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Abstract

This paper rigorously solves the challenging problem of recognizing periodic

patterns under rigid motion in Euclidean geometry. The 3-dimensional case

is practically important for justifying the novelty of solid crystalline materials

(periodic crystals) and for patenting medical drugs in a solid tablet form.

Past descriptors based on finite subsets fail when a unit cell of a periodic

pattern discontinuously changes under almost any perturbation of atoms, which

is inevitable due to noise and atomic vibrations. The major problem is not only

to find complete invariants (descriptors with no false negatives and no false

positives for all periodic patterns) but to design efficient algorithms for distance

metrics on these invariants that should continuously behave under noise.

The proposed continuous metrics solve this problem in any Euclidean di-

mension and are algorithmically approximated with small error factors in times

that are explicitly bounded in the size and complexity of a given pattern.

The proved Lipschitz continuity allows us to confirm all near-duplicates fil-

tered by simpler invariants in major databases of experimental and simulated

crystals. This practical detection of noisy duplicates will stop the artificial gen-

eration of ‘new’ materials from slight perturbations of known crystals. Several

such duplicates are under investigation by five journals for data integrity.
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1. Continuous metric problem for periodic point sets and crystals

In Euclidean geometry, periodic sets of points model all periodic crystals

since any atom has a physically meaningful nucleus represented by an atomic

center [1]. This approach is more fundamental than using graphs with chemical

bonds, which are not real sticks and only abstractly representing inter-atomic5

interactions depending on various thresholds for distances and angles [2].

A lattice Λ ⊂ Rn is the infinite set of all integer linear combinations
n∑

i=1

civi

of a basis v1, . . . , vn of Euclidean space Rn. Any basis defines a parallelepiped

U called a primitive unit cell of Λ. The first picture in Fig. 1 shows different

unit cells in red, green, and blue, which generate the same hexagonal lattice.10

A periodic point set S ⊂ Rn is a finite union of lattice translates Λ + p

obtained from Λ by shifting the origin to a point p from a finite motif M ⊂ U .

Figure 1: Left: three (of infinitely many) primitive cells U,U ′, U ′′ of the same minimal area

for the hexagonal lattice Λ. Other images show periodic sets Λ+M with different cells and

motifs, which are all isometric to Λ whose hexagonal Voronoi domain is highlighted in yellow.

This paper is motivated by the growing crisis of artificial data in crystal-

lography [3]because a slight modification of a known material can be claimed

as ‘new’. Indeed, the fundamental question “same or different” [4] was not15

rigorously answered for periodic crystals. In the mathematical language, what

periodic crystals can we consider equivalent, i.e. in the same class under an

equivalence relation? One classical equivalence between crystals is by symme-

try, e.g. crystallographic space groups were classified into 230 types (if mirror

images are distinguished) already in the 19th century by Fedorov and Schonflies.20
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In 2024, experimental databases, e.g. the Cambridge Structural Database

(CSD) of 1.25+ million real materials [5], need much stronger classifications

than by 230 space groups or by chemical compositions. In fact, many crystals

such as diamond and graphite consist of the same elements but have vastly

different properties due to essential differences in their geometric structures.25

Structures of periodic crystals are experimentally determined in a rigid form.

Hence their most practical equivalence is rigid motion, which is a composition

of translations and rotations in Rn. The slightly weaker equivalence is isometry

(any distance-preserving transformation), including mirror reflections.

An isometry class (or pattern or or orbit under the action of all Euclidean30

isometries) consists of all sets that are isometric to each other. All isometry

classes of periodic point sets form a continuously infinite space. Indeed, almost

any perturbation of points such as atomic displacements caused by noise in

data produces a non-isometric crystal, which might have an arbitrarily scaled-

up primitive cell, an enlarged motif, and a different symmetry group as in Fig. 2.35

Figure 2: Past descriptors based on a primitive cell cannot continuously quantify a distance

between near-duplicates. For example, under almost any perturbation, symmetry groups

break down and a primitive cell volume discontinuously changes up to any integer factor.

