{"}(S;k) — c(S; h, k) "/Alj. Estimate the difference of
i-th elements from the same column j in PDA{"}(S; k) and PDA" (Q; k).

= [PDA!") (5;k) — PDAL Qi k)| =
= |( PDD{h}(S k) — c(S; h k) "/Rlj) — (PDD (Q; k) — c(Q; hy k) "/RTj) |
=( PDD{h}(S k) — PDD{h}(Q k)) = (c(S5hy k) — e(Q; by k) "S/RTG| <
< ]PDD{hg(S k) PDD{hi(Q,k )| + [e(S; h, k) — c(Q; b, k)| /AT <
< 2e 4 2ppe ”W =2(14 pr. "Yhlj)e < 4e,

A

where we used the upper bounds from part (a) and also p "{/hly <1 for any j =
k. Let Ri(S), Ri(Q) denote the i-th rows of PDA}(S; k), PDAM}(Q; k),
respectlvely Then Lq(Ri(S), Ri(Q)) < ¢/k(4¢)9 = 4e¥/k. The same proof for

Lo 1
RMS = —= multiplies the Lipschitz constant by the factor —. Lemma |4.5| guar-
\/E P % y \/E g

antees the same upper bounds 4e ¥k and 4e for EMD and EMDy, respectively. If
h =1, then p1 =0 by part (a), so 4¢ can be replaced with 2e.

(d) Assume the contrary that @ can be obtained from S by perturbing every atom
of S by at most € = 0.5LND(S; D) = min EMD.. (PDA{" (S k), PDATR (Q; k).
€

Part (c) for ¢ = 400 implies that EMDoo (PDA"} (S5 k), PDATM (Q; k) < 26 =
LND(S; D), which contradicts the assumption and hence proves the lemma. a

Theorem 5.10 (time of PDD{h}) For any h,k > 1 and a periodic point set
S C R™ with a motif of m points and a unit cell U with a longest diagonal d, let

2.5d

a:max{h(l—l— W(S)

). m} b = log(2h!) + log(PPC(S) + d) — log r(S),

where r(S) is the packing radius of S. Then PDDY*}(S: k) is computable in time
O(2%"a™ Vhlk(b + log k) + 22" m(log k) log(h!k) + a""mklog k).

Proof Fix the origin 0 € R™ at the center of the unit cell U. Then any point
p € M = SNU is covered by the closed ball B(0,0.5d). By Theorem the
distance a(1,k) from any point p € M to its k-th nearest neighbor in S has the
upper bound a(1,k) < PPC(S){/k+ 1+ d. Then all k neighbors of p in S are
covered by the single ball B(0;r) of the radius » = PPC(S)/k + 1 + 1.5d.
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For a fixed point p and any h > 1, to find a similar ball including all points
that are needed to compute the k smallest average sums a(h,1) < --- < a(h, k),
we start from the integer number ¢ = [b(h, k) — 1] of closest neighbors pi1, ..., pc

of p, where b(h, k) is any real b+ 1 such that b > h and b) € (k—1,k]. Then

h

<}CL) > k by Lemma Since the ¢ 4+ 1 points p, p1,...,pc are covered by the

ball B(p; R) of the radius R = max |pi — pl|, the lower bound of Lemmagives
(&3

R—d \"
pporgy ) Scetl=<y wh = 1 < PP . _
(PPC(S)) <c+1 <, where we set v = b(h, k) + 1, so R < PPC(S) /7 +d

h

_ 2
points from S N B(p; R) have the upper bound hhi—l—Rl by Lemma If the k

All <C> > k average sums of pairwise distances between p and any h of ¢

smallest values of these sums are not greater than , which clearly holds for

2R
h+1
h =1, these k smallest values form the required row a(h,1) < --- < a(h, k) of the
point p = po in PDD{h}(S; k). Indeed, in this case for any h points p1,...,pn € S

with at least one distance (say) |pn — po| > R, the lower bound of Lemma

T > Ipi—pil > 2R annot be among
h(h+1) o<iTj<n c h+1
the sought after k smallest values a(h,1) < --- < a(h, k). If we could not find &

implies that the average sum

smallest sums up to el we extend the radius R to hR.

Similar to the above argument for the smaller radius R, the lower bound of
Lemma [5.3] guarantees than any average sum involving at least one point at a

distance |pp,—po| > hR is greater than 2hR and hence cannot be among k£ < ( C)

h+1 h
smallest sums that were already considered for the smaller ball B(p; R). So the
larger ball B(p; hR) is guaranteed to contain the required k smallest sums.

To cover the necessary neighbors of all points p from a motif M = SN U,
we further increase the radius hR by 0.5d and will use the earlier upper bound
R < PPC(S) /b +d for v = b(h, k) + 1 > 1. Let the ball B(p; hR + 0.5d) contain

hR 4+ 1.5d ) " f
PPC(S) ) O™
Lemma and the earlier upper bound R < PPC(S) {/y + d imply that

v points of S, including its center p. The upper bound v <

hR+1.5d\" (h+15)d\" . (14 1.5/h)d\"
< =—==) < (hg N = AL R
V= ( PPO(S) ) < (hﬁ *PPO(s) > " ”(” PPO(S) 47
<h" 1—1—2'75d n<a" for a = max h<1—|—2'75d) /16
= ppC(sy) =7 - PPC(S)/’ ‘

To find v nearest neighbors of all m points p from the motif M = SNU, we
gradually extend the cell U in spherical layers by adding shifted copies of U until
we get the upper union of shifted unit cells from Lemma

Uy = U4 (0; PPC(S)h /7 + 1.5d) D B(0; hR + 0.5d).

To estimate the neighbor search time [22], we build a compressed cover tree on
v points of Uy in time O(vcdy;, log dQ—R) by [23, Theorem 3.7], where ¢min < 2"
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is the minimized expansion constant of T, and is the upper bound for the

R
r(S)
ratio of max/min inter-point distances. Recall that v = b(h,k) +1 = b+ 2 and
(Z) € (k—1,k]. If h =1, then v = k+2 = O(k). For any h > 2, we have <z) =

h
053 ) < k. The rough upper bounds are v < O(/hlk) and logy < O(log(h!k))

for any fixed h and k — 4o00. Then R < PPC(S) /7 + d gives

log(2R) < log({/v(2PPC(S) 4 2d)) = log(2PPC(S) + 2d) + log .

Then O (log T};)) < b+ logk for b = log(2h!) + log(PPC(S) + d) — log r(5).

Then the time for a compressed cover tree on T is O (I/Cilin log TRS)) <

O(chmn(b + log k)) Below we use the upper bounds v < a™y < a™O(/hlk)

and logv < log~vy + nloga < O(log(h!k)), where the second term was absorbed by
the first one. Using [23, Theorem 4.9], we find k neighbors of m points among v
points of T in time O(mc?(log k) (cil, log v+ ck)), where cmin < ¢ < 2" are expan-
sion constants of T'. Then we can compute all distances from each of m points from

the motif SN U to their k nearest neighbors in T in a time bounded as follows:

O(yciﬁn(b + log kz)) + O(mc2 log k(chom log v + ck)) <
O(2%"a™ Vhlk(b + log k)) 4+ O(m2°" log k(2'°" (log(h!k) + 2°"k)) <
O(2%"a™ Vhlk(b + logk) + 2"*"m(log k) log(hlk) + 2" mklogk).  (x)

By Definition to compute the k smallest average sums a(h,1) < --- <
a(h, k), we consider all unordered h-tuples of points among the found v neighbors.

Due to v < a"y < a"O(V/h'k), the number of these h-tuples is N = <Z) <

hn

h
% < ah—'(O(m))h = a""O(k). For each of m points in the motif S N U, we

sort N average sums in time O(N log N) = a"™O(klog k) and select the k smallest
average sums in time a""O(mklog k). When adding the latest time to the upper
bound in (x), we use a" > 24" o > 16, a > /16 to get the expected total time:

O(2%"a" Vhlk(b + log k) + 22" m(log k) log(h!k) + a""mklogk). O

For small dimensions n = 2,3 and orders h = 2,3, the upper bound for the
time of PDD{"} becomes O(mk log k + k+/k), which is close to be linear in both
key inputs sizes: the motif size m and the number k of smallest average sums.