Perturbations in Fig. 2 can be applied to any periodic crystal and mistakenly

used for re-formatting old crystals as ‘new’ by additionally replacing atomic

types with similar ones [6]. The first cases of geometric near-duplicates were

exposed in the CSD, see [7, section 7], [8, section 6], and on a much larger scale in

Google’s GNoME database, which was reviewed in [9], [3, Tables 1-2]. To avoid40

machine learning on skewed data, the filtering of near-duplicates is necessary

for any database of simulated or experimental objects, e.g. point clouds, that

can have infinitely many representations in different coordinate systems.

3



A pseudo-symmetry approach, for a threshold ε > 0, calls periodic sets

equivalent if their cell parameters and atomic coordinates differ by at most ε45

[10]. Then any sets can be joined by a long enough chain of ε-perturbations [11,

Prop 2.1]. If we allow any threshold ε > 0, the transitivity axiom (if A ∼ B ∼ C,

then A ∼ C) implies that all periodic point sets in Rn become equivalent.

A mathematical approach to noisy data is to quantify perturbations by a

distance metric satisfying all axioms in Definition 1.1 below and taking small50

positive values on pairs of sets in Fig.2, which is formalized in Problem 1.2(a) .

Definition 1.1 (metric). A metric on isometry classes of periodic sets of un-

ordered points in Rn is a real-valued function d satisfying these axioms:

(1.1a) d(S,Q) = 0 if and only if sets S,Q are isometric (denoted by S ≃ Q);

(1.1b) symmetry: d(S,Q) = d(Q,S) for any periodic point sets S,Q in Rn;55

(1.1c) triangle inequality: d(S,Q) + d(Q,T ) ≥ d(S, T ) for any S,Q, T . ■

Without the first axiom in (1.1a), even the zero function d(S,Q) = 0 satisfies

Definition 1.1a. The atomic vibrations [1, chapter 1] motivate a metric whose

continuity is quantified via a maximum displacement of atoms in (1.2a) below.

Problem 1.2 (continuous metric on periodic sets). Find a metric d on periodic60

point sets in Rn such that all the metric axioms of Definition 1.1 hold and

(1.2a) d is Lipschitz continuous : there is a constant λ > 0 such that, for any

sufficiently small ε > 0, if Q is obtained from any periodic set S ⊂ Rn by

perturbing each point of S within its ε-neighborhod, then d(S,Q) ≤ λε;

(1.2b) d(S,Q) is computed or approximated (up to an explicit error factor) in65

a time that has a polynomially upper bound in the sizes of motifs of S,Q. ■

Problem 1.2 can be widened to any real data (instead of crystals) and equiv-

alences (instead of isometry). Condition (1.2a) goes beyond a complete classi-

fication of periodic point sets modulo isometry. Indeed, any metric d satisfying

(1.2a) detects all non-isometric sets S ̸≃ Q by checking if d(S,Q) ̸= 0. Con-70
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versely, detecting an isometry S ≃ Q gives only a discontinuous metric d , e.g.

d(S,Q) = 1 for any non-isometric S ̸≃ Q and d(S,Q) = 0 for any S ≃ Q.

For finite sets under isometry, the persistent homology turned out to be

weaker than anticipated [12]. In this case, Problem 1.2 was solved by easier

and faster invariants [13, 14]. In the periodic case, Problem 1.2 was solved in75

dimension n = 1 [15] and for lattices in R2 [11, 16] but was open for n > 2.

Accuracies such as precision, recall, and F1-score make sense for finitely

many classes with (usually manual) labels. However, experimental noise (or

thermal vibrations of atoms) always produce slightly different objects whose

deviations should be quantified by a continuous distance metric. Hence the real80

ground truth in many applications is not one of finitely many labels but an

experimental structure within a continuous space of all potential objects. Using

crystals as an example, Problem 1.2 states the necessary conditions towards

continuous machine learning for any data including real (non-discrete) values.

This paper solves Problem 1.2 by defining a continuous metric on the com-85

plete invariant isoset from [17]. The first step introduces a boundary tolerant

metric BT on local clusters around points of a periodic set S, which continu-

ously changes when points cross a cluster boundary. This discontinuity at the

boundary can be formally resolved by an extra factor, which smoothly goes

down to 0 depending on an extra parameter. Without using extra parameters,90

the new metric BT will be exactly expressed in terms of simpler distances.