For any h > 1 and a periodic set S C R" of up to m points in a unit cell,
PDD{"}(S; k), the exact EMD can be found in time O(m®logm) [46]. By !63,
Theorem 4.4], PDD(S; k) for a large enough k (and hence the stronger PDD("))
together with a lattice of S and the minimum number m of points in a unit cell of S
can be inverted to any generic S (outside a subspace of measure 02, uniquely under
isometry. Then by Lemma and Theorems PDD"} satisfies almost
all conditions of Problem with generic completeness instead of completeness.
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6 Big-scale experiments on high-profile databases of inorganic crystals

This section applies new invariants to quantify the novelty of materials reported
by A-lab [59] and MatterGen [69], and then reports pairwise comparisons by the
hierarchy of new invariants across three large databases of inorganic crystals:

ICSD: Inorganic Crystal Structure Database [68], 170,206 entries
http://icsd.products.fiz-karlsruhe.de/en (version of February 25, 2025).

MP: Materials Project by the Berkeley lab [31], 153,235 entries
http://next-gen.materialsproject.org (version v2023.11.1).

GNoOME: Graph Network Materials Exploration [43], 384,938 entries,
http://github.com/google-deepmind /materials_discovery (November 29, 2023).

Only experimentally measured non-disordered inorganic crystals from the ICSD
were included. The Materials Project contains theoretical and experimental struc-
tures (including some sourced from the ICSD), but all entries undergo simulations
which change their geometry before being added to the database. The GNoME
dataset was generated by Al trained on crystals from the Materials Project.

We start by comparing the recently released crystals by MatterGen [69] with
the already available structures in the ICSD and MP. Tables [T} [2] show several
distances (based on the past PDD and new invariants PDD{Q}) from MatterGen
crystals to their three nearest neighbors in the ICSD and MP respectively.

All distances are measured in Angstroms, where 1A is approximately the small-
est inter-atomic distance. The physical meaning of all computed distances is justi-
fied by the Lipschitz continuity, which was proved for the past invariants ADA [66
Theorem 9], PDA [64, Theorem 6], and new invariants PDA{"} | see Theorem
as follows. If every atom of a periodic crystal S is perturbed up to ¢ = 0.1A,
then all our distances between each invariant of S and its perturbation is at most
2¢ = 0.2A. Conversely, if a distance is d = 0.2A, to match underlying crystals
exactly, at least of their atoms should be shifted by at least d/2 = 0.1A.

[32] suggested that the MatterGen crystal TaCr2Og is “identical” to ICSD
entry 9516, which was reported in 1972 [7]. However, these crystals have Lo [100] =
0.089A, EMD oo [100] = 0.098A&, and EMD'? [100] = 0.196A, which are larger than
the distances in the last three rows of Table [1] In fact, entry 9516 is outside the
first 1000 neighbors of TaCraOg¢ by EMDg) in the ICSD. Tables andshow the
first neighbors of 43 A-lab crystals [59] in the ICSD and MP, respectively.

The distance EMDS) [k] between crystals S, Q is defined as the maximum of
EMDoo (PDA{" (S; k), PDA"} (Q; k)) for two orders h = 1,2. In most cases, the
maximum distance is achieved for order h = 2, because the 2nd order invariant
PDA{?} collects geometric data for triples of atoms instead of pairs (inter-atomic
distances). However, very symmetric crystals can have many equal triangles, so
the same number £ of smallest inter-atomic distances can be more separating than
k smallest perimeters of triangles. For example, the A-lab crystal KMn3Og has
the nearest neighbors Ki.390Mn3zOg (ICSD id 261406) and KMn2O4 (mp-2765485
in the Materials Project) with EMDoo[100] distances 0.103A and 0.51A, which are

larger than the EMDig}[IOO] distances 0.19A and 0.444A, respectively.

One reason that it was previously impossible to detect geometric duplicates in
each of these databases and find substantial overlaps between different databases
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MatterGen ID  ICSD composition ICSD ID  Loo[100] EMDuo[100] EMD)[100]

CraMoOg LiMgFeFg 193630 0.022 0.037 0.074
CraMoOg CraWOsg 24793 0.017 0.032 0.075
CraMoOg VaWOg 2576 0.045 0.064 0.098
LaMoOg4 SmTaO4 59218 0.065 0.117 0.146
LaMoOy4 SmTaOy 32996 0.056 0.125 0.188
LaMoO4 NdTaO4 79498 0.063 0.104 0.195
Mn3NiOg MgMnOs3 690439 0.030 0.052 0.088
Mn3NiOg MgGeO3 171790 0.050 0.071 0.122
Mn3NiOg MgGeO3s 171788 0.048 0.070 0.126
Tao.67Cr1.3304 MgF2 9164 0.009 0.012 0.020
Tap.67Cr1.3304 MgF2 117472 0.017 0.022 0.022
Tag.67Cr1.3304 MgF2 8121 0.017 0.022 0.022
TaCr20¢ TiCrSbOg 81932 0.014 0.025 0.047
TaCr206 MgF2 8121 0.021 0.031 0.050
TaCr20¢ MgF2 117472 0.021 0.031 0.050

Table 1 Column 1: IDs of 5 MatterGen crystals [69] in the folder ‘experimental’ [44].
Columns 2-3: compositions and IDs of three nearest neighbors in the ICSD, found by the new
invariants, see column 6. Column 4: distance Lo on vector invariants ADA(S; 100). Column
5: distance EMDo, on matrix invariants PDA(S;100). Column 6: max distance EMDg)) on
new invariants PDA{"}(S;100) for orders h = 1,2. All distances are in Angstroms.

MatterGen ID  MP composition MP ID Loo[100] EMDoo[100] EMD)[100]
CraMoOg Cra2VOg mp-1101261  0.010 0.018 0.032
CraMoOg CraWOsg mp-19894 0.033 0.042 0.058
CraMoOg GaaWOg mp-770737 0.018 0.028 0.059
LaMoOgy NdTaOg4 mp-4718 0.065 0.108 0.207
LaMoOy NbCeO4 mp-7550 0.083 0.133 0.233
LaMoQOg4 SmTaOy mp-3756 0.077 0.131 0.269
Mn3NiOg MnMgOs3 mp-770618 0.028 0.055 0.099
Mn3NiOg MnCoO3 mp-20641 0.032 0.062 0.110
Mn3NiOg FeMgOs3 mp-754508 0.059 0.093 0.127
Tao.67Cr1.3304 MgFs2 mp-1249 0.029 0.037 0.038
Tap.e7Cr1.3304 NiFg mp-559798 0.050 0.063 0.063
Tag.67Cr1.3304 TiO2 mp-2657 0.051 0.067 0.067
TaCr20¢6 LiNiRhFg mp-1222366 0.027 0.048 0.051
TaCr20¢ MgF2 mp-1249 0.033 0.046 0.058
TaCr20¢ TiVOy mp-690490 0.019 0.029 0.061

Table 2 Column 1: IDs of 5 MatterGen crystals [69] in the folder ‘experimental’ [44].
Columns 2-3: compositions and IDs of three nearest neighbors in the MP, found by the new
invariants, see column 6. Column 4: distance Lo on vector invariants ADA(S;100). Column

5: distance EMDo on matrix invariants PDA(S;100). Column 6: max distance EMD&? on
new invariants PDA{"}(S;100) for orders h = 1,2. All distances are in Angstroms.

is their huge size and the slow speed of traditional comparisons. Our experiments
were on a typical desktop (AMD Ryzen 5 5600X 6-core, 32GB RAM).