The second step uses the Earth Mover’s Distance [18] to extend BT to com-

plete invariants [17] that are weighted distributions of local clusters up to rota-

tions. The resulting metric on periodic sets in Rn is approximated with a factor

η, e.g. η ≈ 4 in R3, in a time depending polynomially on the input size.95

The third step proves the metric axioms and continuity d(S,Q) ≤ 2ε, which

also has practical importance. Indeed, if d(S,Q) is approximated by a value d

with a factor η, we get the lower bound ε ≥ d
2η for the maximum displacement

ε of points. Such a lower bound is impossible to guarantee by analyzing only

finite subsets, which can be very different in identical periodic sets, see Fig. 3.100
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Figure 3: Left: for any lattice S and a fixed size of a box or a ball, one can choose many

non-isometric finite subsets of different sizes. Right: the blue set S and green set Q in the

line R have a small Hausdorff distance dH = ε but are not related by a small perturbation.

2. Past work on distances and invariants of periodic point sets

This section clarifies that all past descriptors of periodic crystals are either

discontinuous under perturbations as in Fig. 2 or were not proved to be complete

under rigid motion. Problem 1.2 was open for periodic sets for n > 2.

One can try comparing periodic point sets by finding an isometry of Rn
105

that makes them as close as possible [19]. This approximate matching is much

easier for finite sets. Hence it is very tempting to restrict any periodic point set

to a large rectangular box or a cube with identified opposite sides (a fixed 3D

torus). However, differently located boxes or balls of any fixed size can contain

non-isometric finite sets as shown in Fig. 3 (left) for the square lattice. Then110

extra justifications are needed to show that a comparison of periodic sets by

their finite subsets does not depend on the choices of these finite subsets.

Definition 2.1 (Hausdorff distance dH , bottleneck distance dB). (a) For any

sets S,Q in a metric space, dH⃗(S,Q) = sup
p∈S

inf
q∈Q

d(p, q) is the directed Hausdorff

distance. The Hausdorff distance is dH(S,Q) = max{dH⃗(S,Q), dH⃗(Q,S)}.115

(b) The bottleneck distance dB(S,Q) = inf
g:S→Q

sup
p∈S

d(p, g(p)) for sets S,Q of the

same cardinality is minimized over bijections g and maximized over p ∈ S. ■

Fig. 3 (right) shows the sets S,Q consisting of blue and green points, re-

spectively, where all green points of Q are covered by small closed blue balls

centered at all points of S in the top right picture, and vice versa. Hence a small120

Hausdorff distance dH(S,Q) doesn’t guarantee that the sets S,Q are related by
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a small perturbation of points. A non-bijective matching of points is inappro-

priate for real atoms that cannot disappear and reappear from thin air. Hence

the bottleneck distance dB is more suitable for measuring atomic displacements

than dH . [8, Example 2.1] shows that the 1-dimensional lattices Z and (1+ δ)Z125

have dB = +∞ for any δ > 0. If any lattices have equal density (or unit cell

volume), they have a finite bottleneck distance dB by [20, Theorem 1(iii)].

If we consider only periodic point sets S,Q ⊂ Rn with the same density (or

unit cells of the same volume), the bottleneck distance dB(S,Q) becomes a well-

defined wobbling distance [21], which is still discontinuous under perturbations130

by [8, Example 2.2], see the related results for non-periodic sets in [22, 23]

Another approach to comparing crystals is by Voronoi diagrams, which can

be defined for periodic sets but remain combinatorially unstable as for finite

sets. Under almost any perturbation of basis vectors in R2, a rectangular lat-

tice becomes generic with a hexagonal Voronoi domain. Hence combinatorial135

descriptors of Voronoi domains discontinuously change under perturbations of

non-generic sets as in Fig. 2. Geometric descriptors such as the area or volume

can be continuously compared by the Hausdorff distance and helped define two

continuous metrics between lattices in Rn [24], though their implementation

sampled finitely many rotations without approximation guarantees.140

Other comparisons of periodic sets use a manually chosen number of neigh-

bors or a cut-off radius [19]. A reduction to a finite subset cannot provide a

complete and continuous invariant of periodic sets because, under tiny perturba-

tions, a primitive (minimal by volume) cell can become larger than any bounded

subset of a fixed size, see Fig. 2. One can guarantee the continuity under pertur-145

bations by extra smoothing at a fixed cut-off radius so that non-matched points

covertly cross a fixed boundary, e.g. [25] starts from a Gromov-Hausdorff dis-

tance between finite sets of any sizes and adds terms converging to 0 at the

boundary. The continuity was shown for three motions [25, Fig. 3,4,5] but the

triangle inequality needs a proof, else clustering may not be trustworthy [26].150
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Crystallographers often compared periodic crystals by using reduced or con-

ventional cells. In R2, a cell with basis vectors v⃗1, v⃗2 is reduced if |v⃗1| ≤ |v⃗2| and