Another drawback of any distance is very limited information (a single num-
ber) per pair of crystals, while invariants such as PDD"} include many more nu-
merical values per crystal. Detecting near-duplicates by invariants is much faster
than by distances due to the hierarchy starting with vectors ADA{h}(S; 100),
which quickly filter out distant crystals with Lo, > 0.01A. The stronger invariants
PDD{"}(5;100) cannot have smaller distances due to Lemma c).
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A-lab ID ICSD composition ICSDID EMD,, EMDY
BasZrSnOg B2oHosPdg 44417 < 0.001 < 0.001
BagNa2TaoVaOq7 BagNa2Ru2V2017 97524 0.092 0.132
BagNa2Sba Vo017 BagNasRusVaO17 97524 0.081 0.147
BagCagLa4(FesO15)2 Baj1gCazPra(FesO15)2 405911 0.187 0.212
CaCo(PO3)4 Cdo.5Co1.5(PO3)a 81574 0.144 0.236
CaFeaP20g CaV2P20g 79735 0.073 0.093
CaGd2Zr(GaO3)4 FesTb3O12 80550 0.108 0.168
CaMn(PO3)a Cd2(PO3)4 260975 0.168 0.220
CaNi(PO3)4 Cdo.5Co1.5(PO3)a 81574 0.157 0.235
FeSbsPb4O13 Nig.666Sb3.33Pb4O13 88959 0.048 0.116
Hf3SbaPbsO13 Ru4PbsO13 49531 0.095 0.183
InSb3(PO4)s Sca(SeOa4)6 1729 0.201 0.240
InSb3PbyO13 Ruy4PbyO13 49531 0.149 0.284
K2TiCr(POy4)s3 K1.928Ti1.515Fe0.485(P0O4)3 418185 0.037 0.055
K4MgFe3(PO4)s K4MgFe3(PO4)s 161484 0.075 0.109
K4TiSn3(POs)4 K4Ti1.885n2.12(POs5)a 250087 0.091 0.163
KBaGdWOg K2NaF4NbO2 183827 0.004 0.010
KBaPrWOg HgFgNaNaV 246824 0.004 0.009
KMnsOg K1.39Mn3Og 261406 0.103 0.103
KNa2xGaz(SiO4)3 Na3zGag(SiO4)3 46861 0.110 0.146
KNaPg(PbO3)s KNaPg(PbO3)s 182501 0.005 0.006
KNaTi2(POs)2 K1.04Nag.96Ti2(POs)2 71239 0.062 0.105
KPrg(SizO13)2 Sr1.91Ndg.09(Si3013)2 238283 0.144 0.172
MgzMnNizOg Mg1.2MnNig gOg 80303 0.020 0.031
MgzNiOg4 MgsO4 690939 0.000 0.000
MgCuP207 Mg1.08Co00.92P207 69576 0.218 0.227
MgNi(PO3)4 Mg2(PO3)a 4280 0.082 0.097
MgTiz2NiOg Mng.64Ti2Nij 3606 238957 0.045 0.056
MgTis(POy4)s FeTis(PO12)6 290966 0.132 0.152
MgV4Cu3zO14 V4Cug014 164189 0.146 0.193
Mn2VPO7 Mn2Vg.91P1.0007 250126 0.219 0.333
MnyZn3(NiOg)2 MggTizO12 65793 0.128 0.186
Mn7(P207)4 Fe7(PQO7)4 67514 0.126 0.155
MnAgO2 MnAgO2 670065 0.097 0.142
NaszCaigFe(PO4)14 K2Sr18Mg2(PO4)14 127462 0.173 0.252
Na7MgrFes(PO4)12 NagNigFes (PO4)12 169444 0.157 0.157
NaCaMgFe(Si03)4 V.28 Cro.49Mng.004Ti0.002 117172 0.066 0.096

Nag.792Ca1.208 Mg1.17

Fe.0165i3.98 012
NaMnFe(POy4)2 Nai.17Mgo.19Mng.46Fe1.35 168037 0.232 0.232

(PO4)2
SnaSboPbsO13 Ru4PbsO13 49531 0.088 0.188
Y3InoGazOi2 Y2.74Sc2.19Gaz.01012 39834 0.018 0.041
Zn2Cr3FeOg Mg2CrgsOg 160954 0.022 0.035
Zn3Nig (SbOg)2 CoLisTi2 8Os 19999 0.173 0.211
Zr2SbaPbs 013 Ru4PbsO13 49531 0.106 0.218

Table 3 Column 1: IDs of 43 A-lab crystals reported in [59]. Columns 2-3: compositions
and IDs of the nearest neighbor in the ICSD, found by the new invariants, see column 5.
Column 4: distance EMD on matrix invariants PDA(S;100). Column 5: max distance

EMDE%) on new invariants PDA "} (S;100) for orders h = 1, 2. All distances are in Angstroms.

The invariants PDA) obtained by concatenating PDA, PDA{Q}, cee PDA M
form a natural hierarchy so that increasing the order h = 1,2,... adds more
invariant information to better distinguish given crystals under isometry.
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A-lab ID MP composition MP ID EMDo EMDY
BasZrSnOg Hfs KPrOg mp-1522216 < 0.001 < 0.001
BagNa2TaoVaOq7 BagNa2TaoVaOq7 mp-1214664  0.029 0.051
BagNa2Sba Vo017 BagNa2Sba Vo017 mp-1214658  0.021 0.030
BagCagLa4(FesO15)2 BagCasLa4(FesO15)2 mp-1228537  0.136 0.141
CaCo(PO3)4 CaCo(PO3)4 mp-1045787  0.090 0.090
CaFeaP20g CaV2P20g mp-21541 0.061 0.088
CaGd2Zr(GaO3)4 CaGd2Zr(GaO3)4 mp-686296 0.069 0.072
CaMn(PO3)a CaTi(POs3)a mp-1045626  0.071 0.097
CaNi(PO3)4 CaCo(PO3)4 mp-1045787  0.105 0.121
FeSbsPb4O13 FeSbsPb4O13 mp-1224890  0.027 0.034
Hf3SbaPbsO13 Hf3SbaPbsO13 mp-1224490 0.012 0.022
InSb3(PO4)s InSb3(PO4)s mp-1224667  0.011 0.018
InSb3PbsO13 InSb3Pbs 013 mp-1223746  0.029 0.036
K2TiCr(POy4)s K2 TiCr(PO4)3 mp-1224541  0.009 0.019
K4MgFe3(PO4)s K4MgFe3(PO4)s mp-532755 0.076 0.088
K4TiSn3(POs)a K4TiSn3(POs)a mp-1224290 0.014 0.025
KBaGdWOg NaSmEuWOg mp-1523299  0.001 0.003
KBaPrWOg NaNiRb2Fg mp-556353 0.003 0.007
KMn3Og KMn2Oy mp-2765485  0.510 0.510
KNa2xGaz(SiO4)3 KNa2xGaz(SiO4)3 mp-1211711 0.022 0.032
KNaPg(PbO3)s NaoPg(PbO3)s mp-690977 0.090 0.121
KNaTi2(POs)2 KNaTi2(POs)2 mp-1211611  0.012 0.016
KPrg(SizO13)2 KPro(SizO13)2 mp-1223421  0.009 0.021
Mgz MnNi3Og Mg3MnNizOg mp-1222170  0.029 0.032
MgzNiOg4 Mgz CuOqg mp-1099249  0.001 0.002
MgCuP207 MgCuP207 mp-1041741  0.093 0.088
MgNi(PO3)4 MgNi(PO3)a mp-1045786  0.018 0.024
MgTi2NiOg MgTi2NiOg mp-1221952  0.009 0.023
MgTis(PO4)s MgTis(PO4)s mp-1222070  0.075 0.076
MgV4Cu3zO14 MgV4Cu3zO14 mp-1222158  0.060 0.070
Mn2VPO7 Mn2VPO7 mp-1210613  0.125 0.153
Mn4Zn3(NiOg)2 MnyZn3(NiOg)2 mp-1222033  0.054 0.063
Mn7(P207)4 Mn7(PQO7)4 mp-778008 0.123 0.132
MnAgO2 MnAgO2 mp-996995 0.098 0.112
NaszCaigFe(PO4)14 NaszCaigFe(PO4)14 mp-725491 0.031 0.038
Na7MgrFes(PO4)12 Na7MgrFes(PO4)12 mp-1173791  0.028 0.036
NaCaMgFe(SiO3)4 NaCaMgFe(SiO3)4 mp-1221075  0.026 0.032
NaMnFe(POy4)2 NaMnFe(POy4)2 mp-1173592  0.032 0.034
SnaSboPbsO13 SnaSboPbsO13 mp-1219056 0.025 0.038
Y3InoGazOq2 Y3InoGazOq2 mp-1207946  0.008 0.028
ZnaCr3FeOg Mg2GaysOg mp-4590 0.022 0.040
Zn3Nig (SbOs)2 Zn3Nig (SbOs)2 mp-1216023  0.092 0.108
ZraSbaPbsO13 Zr2SboPbysO13 mp-1215826  0.025 0.042

Table 4 Column 1: IDs of 43 A-lab crystals reported in [59]. Columns 2-3: compositions
and IDs of the nearest neighbor in the MP, found by the new invariants, see column 5. Column

4: distance EMD4, on matrix invariants PDA(S;100). Column 5: max distance EMDS,? on
new invariants PDA{"}(S;100) for orders h = 1,2. All distances are in Angstroms.