− 1
2 v⃗

2
1 ≤ v⃗1 · v⃗2 ≤ 0. The vectors v⃗1 = (2a, 0) and v⃗±2 = (−a,±b) for b ≥ a

√
3 and

both signs ± are reduced and define isometric lattices related by reflection. This

ambiguity of bases can be resolved by an additional condition det(v⃗1, v⃗2) > 0,155

which creates the inevitable discontinuity, see more details in [11, Fig. 4]. In

R3, the most widely used reduced cell is Niggli’s cell, which has a minimum

volume and all angles as close to 90◦ as possible. Niggli’s cell was known to be

experimentally discontinuous since 1965 [27] or even earlier due to Fig. 2.

In R3, all generic periodic sets are distinguished by density functions [28],160

which can be computed at discrete values of a continuous radius t ∈ R [29]. A

metric between density functions was defined in terms of suprema over infinitely

many t ∈ R, so the metric was approximated without guarantees. The density

functions [30] coincide for the periodic sets S15 = X + Y + 15Z, Q15 = X −

Y + 15Z, where X = {0, 4, 9} and Y = {0, 1, 3} [31, Example 11]. This pair165

and all generic periodic sets are distinguished by a faster Pointwise Distance

Distribution (PDD) due to [8, Theorem 4.4] whose averages AMD are incomplete

by [8, Example 3.3] but the PDD also cannot distinguish any mirror images.

A distance between invariant values can be a metric on isometry classes only

if the underlying invariant is complete under isometry. Otherwise, non-isometric170

sets can have identical invariant values with a distance of 0. Hence a complete

classification should take into account a potential high complexity of periodic

sets. Inspired by [32, 33], the isometry classification of periodic sets was reduced

[17] to only rotations of local clusters whose radius can be determined from S.

Section 3 reminds us of a complete invariant isoset from [17]. Section 4 in-175

troduces a Lipschitz continuous metric (Definition 4.4 and Theorem 4.9), whose

polynomial time bounds (Corollaries 5.4, 5.10) are proved in section 5. Sec-

tion 6 proves a lower bound (Theorem 6.5) for the new metric via faster PDDs.

Section 7 discusses the significance of the continuous metric for detecting near-

duplicates in major crystal databases and for upholding scientific integrity.180
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3. Isometry classification of periodic point sets by complete invariants

This section reviews the complete invariant [17] based on local clusters and

their symmetry groups, which were previously studied in [32, 33].

Definition 3.1 (global clusters and m-regular periodic sets). For any point p

in a periodic set S ⊂ Rn, the global cluster is C(S, p) = {q⃗ − p⃗ : q ∈ S}.185

For any p, q ∈ Rn, let the set O(Rn; p, q) consist of all isometries of Rn that

map p to q. Global clusters C(S, p) and C(S, q) are called isometric if there

is f ∈ O(Rn; p, q) such that f(S) = S. A periodic point set S ⊂ Rn is called

m-regular if all global clusters of S form exactly m ≥ 1 isometry classes. ■

For any point p ∈ S, its global cluster is a view of S from the position of190

a point p. We view all astronomical stars in the universe S from our planet

Earth at p. Any lattice is 1-regular since all its global clusters are related

by translations. Though global clusters C(S, p), C(S, q) at any different points

p, q ∈ S contain the same set S, they may not match under the translation

shifting p to q. The global clusters are infinite, hence distinguishing them up to195

isometry is not easier than original periodic sets. However, the m-regularity of

a periodic set can be checked in terms of finite local α-clusters below.

Definition 3.2 (local α-clusters C(S, p;α) and symmetry groups Sym(S, p;α)).