In addition to Loo-based distances in Tables [I} 4] below we also use metrics
based on RMS (Root Mean Square) between vectors or rows of PDA matrices, so
the resulting EMD on PDA{"} is written without a subscript for simplicity. The
RMS-based metrics have Lipschitz constant 2 (or 4 for h > 1) by Corollary

Since any computations accumulate arithmetic errors, we start by finding ge-
ometric near-duplicates (under isometry including reflections) with the threshold
10714 = 107 '¥m for all distances. Then we gradually increase the threshold
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to 0.01A, which is about 1% of the smallest interatomic distance and consid-
ered experimental noise. Tables summarize all-vs-all comparisons across the
databases ICSD, MP, and GNoME by using two distances on the new PDA®.

Table 5 Count and percentage of pure periodic crystals in each database (left) found to have a
near-duplicate in other databases (top) by EMD and EMD, under 10~%A on PDA(?)(S; 100).

Data ICSD MP GNoME
Lo RMS Lo RMS Lo RMS
count % |count % |count % |count % |count % |count %
ICSD 9454 8.05|9462 8.05| 53 0.05| 154 0.13 1 0.00 8 0.01
MP 26 0.02| 87 0.06| 80 0.05| 293 0.19| 10 0.01| 21 0.01
GNoME 1 0.00 8 0.00| 10 0.00| 20 0.01 4351 1.13|4392 1.14

Table 6 Count and percentage of pure periodic crystals in each database (left) found to have a
near-duplicate in other databases (top) by EMD and EMD, under 10~3A on PDA(?)(S; 100).

Data ICSD MP GNoME
Lo RMS Lo RMS Lo RMS
count % |count % |count % |count % |count % |count %
ICSD 9509 8.09(9779 8.32| 273 0.23| 1021 0.87| 18 0.02| 84 0.07
MP 176 0.11| 764 0.50| 545 0.36|2067 1.35| 41 0.03| 161 O0.11
GNoME| 14 0.00| 55 0.01 38 0.01] 138 0.04|4432 1.15|4590 1.19

Table 7 Count and percentage of pure periodic crystals in each database (left) found to have a
near-duplicate in other databases (top) by EMD and EMD,, under 10~4A on PDA () (S; 100).

Data ICSD MP GNoME
Loo RMS Loo RMS Lo RMS
count % |count % |count % |count % |count % |count %
1ICSD 10411 8.86|12845 10.93| 1910 1.63 | 4708 4.01| 170 0.14| 636 0.54
MP 1595 1.04| 5182 3.38 |3709 2.42|7018 4.58| 343 0.22] 1289 0.84
GNoME| 122 0.03| 393 0.10 268 0.07| 507 0.13]4808 1.25|5070 1.32

Tables 59| count near-duplicates (under isometry not distinguishing mirror im-
ages) within each database, which can be filtered out for any analysis or training,
else the data becomes skewed. The ultra-fast ADA(S;100) finds nearest neighbors
within and between all databases using KD-trees [25]. All pairs within a given
threshold by ADA(S; 100) were re-compared by the stronger ADA®)(S;100), fol-
lowed by PDA(S;100) and finally PDA®) (S;100), each time keeping only the pairs
with distances within the threshold. To avoid repeated calculations, all invariants
were computed separately before making comparisons, see Fig. |§| and Table

Some experimental materials of different compositions may have very close
geometries because their structures were determined under different conditions,
such as temperature and pressure, which will be discussed in future work.
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Table 8 Count and percentage of pure periodic crystals in each database (left) found to have a
near-duplicate in other databases (top) by EMD and EMD, under 10~3A on PDA()(S; 100).

Data ICSD MP GNoME
Lo RMS Lo RMS Lo RMS
count % |count % |count % |count % |count % |count %
ICSD 16052 13.66(21073 17.94| 6722 5.72 | 9975 &8.49| 1263 1.08 | 3637 3.10
MP 7228 4.72 | 9275 6.05 |8301 5.42[10511 6.86| 2460 1.61 | 5821 3.80
GNoME| 589 0.15 793 0.21 | 625 0.16 | 906 0.24 |5581 1.45|8049 2.09

Table 9 Count and percentage of pure periodic crystals in each database (left) found to have a
near-duplicate in other databases (top) by EMD and EMDe under 0.01A on PDA()(S;100).

Data ICSD MP GNoME
Lo RMS Loo RMS Lo RMS
count % |count % |count % |count % |count % |count %
ICSD 30855 25.9|27898 23.4| 12540 10.5| 12004 10.1 | 6120 5.14| 5853 4.92
MP 12607 5.99 | 12588 5.98 |18466 8.77|18047 8.57| 11283 5.35| 11296 5.36
GNoME| 1379 0.36| 1230 0.32| 4645 1.21| 4998 1.30|35314 9.17|49403 12.8

Table 10 Each database has thousands of (near-)duplicates (by Loo) whose all atomic posi-
tions can be matched by tiny perturbations. Duplication with different compositions is unex-
pected for very low thresholds as replacing an atom with a different one should affect geometry.

near-duplicates database | 1071°A 10-6A 1075A 10~*A 103A 1072A
pairs of entries ICSD 8994 8995 9036 10353 33314 259169
within a threshold MP 5 40 283 2718 26703 278739

by EMD on PDA®2) GNoME 1852 2482 2524 2719 3284 39487
percentage of all entries 1ICSD 8.05 8.05 8.09 8.86 13.66 26.24

in close pairs vs MP 0.01 0.05 0.36 2.42 5.42 9.42
the full database GNoME 0.84 1.13 1.15 1.25 1.45 9.17
percentage of close ICSD 46.91 46.90 46.70 45.36  51.96 71.19
pairs with different MP 60.00 85.00 97.53 99.01 99.88  99.93

chemical compositions | GNoME 33.86 47.38  46.71 44.28 47.05 90.96
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Fig. 9 Time in milliseconds to compare invariants ADA (left) and PDA (right). Blue: average
over pairwise comparisons of 10 random crystals from 3 databases for £k = 100 and a fixed size m
of an asymmetric unit. Orange: average per atom over 500 random crystals for k = 1,...,100.

Table shows five pairs that were found in the Materials Project within
107194 for Lo on ADA(S;100). Three pairs with different compositions have iden-
tical numerical data and likely need updating because changing chemical elements
should perturb geometry. Two pairs with identical compositions have identical
cells and atomic coordinates that can be matched by reflection, see the appendix.
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Table 11 Times (hours:minutes:seconds) to calculate PDA and PDA{2} for each database,
and times to compare each pair of databases by the metric EMDs, to produce Table El The
vectors ADA and ADA{2} are near-instantly computable from PDA and PDA{2}, respectively.

data Invariants Comparisons Sum of

‘ PDA  PDA{? ‘ ICSD  MP GNOME‘ times
ICSD 0:01:07  5:57:26 | 0:04:02 0:04:47  0:00:50 6:08:12
MP 0:04:35 25:44:33 | 0:04:10 0:05:32  0:01:44 | 26:00:34
GNoME | 0:03:47  9:54:48 | 0:00:43 0:01:51  0:14:53 10:16:02

Table 12 Geometrically identical entries in MP, three of which have different compositions.