For a point p in a periodic point set S ⊂ Rn and any α ≥ 0, the local α-cluster

C(S, p;α) is the set of all vectors q⃗− p⃗ such that q ∈ S and |q⃗− p⃗| ≤ α. Let the200

group O(Rn; p) consist of all isometries that fix p. If p = 0 is the origin, O(Rn; 0)

is the usual orthogonal group. The symmetry group Sym(S, p;α) consists of all

isometries f ∈ O(Rn; p) that map C(S, p;α) to itself so that f(p) = p. ■

For any periodic set S, if α is smaller than the minimum distance between all

points of S, then any α-cluster C(S, p;α) is one point {p}. Its symmetry group205

consists of all isometries fixing the center p, so Sym(S, p;α) = O(Rn; p). When

α is increasing, the α-clusters C(S, p;α) become larger and there can be fewer

(not more) isometries f ∈ O(Rn; p) that bijectively map C(S, p;α) to itself. So
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the group Sym(S, p;α) can become smaller (not larger) and eventually stabilizes

(stops changing), which will be formalized later in Definition 3.5.210

Definition 3.3 (bridge length β(S)). For a periodic point set S ⊂ Rn, the

bridge length is a minimum distance β(S) > 0 such that any p, q ∈ S can be

connected by a sequence of points p0 = p, p1, . . . , pk = q such that any two

successive points pi−1, pi are close so that |p⃗i−1 − p⃗i| ≤ β(S) for i = 1, . . . , k. ■

The theorem from [32, p. 20] proves that any 1-regular periodic point set is215

uniquely determined (up to isometry) by one sufficiently large α-cluster. [33,

Theorem 1.3] describes how a family of clusters uniquely determines a periodic

point set up to isometry. These results motivated the concepts of the isotree,

stable radius, and isoset in Definitions 3.4, 3.5, 3.8, respectively, leading to the

isometry classification of periodic point sets via isosets in Theorem 3.10. The220

isotree in Definition 3.4 is inspired by a clustering dendrogram but points of S

split into isometry classes of α-clusters at different radii α, not at a fixed α.

Definition 3.4 (isotree IT(S) of α-partitions). Fix a periodic point set S ⊂ Rn.

Points p, q ∈ S are α-equivalent if their α-clusters C(S, p;α) and C(S, q;α)

can be related by an isometry that matches their centers. The isometry class225

[C(S, p;α)] consists of all α-clusters isometric to C(S, p;α). The α-partition

P (S;α) is the splitting of S into α-equivalence classes of points. Call a value α

singular if P (S;α) ̸= P (S;α − ε) for any small enough ε > 0. Represent each

α-equivalence class by a vertex of the isotree IT(S). The top vertex of IT(S)

represents the 0-equivalence class coinciding with S. For any successive singular230

values α < α′, connect the vertices representing any classes A ∈ P (S;α) and

A′ ∈ P (S;α′) such that A′ ⊂ A by an edge of the length α′ − α in IT(S). ■

For any periodic point set S ⊂ Rn, the root vertex of IT(S) at α = 0 is the

single class S, because any 0-cluster C(S, p; 0) of a point p ∈ S consists only

of its center p. When the radius α is increasing, α-clusters C(S, p;α) include235

more points and hence may not be isometric. In other words, any α-equivalence

class from P (S;α) may split into two or more classes, which cannot merge at
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Figure 4: Left: the 1-dimensional set S4 = {0, 1
4
, 1
3
, 1
2
} + Z has four points in the unit cell

[0, 1) and is 4-regular by Definition 3.1. Right: the colored disks show α-clusters in the line

R with radii α = 0, 1
12

, 1
6
, 1
4
, 3
4
and represent points in the isotree IT(S4) from Definition 3.4.

any larger α′. Branched vertices of IT(S) correspond to the values of α when

an α-equivalence class is split into subclasses for α′ slightly larger than α. So

the number |P (S;α)| of α-equivalence is non-decreasing in α, see Fig. 4.240

The α-clusters of the 1-dimensional periodic point set S4 ⊂ R in Fig. 4 are

intervals in R, shown as disks for better visibility. In Fig. 4, this class persists

until α = 1
12 , when all points p ∈ S4 are split into two classes: one represented

by 1-point cluster {p} for p ∈ {0, 1
2} + Z, and another represented by 2-point

clusters {p, p+ 1
12}, p ∈ { 1

4 ,
1
3}+ Z. The periodic set S4 has four α-equivalence245

classes for any radius α ≥ 1
6 . For any point p ∈ Z ⊂ S4, the symmetry group

Sym(S4, p;α) = Z2 is generated by the reflection in p for α ∈ [0, 1
4 ). For all

p ∈ S4, the symmetry group Sym(S4, p;α) is trivial for any α ≥ 1
4 . For any

periodic point set S ⊂ Rn, the α-partitions of S stabilize in the sense below.

Definition 3.5 (the minimum stable radius α(S)). Let S ⊂ Rn be a periodic250

point, β ≥ β(S) be an upper bound of the bridge length β(S) from Definition 3.3.

A radius α ≥ β is called stable if the following conditions hold:

(3.5a) the α-partition P (S;α) equals the (α− β)-partition P (S;α− β);

(3.5b) the groups stabilize so that Sym(S, p;α) = Sym(S, p;α−β) for any p ∈ S,
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i.e. any isometry f ∈ Sym(S, p;α− β) preserves the larger cluster C(S, p;α).255

A minimum value of a stable radius α satisfying (3.5ab) for β = β(S) from

Definition 3.3 is called the minimum stable radius and denoted by α(S). ■

Due to the upper bounds in Lemma 3.6(b,c), the minimum stable radius

α(S) ≥ 0 exists and is achieved because P (S;α) and Sym(S, p;α) are continuous

on the right (unchanged when α increases by a sufficiently small value).260

Any m-regular periodic point set S ⊂ Rn has at most m α-equivalence

classes, so the isotree IT(S) stabilizes with maximum m branches. Though

(3.5b) is stated for all points p ∈ S for simplicity, it suffices to check condi-

tion (3.5b) for points only from a finite motif M of S due to periodicity.

All stable radii of S form the interval [α(S),+∞) by Lemma A.4 in the265

appendix. The periodic set S4 in Fig. 4 has β(S4) =
1
2 and α(S) = 3

4 since the

α-partition and symmetry groups Sym(S4, p;α) are stable for 1
4 ≤ α ≤ 3

4 .

Condition (3.5b) doesn’t follow from condition (3.5a) due to the following

example. Let Λ be the 2D lattice with the basis (1, 0) and (0, β) for β > 1. Then

β is the bridge length of Λ. Condition (3.5a) is satisfied for any α ≥ 0, because270

all points of any lattice are equivalent up to translations. However, condition

(3.5b) fails for any α < β +1. Indeed, the α-cluster of the origin (0, 0) contains

five points (0, 0), (±1, 0), (0,±β), whose symmetries are generated by the two

reflections in the axes x, y, but the (α − β)-cluster of the origin (0, 0) consists

of its center and has the symmetry group O(R2). It is possible that condition275

(3.5b) might imply condition (3.5a), but in practice it makes sense to verify

(3.5b) only after checking much simpler condition (3.5a). Both conditions are

essentially used in the proof of Isometry Classification Theorem 3.10.

Conditions (3.5ab) appeared in [33] with different notations ρ, ρ + t. Since

many applied papers use ρ for the physical density and have many types of280

bond distances, we replaced t and ρ+ t with the bridge length β and radius α,

respectively, as for growing α-shapes in Topological Data Analysis [12].
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Recall that the covering radius R(S) of a periodic point set S ⊂ Rn is the

minimum radius R > 0 such that
⋃
p∈S

B̄(S;R) = Rn, or the largest radius of an

open ball in the complement Rn \ S. For m-regular point sets in Rn, an upper285

bound of α(S) can be extracted from [33, Theorem 1.3] whose proof motivated

a stronger bound in Lemma 3.6(c), see comparisons in Example 3.7(c).

A periodic point set S is locally antipodal if the local cluster C(S, p; 2R(S))

is centrally symmetric for any point p ∈ S, i.e. bijectively maps to itself under

q⃗ 7→ 2p⃗− q⃗, q ∈ Rn. [34, Theorem 1] says that all locally antipodal Delone sets,290

hence all periodic sets S, are globally antipodal, i.e. S is preserved under the

isometry q⃗ 7→ 2p⃗− q⃗ for any fixed p ∈ S, e.g. any lattice is antipodal.