MP id 1 MP id 2 composition 1  composition 2 compositional distance [29]
mp-1100417 mp-631388 VSbRh CdIrRu 8

mp-1013559 mp-1013733 SrzAsz CagBiSb 1.2

mp-1013536 mp-1013552 SrzPN SrzPs> 0.2

mp-771976 mp-1345479 Rb2Be2O3 Rb2Be203 0

mp-29783 mp-1338697 BsHg BsHo 0

7 Discussion of limitations, scientific integrity, and growing significance

Diffraction patterns helped predict cell-based representations of crystals for 100+
years. Recently, [57] showed how to convert any crystal into many different homo-
metric structures that have identical diffraction. Fig. [1| (right) illustrated how any
known crystal can be easily disguised by changing or expanding its cell, perturbing
atoms to make the new cell primitive, and changing chemical elements.

As a result, artificially generated structures threaten the integrity of experi-
mental databases [I3], which are already skewed by previously undetectable near-
duplicates in other databases [I]. These practical challenges motivated us to for-
malize the fundamental questions Same or different, and by how much? [54]. Prob-
lem [I-2) asked for a complete, Lipschitz continuous, and polynomial-time invariant
of all periodic point sets with up to m points in a unit cell, and is being addressed
for other real objects in the emerging area of Geometric Data Science [38].

While diffraction patterns and PDDs cannot distinguish infinitely many ho-
mometric crystals, PDD?} distinguished all known (infinitely many) counter-
examples to the completeness of the PDD under isometry in Examples[3.4 and
For practical dimensions and orders n, h < 3, the time of PDD{"} is near-linear
in both key input sizes k, m by Theorem The new hierarchy of ADA"} and
PDA{"} for h > 1 allows us to use the stronger invariants PDA {2} only in rare
cases to confirm exact duplicates after much faster filtering by ADA, PDA.

The limitations are Conjectures (completeness of PDD™ in R") and
(exact asymptotic of PDD"} for h > 1), which we plan to tackle in future work.

Before Theorem there was no complete, continuous, and polynomial-time
invariant of periodic sets even in dimension n = 1. The developed hierarchy quickly
detects near-duplicates of any newly claimed materials in existing databases and
hence becomes an efficient barrier for noisy disguises of known crystals.

This research was supported by the Royal Society APEF fellowship “New geo-
metric methods for mapping the space of periodic crystals’ ’(APX/R1/231152) and
EPSRC New Horizons grant “ Inverse design of periodic crystals” (EP/X018474/1).
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Appendix: details of hierarchical comparisons across three databases

Fig. include screenshots (from https://text-compare.com) of different CIF's
for the pairs from the last two rows of Table[I2] Though distance-based invariants,
such as PDA{"} cannot distinguish mirror images, our slower metric on isosets
[6], which are complete under rigid motion, has approximate values 0.468A and
0.33552A, so these mirror images are not related by translations and rotations.

[}

-

# generated using pymatgen 3| 1| # generated using pymatgen

data_Rb2Be203 2 | data_Rb2Be203
_symmetry_space_group_name_H-M  PA_12_12 48] _synmetry_space_group_name_H-M  P4_32_12
_cell_length_a 7.57761200 4| _cell length a 7.57761200
cell_length b  7.57761200 5| _cell_length_b  7.57761200
cell_length_c  7.39162600 6| _cell length c  7.39162600

cell_angle alpha  99.00000000 7| _cell angle alpha  90.00000000
cell_angle_beta  90.06000000 8| _cell_angle_beta  90.00000000
“cell_angle_gamma  90.00000000 9| “cell_angle_gamma  90.00000000

_synmetry_Int_Tables_number 92 48 _synmetry_Int_Tables_number 96
_chemical_formula_structural  Rb2Be203 11 _chemical_formula_structural  Rb2Be203
_chemical_formula_sum  'Rb8 Be8 012' 12 _chemical_formula_sun 'Rb8 Be8 012"
_cell_volume  424.42867002 13 _cell_volume  424.42867002
“cell formula_units_Z 4 14 _cell formula_units Z 4

Toop_ 15 Toop_

_symmetry_equiv_pos_site_id 16 _symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz 17 _symmetry _equiv_pos_as_xyz

"%, Y, z' 18 1 'x, y, z°

2 tysl/2, x+1/2, z+1/8° B8 2 -y+1/2, x+1/2, z+3/4°

3 tex, -y, z+1/2" 20 3 -x, -y, z+1/2°

4 'y#l/2, -x+1/2, z+3/4° 431 4 ysl/2, -x+1/2, z+4/4°

5 'x#1/2, -y+1/2, -z+3/4' 22 5 'x+1/2, -y+1/2, -z+1/4'

6 'y, -x, -z+1/2' 23 6 '-y, -x, -z+1/2'

7 t-x#1/2, y+1/2, -z+1/4° 2 7 -x+1/2, y+1/2, -z43/4°

8 'y, x, -z 25 8 'y, x, -z

loop_ 26/ Loop_

_atom_type_symbol 27 _atom_type_symbol

“atom_type_oxidation_number 28 atom_type_oxidation number

Rb+ 1.0 29 “Rb+ 1.0

Be2+ 2.0 30 Be2+ 2.0

02- -2.0 31 02- -2.0

loop_ 32| loop_

_atom_site_type_symbol 33 _atom_site_type_symbol

“atom_site_label 34 atom_site label

“atom_site_symmetry multiplicity 35 _atom_site_symmetry_multiplicity
_atom_site_fract_x 36 _atom_site_fract_x

_atom_site_fract_y 37 _atom_site_fract_y

_atom_site_fract_z 38 _atom_site_fract_z

“atom_site_occupancy 39 “atom_site_occupancy

Rb+ Rb® 8 0.00412300 ©.24620200 ©.13596100 1 48 Rb+ RbO 8 ©0.00412300 ©.24620200 ©.86303900 1
Be2+ Bel 8 0.03254500 0.71957700 0.15807100 1 41 Be2+ Bel 8 0.03254500 0.71957700 ©.84192900 1
02- 02 8 ©.12838800 0.63329300 0.99372800 1 42 02- 02 8 0.12838800 0.63329300 0.90627200 1
02- 03 4 ©.11258100 0.88741900 0.25000000 1 43 02- 03 4 0.11258100 0.88741900 0.75000000 1

Fig. 10 The CIFs of the MP entries mp-771976 (left) and mp-1345479 (right) have identical
cells and different coordinates, which can be matched under reflection (z,y, 2) — (z,y,1 — 2).
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3| 1|# generated using pymatgen #|1|# generated using pymatgen
2 | data_BSHO 2 | data_BSHO
33 _symmetry_space_group_name_H-M  P4_3 33 _symmetry_space_group_name_H-M  P4_1
4 _cell length_a  10.54060400 4| cell length_a  10.54069400
5| _cell_length b  10.54069400 5| _cell length b  10.54069400
6| _cell_length c  10.38275200 6| _cell length_c  10.38275200
7| _cell_angle alpha  90.80000000 7| _cell_angle_alpha  90.00000000
8 | _cell_angle_beta  90.00600000 8| _cell angle beta  90.00000000
9 | “cell_angle_ganma  90.00000000 9| _cell_angle_gamma  90.09000000
#/10 _symmetry_Int_Tables_number 78 #10 _symnetry_Int_Tables_number 76
11| “chemical formula structural — BSHO 11| chemical formula structural — BSH9
12| _chemical_formula_sun  'B4@ H72' 12| _chemical_formula_sum  'BA® H72'
13| “cell volume  1153.58843176 13| “cell volume  1153.58843176
14 _cell formula_units_Z 8 14| _cell formula_units Z 8
15| Toop_ 15| Toop_
16| _symmetry_equiv_pos_site_id 16| _symmetry_equiv_pos_site_id
17| “symmetry_equiv_pos_as_xyz 17| “symmetry_equiv_pos_as_xyz
18 1 x, y, oz 18 1 %, vy, z
319 2 -y, x, z43/4 318 2 -y, x, z41/4
20 3 -x, -y, z+l/2 200 3 -x, -y, z+1/2°
32 4 'y, x, z+d/a ¥ 4 vy, x, z43/a'
22| Toop_ 22| 1oop_
23| _atom_type_symbol 23| _atom_type_symbol
24| “atom_type_oxidation_number 24| “atom_type_oxidation_number
2.6 2.0
1.0 1.0
_aton_site_type_symbol _atom_site_type_symbol
te_label te_label
aton_site_symmetry_multiplicity “atom_site_symmetry_multiplicity
32| “atom site fract x 32| “atom site fract x
33 te_fract_y 33
34) _atom_site fract_z 34 atom site =
35| _atom_site_occupancy 35| _atom_site_occupancy
438 B2+ Bo 4 0.11408000 0.64386400 ©.95599500 1 436 B2+ B0 4 0.11408000 PU35693608 ©0.70599500 1
37 B2+ Bl 4 0.11479000 0.80064900 ©.01960900 1 37| B2+ B1 4 0.11479000 ©6.19935100 ©.76960908 1
38 B2+ B2 4 0.13930600 0.78341600 0.52204400 1 38 B2+ B2 4 0.13030600 ©0.21658400 ©.27204400 1
39 B+ B3 4 0.16367800 0.67435000 0.10794400 1 39 B+ B3 4 0.16367300 0.32564100 0.85794400 1
40 B2+ B4 4 0.17810000 0.62483600 0.56999700 1 48 B2+ B4 4 0.17810000 0.37516400 0.31999700 1
41 B2+ BS 4 0.19438700 0.29819900 0.21616500 1 41 B2+ BS 4 0.19438700 0.70189100 ©.96616500 1
42 B2+ B6 4 0.21862200 0.27675100 0.81692700 1 42 B2+ B6 4 0.21862200 0.72324900 0.56692700 1
43 B+ B7 4 0.24889600 ©.26653700 ©.36628300 1 43 B+ B7 4 0.24889600 0.73346300 0.11628300 1
44 B2+ BS 4 0.27597300 0.62377700 0.00279800 1 42 B2+ B8 4 0.27597300 0.37622300 0.75279800 1
45 B2+ B9 4 0.33686400 0.54742100 0.51391100 1 45 B2+ B9 4 0.33686400 0.35257900 0.26391100 1
46 H- H10 4 0.03451600 0.57415800 0.91470900 1 46 H- HIO 4 ©.03451600 0.42584200 0.66470900 1
47 H- HIL 4 0.03591900 0.87923800 0.083907600 1 47 H- HI1 4 0.03591900 0.12076200 0.78007600 1
48 H- HI12 4 0.05061000 0.85175600 0.53772300 1 48 H- HI12 4 0.05061900 0.14824400 0.28772300 1
49 H- HI3 4 0.00461000 0.56973100 0.48222600 1 49 H- HI3 4 0.09461000 0.33026900 0.23222600 1
50 H- Hl4 4 0.09821000 0.75725700 ©.89853000 1 50 H- Hl4 4 0.09821000 ©0.24274300 ©.64853000 1
51 H- H1S 4 0.10561200 0.35789000 ©.17978100 1 51 H- HIS 4 0.10561200 ©0.64211000 ©.92978160 1
52| H- H16 4 ©.12528200 0.54448800 0.63021500 1 52| H- HI6 4 0.12528200 ©.45551200 ©.38021500 1
53| H- H17 4 0.12978200 0.63416700 ©.20947900 1 53 H- H17 4 0.12978200 ©0.36583300 ©.95947900 1
54 H- H18 4 0.13802700 0.22170300 ©.73273600 1 54 H- HI8 4 0.13802700 ©0.77829700 ©.48273600 1
55| H- H19 4 0.15875900 0.34894500 ©.88085600 1 55 H- HI9 4 0.15875900 ©0.65105500 ©.63085600 1
56| H- H20 4 0.18586200 0.80628200 ©.40313600 1 56| H- H20 4 0.18586200 ©.19371800 ©.15313600 1
57 H- H21 4 0.21017600 0.20715300 ©.46941300 1 57 H- H21 4 0.21017600 0.70284700 ©.21941300 1
58 H- H22 4 0.22050700 0.62274800 0.88579400 1 58 H- H22 4 0.22050700 0.37625200 ©.63579408 1
50| H- H23 4 0.24453500 0.56659100 0.47575100 1 50| H- H23 4 0.24453500 ©0.43340900 0.22575100 1
60 H- H24 4 0.27196800 0.34362900 0.72013900 1 60 H- H24 4 0.27196800 ©0.65637100 ©.47013900 1
61 H- H25 4 ©.29625400 0.33575900 ©.14706400 1 61 H- H25 4 0.29625400 ©0.66424100 ©.89706400 1
62 H- H26 4 ©.34816300 0.53688800 0.00594200 1 62 H- H26 4 0.34816300 ©.46311200 ©.75594200 1
63 H- H27 4 0.41210500 0.43252200 ©.27195600 1 63 H- H27 4 0.41210500 ©0.56747800 ©.82195600 1

Fig. 11 The CIFs of the MP entries mp-29783 (left) and mp-1338697 (right) have identical
compositions and unit cells, but different fractional coordinates of atoms, which can be exactly
matched under reflection (z,y, z) — (z,1 — y, 2 — 0.25), where z — 0.25 is taken modulo 1.

Tables include the running times and numbers of compared pairs and
resulting unique entries for two versions of (Lo and RMS-based) distances between
the invariants ADA(S;100), PDA(S;100), ADA®)(S;100), PDA®) (S;100).

The smallest threshold 107 1°A in Table[13]is considered a floating-point error,
and the resulting pairs of geometric duplicates are available by request. At the
higher threshold 107%A in Table [14 only a few extra duplicates appear. However,
the further tables show that the numbers of near-duplicates substantially grow for
larger thresholds up to 0.01A, which is still considered experimental noise.

In the bottom section of Table [I3] the number 3248 of geometric duplicates
in the GNoME was previously found in [5, Table 1] by comparisons of CIFs by
numerical data (unit cell parameters and atomic coordinates) than by invariants.
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Table 13 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the

threshold 1071°A and k = 100 atomic neighbors with sequentially stronger invariants.

Loo
ADA PDA ADA®) PDA®)

RMS
ADA PDA ADA® PDA®)

[osp | Pairs |8994 8994 8094 8004 | 8994 8094 8994 8994
7 | Entries [9452 9452 0452 9452 | 9452 9452 0452 9452
108D % 8.05 805 805 805 |805 805 805 8.05
Time (s)| 3.1 2.6 0.0 22 |65 1.8 0.0 1.9
losp | Pairs | 33 33 33 33 33 33 33 33
7 | Entries | 33 33 33 33 33 33 33 33
NS % 0.03 0.03 0.03 0.03 |0.03 003 0.03 0.03
Time (s)| 43 0.0 0.0 00 |49 00 00 0.0
Pairs | 0 0 0 0 0 0 0 0
ICVSSD Entries 0 0 0 0 0 0 0 0
GNoME| % 0.00 0.00 0.00 0.00 |0.00 0.00 0.00 0.00
Time (s)| 11.2 0.0 0.0 00 [105 00 0.0 0.0
P Pairs | 33 33 33 33 33 33 33 33
. | Entries | 15 15 15 15 15 15 15 15
10SD % 0.0l 0.01 0.01 0.0l |00l 001 0.0l 001
Time (s)| 3.6 0.0 0.0 00 | 47 00 0.0 0.0
P Pais | 5 5 5 5 5 b 5 5
vs Entries 10 10 10 10 10 10 10 10
NS % 001 0.0l 0.01 00l |00l 001 0.0l 001
Time (s)| 5.1 0.0 0.0 00 | 76 00 0.0 0.0
P Pairs | 4 4 1 Z 4 Z Z
vs Entries 4 4 4 4 4 4 4 4
GNoME| % 0.00 0.00 0.00 0.00 |0.00 0.00 0.00 0.00
Time (s)| 87 0.0 0.0 00 [11.2 00 0.0 0.0
Pairs | 0 0 0 0 0 0 0 0
GNV‘);VIE Entries | 0 0 0 0 0 0 0 0
10SD % 0.00 0.00 0.00 0.00 |0.00 0.00 0.00 0.00
Time (s)| 4.3 0.0 0.0 00 |85 00 00 0.0
Pairs | 4 4 1 1 1 4 1 1
GNoME| piries | 4 4 4 4 4 4 4 4
I\YFP % 0.00 0.00 0.00 0.0 |0.00 000 0.00  0.00
Time (s)| 52 0.0 0.0 00 |97 00 00 0.0
GNoMp| Pairs [1852 1852 1852 1852 | 1852 1852 1852 1852
o | Entries 3248 3248 3248 3248 |3248 3248 3248 3248
% 084 0.84 0.84 0.84 |0.84 084 084 0.84

GNoME

Time (s)

145 0.5 0.0 0.5
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Table 14 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the
threshold 107%A and k = 100 atomic neighbors with sequentially stronger invariants.