Lemma 3.6 (upper bounds for a stable radius α(S) and bridge length β(S)).

(a) Let S ⊂ Rn be a periodic point set with a unit cell U , which has the longest

edge b and longest diagonal d. Set r(U) = max{b, d
2}. Then the bridge length295

β(S) from Definition 3.3 has the upper bound min{2R(S), r(U)} ≥ β(S).

(b) For any antipodal periodic set S ⊂ Rn whose covering radius is R(S), the

minimum stable radius has the upper bound 2R(S) + β(S) > α(S).

(c) Let S ⊂ Rn be any periodic point set with the bridge length β. For any

point p ∈ S and a radius α0 ≥ 2R(S), the order |Sym(S, p;α0)| of the group300

Sym(S, p;α0) should be finite. Let p1, . . . , pm ∈ S be all points of an asymmetric

unit of S. Set L =

[
m∑
i=1

(
log2 |Sym(S, pi;α0)| − log2 |Sym(S, pi)|

)]
. Then the

minimum stable radius α(S) from Definition 3.5 has the upper bound α0+(L+

m)β ≥ α(S). If α0 = 2R(S), then (L+m+ 1)2R(S) ≥ α(S). ■

Proof. (a) The lemma in [32, section 2] proved that, in any Delone set S with305

the covering radius R(S), any two points p, q ∈ S can be connected by a finite

sequence of points p0 = p, p1, . . . , pk = q such that |p⃗i−1 − p⃗i| ≤ 2R(S) for

i = 1, . . . , k. In particular, any periodic point set S has the upper bound

2R(S) ≥ β(S). It remains to prove the second upper bound r(U) ≥ β(S).

For a point p ∈ S, shift the unit cell U so that p becomes the origin of Rn
310

and a vertex of U , so the lattice Λ can be considered a subset of the periodic
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point set S. Any points of Λ can be connected by a sequence of lattice points

such that any successive points have a distance not greater than the longest

edge-length b of U . Any point of a motif M ⊂ U of S is at most r(U) away

from a vertex of U , where d is the length of the longest diagonal of U . Any315

points of S can be connected by a sequence whose successive points are at most

r(U) = max{b, d
2} away from each other, so β(S) ≤ r(U) by Definition 3.3.

(b) We will prove that the conditions of Definition 3.5 hold for α = 2R(S) +

β(S) and β = β(S). To prove condition 3.5(a), we check below that any

2R(S)-equivalent points p, q ∈ S are α-equivalent for any α > 2R(S). The320

2R(S)-equivalence means that there is an isometry f ∈ O(Rn; p, q) such that

f(C(S, p; 2R(S))) = C(S, q; 2R(S)). Set Q = f(S). Then f(C(S, p; 2R(S))) =

C(f(S), f(p); 2R(S)) means that C(S, q; 2R(S)) = C(Q, q; 2R(S)). [34, The-

orem 3] implies that if antipodal periodic point sets S,Q ⊂ Rn have a com-

mon point q with C(S, q; 2R(S)) = C(Q, q; 2R(S)), then S = Q. In our case,325

f(S) = S implies that f makes the points p and q = f(p) α-equivalent for

any α > 2R(S). Condition 3.5(b) says that any isometry f ∈ Sym(S, p; 2R(S))

should belong to Sym(S, p;α) for any point p ∈ S and radius α > 2R(S).

Indeed, [34, Theorem 3] implies that Q = f(S) and S should coincide, so f

isometrically maps any cluster C(S, p;α) to itself, hence f ∈ Sym(S, p;α).330

(c) Lemma A.7, which was briefly proved in [32, p. 20], says that the symmetry

group Sym(S, p; 2R(S)) is finite. For any initial radius α0 ≥ 2R(S), we aim to

find a radius α = α0 + kβ such that both conditions 3.5(a,b) hold for a suitable

index k = 1, 2, 3, . . . whose upper bound we will determine below.

If condition 3.5(a) fails for some α = α0+kβ, the number |P (S;α0+(k−1)β)|335

of α-equivalence classes increases at least by one when α0 + (k − 1)β increases

to α0 + kβ. Since an asymmetric unit of S consists of m ≥ 1 points, there

are at most m − 1 incremental values 0 = k0 ≤ k1 ≤ . . . ≤ km−1 when 1 ≤

|P (S;α0 + (ki − 1)β)| < |P (S;α0 + kiβ)| ≤ m for i = 1, . . . ,m− 1.