Loo RMS

ADA PDA ADA® PDA(® |ADA PDA ADA() PDA(®)

[csp | Pairs 8999 8998 8996 8995 | 9036 9027 9003 8999
7 | Entries [9462 9460 9456 9454 | 9510 9493 90470 9462
108D % 8.05 8.05 805 8.05 [809 808 806  8.05
Time (s)| 3.1 1.9 0.0 1.9 |83 52 01 4.7

[osp | Pais | 102 101 53 53 | 310 283 168 163
7| Entries | 102 101 53 53 | 292 265 159 154
NS % 0.09 0.09 0.05 0.05 [025 023 014  0.13
Time (s)| 33 01 0.0 00 |62 02 00 0.1

Pairs | 3 3 1 1 15 15 8 8

ICVSSD Entries 3 3 1 1 15 15 8 8
GNoME| % 0.00 0.00 0.00 0.00 |001 001 001 0.0l
Time (s)| 88 0.0 0.0 00 [135 00 0.0 0.0

P Pairs | 102 101 53 53 | 310 283 168 163
. | Entries | 57 56 26 26 | 186 169 91 87
10SD % 0.04 0.04 0.02 0.02 |0.12 0.11 0.06 0.06
Time (s)| 28 0.0 0.0 00 | 49 01 0.0 0.0

P Pairs | 91 90 10 40 | 290 279 148 148
. | Entries | 182 180 80 80 | 558 537 293 293
NS % 0.12 0.12 0.05 0.05 036 035 019  0.19
Time (s)| 7.1 0.1 0.0 00 | 87 03 00 0.1

P Pairs | 12 12 10 10 4 42 22 22
o | Entries | 12 12 10 10 43 41 21 21
GNoME| % 0.01 001 0.0l 0.0l |003 003 001 0.0l
Time (s)| 123 0.0 0.0 00 |191 02 00 0.1

Pairs | 3 3 1 1 15 15 8 8

GNV‘);VIE Entries | 3 3 1 1 13 13 8 8
10SD % 0.00 0.00 0.00 0.00 |0.00 0.00 0.00 0.00
Time (s)| 4.7 0.0 0.0 00 [131 01 0.0 0.0

Pairs | 12 12 10 10 4 42 22 22

GNME| b thies | 12 12 10 10 | 40 38 20 20
I\YFP % 0.00 0.00 0.00 0.00 |00l 001 0.01 001
Time (s)| 80 0.0 0.0 00 |105 01 0.0 0.0
GNoMp| Paits 2511 2490 2489 2482 | 2547 2516 2513 2504
ve e Tl 115 113|116 115 115 14
GNOME| 1 e () 184 3.3 0.0 25 (302 35 0.0 2.6
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Table 15 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the

threshold 1075A and k = 100 atomic neighbors with sequentially stronger invariants.

RMS

Lo
PDA ADA(®) PDA®)

ADA ADA PDA ADA(® PDA®)

[osp | Pairs |9I73 9143 9041 9036 [10400 10190 9307 9339
7| Entries [9661 9620 9511 9509 |10465 10294 9843 9779
10SD % |822 819 810 809 | 891 876 838 832
Time (s)| 4.9 54 0.1 47 | 95 57 01 5.0

osp | Pais | 788 774 291 201 | 2641 2486 1245 1199
7| Entries | 702 690 273 273 | 1946 1848 1066 1021
NS % |060 059 023 023 |1.66 157 091  0.87
Time (s)| 5.0 0.6 0.0 02 | 73 16 00 0.7

[osp | Pairs | 67 61 18 18 191 171 89 85
vs Entries | 67 61 18 18 173 159 88 84
ONenE| % 006 005 002 002 [ 015 014 007  0.07
Time (s)| 145 0.1 0.0 00 |166 01 00 0.1

P Pairs | 788 774 291 201 | 2641 2486 1245 1199
. | Entries [ 400 477 176 176 | 1628 1537 788 764
108 % 1032 031 0.11 011 | 1.06 1.00 051  0.50
Time (s)| 44 0.3 0.0 01 | 70 08 00 0.4

P Pairs | 821 792 289 283 | 2746 2659 1309 1285
., | Entries [1430 1378 557 545 | 3740 3620 2104 2067
NS % 093 090 036 036 | 244 236 137  1.35
Time (s)| 6.3 0.7 0.0 02 | 98 15 00 0.7

P Pairs | 116 111 44 12 | 381 368 170 169
o | Entries | 110 106 43 41 | 346 333 162 161
GNoME| % [0.07 007 003 003 | 023 022 011 0.1
Time (s)| 14.9 0.1 0.0 00 | 176 03 00 0.1

Pairs | 67 61 18 18 191 171 89 85

GN‘i’SME Entries | 41 36 14 14 123 115 57 55
[OSD % 1001 0.0l 0.00 000 |0.03 003 00l 0.01
Time (s)| 6.6 0.1 0.0 00 |127 02 00 0.1

Pairs | 116 111 44 42 | 381 368 170 169

GNji\AE Entries | 99 94 40 38 | 271 262 139 138
NP % 003 002 00l 00l | 007 007 004 0.04
Time (s)| 81 0.1 0.0 00 |127 03 00 0.1
GNoME| Paits | 2640 2564 2549 2524 | 2721 2678 2648 2606
ve | e T 16 115 | 195 198 1a1 11
GNOME | i e (s)| 221 3.7 0.0 2.7 | 285 34 00 2.6
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Table 16 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the
threshold 10~*A and k = 100 atomic neighbors with sequentially stronger invariants.

Leo RMS
ADA PDA ADA(® PDA(®|ADA PDA ADA®? PDA®
[osp | Pairs 14009 13669 10360 10353 [33936 31231 18669 18021
Entries |12045 11857 10425 10411 |15732 15004 13061 12845
ICVSSD % |10.25 10.09 8.87  8.86 |13.39 1277 11.12 10.93
Time (s)| 45 67 0.1 50 | 55 108 0.1 6.7
osp | Paits | 7304 7087 2586 2586 |26146 24318 11831 11481
Entries | 3795 3729 1910 1910 | 6852 6645 4833 4708
l\fl‘j % 323 3.17 163 1.63 | 583 566 411  4.01
Time (s)| 4.6 35 0.0 1.3 | 93 142 0.2 7.3
csp | Pairs | 504 481 184 184 | 1892 1725 844 820
7 | Entries | 434 416 170 170 | 1285 1173 656 636
% 0.37 035 014 014 |[1.09 1.00 056  0.54
GNoME| ...
Time (s)| 16.0 0.9 0.0 03 | 180 23 05 1.0
P Pairs | 7304 7087 2586 2586 |26146 24318 11831 11481
. | Entries [ 3881 3828 1595 1505 | 7275 7115 5266 5182
1oSp % 253 250 1.04  1.04 | 475 464 344  3.38
Time (s)| 3.1 42 0.0 1.7 | 63 111 0.1 4.9
P Pairs | 7843 7710 2718 2718 |27091 26010 12634 12426
. | Entries [ 6196 6121 3700 3709 |8406 8176 7107 7018
P % 4.04 399 242 242 | 549 534 464 458
Time (s)| 4.2 35 0.0 14 | 89 94 01 5.3
P Pairs | 1083 1067 378 377 | 3855 3680 1743 1713
Entries | 883 873 344 343 | 2470 2368 1312 1289
vs % 058 0.57 022 022 |1.61 155 08  0.84
GNoME | ..
Time (s)| 127 1.6 0.0 06 | 135 26 00 1.3
GNoME| Pairs | 504 481 184 184 | 1892 1725 844 820
o, "| Entries | 202 280 122 122 | 589 565 403 393
1CSD % 0.08 007 0.03 003 |015 015 010 0.10
Time (s)| 6.1 07 0.0 03 | 109 15 00 0.7
GNoME| Pairs | 1083 1067 378 377 | 3855 3680 1743 1713
07| Entries | 456 453 269 268 | 629 601 516 507
P % 0.12 012 0.07 007 |0.16 016 0.13  0.13
Time (s)| 7.1 14 0.0 06 |126 25 00 1.0
GNoME| Pairs | 2850 2804 2741 2719 | 3461 3144 2955 2901
ve | Enen | 0T Tes 126 195 |15 180 194 12
GNOME| e (s)| 146 47 0.1 36 |285 41 00 3.8
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Table 17 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the
threshold 1073A and k = 100 atomic neighbours with sequentially stronger invariants.

Loo RMS
ADA PDA ADA(®® PDA(®| ADA PDA ADA(®® PDA®
1CSD Pairs |82033 78770 33672 33314 |258044 227421 119734 115102
o Entries |20066 18893 16352 16052 | 27894 24479 22104 21073
10SD % 17.08 16.08 13.92 13.66 | 23.74 20.84 18.81 17.94
Time (s)| 4.7 27.0 05 14.2 9.8 759 1.0 36.7
lcsp | Pairs 75607 73226 25476 25416 275005 251022 121371 117451
vs Entries | 9455 9320 6759 6722 11921 11406 10130 9975
MP % 805 7.93 5.75 5.72 | 10.15 9.71  8.62 8.49
Time (s)| 4.0 236 0.4 9.6 9.0 837 3.3 38.4
loSp | Pairs [6255 5751 1881 1853 | 27803 23438 10315 9543
o Entries | 3036 2755 1279 1263 | 5814 5359 3952 3637
% 258 235 1.09 1.08 | 495 456 3.36  3.10
GNoME| ...
Time (s) 12.5 3.4 0.0 1.3 15.7 10.5 0.8 5.1
MP Pairs |75607 73226 25476 25416 |275005 251022 121371 117451
vs Entries | 9014 8884 7240 7228 11124 10415 9414 9275
1OSD % 5.88 5.80 4.72 472 | 726 6.80 6.14  6.05
Time (s) 4.4 25.0 0.4 10.2 10.3 75.1 2.0 36.1
P Pairs |79298 77364 26760 26703 |284625 267243 127150 124642
s Entries |10482 9973 8369 8301 | 14386 12798 10962 10511
s % 6.84 6.51 5.46 542 | 939 835 7.15 6.86
Time (s)| 6.0 251 0.4 9.5 13.2 825 1.3 37.6
MP Pairs |12057 11622 3890 3864 | 44774 41267 19263 18717
vs Entries | 5011 4823 2475 2460 7959 7345 6016 5821
% 3.27 3.15 1.62 1.61 | 519 479 3.93  3.80
GNoME| ...
Time (s)| 13.8 5.7 0.1 2.5 21.6  16.0 0.3 8.2
GNoMp| Pairs [6255 5751 1881 1853 | 27803 23438 10315 9543
. Entries | 802 760 603 580 | 1224 1059 838 793
1OSD % 0.21 0.20 0.16 0.15 | 0.32 0.28  0.22 0.21
Time (s) 6.1 3.9 0.0 1.5 16.5 10.6 0.1 4.1
GNoME Pair's 12057 11622 3890 3864 44774 41267 19263 18717
v Entries | 930 848 638 625 | 1655 1317 981 906
NP % 0.24 0.22 017 016 | 043 034 0.25 0.24
Time (s)| 7.3 5.8 0.1 2.4 189  15.3 0.2 6.5
GNoME| Pairs [9932 45427 3595 3284 [ 74039 14086 9894 5781
. Entries |13720 6889 6016 5581 | 40640 14993 12992 8049
% 356 1.79 1.56 1.45 | 1290 3.89  3.38 2.09
GNoME| ...
Time (s)| 19.9 11.1 0.0 4.5 447 51.0 0.1 8.7
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Table 18 Number of pairs, unique entries (and as a percentage of the database size), and
running time (in seconds) taken at each stage of the duplicate finding process, using the
threshold 10~2A and k = 100 atomic neighbors with sequentially stronger invariants.

L RMS

ADA PDA ADA® PDA(®| ADA PDA ADA® PDA®
Pairs | 687635 631318 263187 259169 | 2342691 1976021 1047622 966117

ICVSSD Entries | 46723 37356 33746 30831 68312 53203 50481 43508

1CSD % 39.77  31.80 28.72  26.24 58.15 4529 4297  37.03
Time (s) 9.1 193.4 3.5 81.6 54.5 581.1 6.7 251.7

1CSD Pairs | 851607 792015 273619 269722 | 3467416 2888095 1359712 1274212

vs Entries | 19875 15834 12968 12398 47467 28057 23532 18785
% 16.92 13.48 11.04 10.55 40.40 23.88 20.03 15.99
Time (s)| 10.0 209.3 4.8 60.6 60.6 819.0 10.7 316.2
1CSD Pailrs 164605 125416 35516 30837 | 1307587 779813 299214 223812
ve Entries | 10637 9094 6460 6079 25425 16358 12792 10833
% 9.05 7.74 5.50 5.17 21.64 13.92 10.89 9.22
GNoME| ...
Time (s)| 15.3 49.8 1.4 12.8 49.6 323.2 2.6 71.3
Pairs | 851607 792015 273619 269722 | 3467416 2888095 1359712 1274212

1\‘/23 Entries | 17575 14364 11759 11156 | 38866 23146 19735 16263
IS % 11.47  9.37 7.67 7.28 25.36 15.10 12.88 10.61
Time (s)| 10.0 227.8 6.1 76.4 76.0 794.3 10.3 310.4

MP Pairs | 903434 828727 285041 278739 | 3906101 3071761 1404598 1324840
vs Entries | 28806 19177 16067 14430 | 66908 34277 30425 23452
MP % 18.80 12,51 10.49 9.42 43.66 22.37 19.86 15.30
Time (s)| 13.4 259.7 5.1 84.1 110.1 1417.2 11.5 335.9

MP Pairs | 202503 156999 51103 47040 | 1646545 928066 364659 291505

. Entries | 13362 10681 8411 7894 29364 18680 15365 12422
v % 8.72 6.97 5.49 5.15 19.16 12.19 10.03 8.11
GNoME| ...
Time (s)| 16.7 62.7 1.0 14.4 61.9 441.8 3.4 87.8
GNoME Pairs | 164605 125416 35516 30837 | 1307587 779813 299214 223812
Entries | 4702 2515 1624 1374 60377 11310 6923 3631
v % 1.22 0.65 0.42 0.36 15.68 2.94 1.80 0.94

ICSD Time (s) 8.6 47.6 0.8 13.1 103.2 326.8 2.7 70.2
GNOME Pair.s 202503 156999 51103 47040 | 1646545 928066 364659 291505
vs Entries | 11124 3401 2282 1733 97553 19661 14347 5792
MP % 2.89 0.88 0.59 0.45 25.34 5.11 3.73 1.50
Time (s) 9.8 61.5 0.8 14.7 116.5 439.3 3.6 91.3
GNoME Pahfs 1815980 174478 123171 39487 |30732727 2059788 1726547 421833
vs Entries | 197340 82859 73733 35315 | 326550 216030 208265 127820
GNoME % 51.27 21.53 19.15 9.17 84.83 56.12 54.10  33.21

Time (s)| 33.5 880.8 0.9 67.8 549.5  21659.9 12.7 1061.5
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