In a degenerate case, if all points of S are (α0 + (k − 1)β)-equivalent, this340

single class can split into the maximum m > 1 classes of (α0 + kβ)-equivalence,
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then k1 = . . . = km−1 = k ≥ 1. For any successive incremental values ki−1 < ki,

the number |P (S;α0 + kβ)| of (α0 + kβ)-equivalence classes is constant for

k = ki−1 + 1, . . . , ki, so condition 3.5(a) holds for every radius α = α0 + kβ.

By reordering the points p1, . . . , pm from an asymmetric unit of S, we can

assume that p1, . . . , pi represent i classes of (α + ki−1β)-equivalence for any

fixed i = 1, . . . ,m. Set L(k) =
m∑
i=1

log2 |Sym(S, pi;α0 + kβ)|. When k increases,

any group Sym(S, pi;α0 + kβ) can become only smaller, not larger, so L(k)

is non-increasing. If L(k − 1) = L(k) for any 0 < k ̸= k1, . . . , km−1, both

conditions 3.5(a,b) hold, so α0 + kβ is a stable radius. We will find an upper

bound for a minimum value of such k. If condition 3.5(b) fails for all radii α =

α0+kβ with k = ki−1+1, . . . , ki, then at least one of the groups Sym(S, p;αk+

jβ) for p ∈ {p1, . . . , pi} is a proper subgroup of Sym(S, p;α0 + (k − 1)β). The

order of a proper subgroup is at most a half of the order of the group, so

log2 |Sym(S, p;α0+kβ)| ≤ log2 |Sym(S, p;α0+(k−1)β)|−1, k = ki−1+1, . . . , ki.

Hence the sum L(k) decreases at least by 1 for any failure of condition 3.5(b)

from L(0) =
m∑
i=1

log2 |Sym(S, pi;α0)| to L(+∞) =
m∑
i=1

log2 |Sym(S, pi)|, where

Sym(S, pi) is the symmetry group of the global cluster C(S; pi). Adding m− 1

potential failures of condition 3.5(a) for α0 + kiβ with i = 1, . . . ,m − 1, the

radius α0 + kβ cannot be stable for a maximum L+m− 1 values of k, where

L = [L(0)− L(+∞)] =

[
m∑
i=1

(
log2 |Sym(S, pi;α0)| − log2 |Sym(S, pi)|

)]
.

Then any α = α0 + kβ with k ≥ L+m is stable, so α(S) ≤ α0 + (L+m)β. To345

get α(S) ≤ (L+m+1)2R(S), set α0 = 2R(S) and use β ≤ 2R(S) from (a).

The upper bound in Lemma 3.6(a) holds for any unit cell of S. If a cell is

non-reduced and too long, its reduced form can have smaller bounds for β(S).

Example 3.7 (upper bounds for α(S) and β(S)). Let Λ(b) ⊂ Rn be a lattice

whose unit cell is a rectangular box with the longest edge b ≥ 1.350

(a) In Lemma 3.6(a), the upper bound b ≥ β(S) is tight because β(Λ(b)) = b.
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(b) In Lemma 3.6(b), the ratio (2R(S)+β(S))/α(S) ≥ 1 tends to 1 as b → +∞

for any fixed n. Indeed, a cluster C(Λ(b), 0;α) is n-dimensional only for α ≥ b,

so the group Sym(Λ(b), 0;α) stabilizes at α = b, hence α(S) = b+ β(Λ(b)) = 2b

is the minimum stable radius. The covering radius R(Λ(b)) is half of the longest355

diagonal of the rectangular cell U . If b → +∞ and all other sizes of U remain

fixed, the ratio (2R(Λ(b)) + β(Λ(b)))/α(S) tends to 1 for any fixed n.

(c) Lemma 3.6(c) was motivated by [33, Theorem 1.3], which implies the upper

bound β(S) + 2m(n2 + 1) log2(2 +R(S)/r(S)) > α(S) for m-regular point sets.

Let Λ ⊂ R2 be a lattice whose unit cell is a rhombus with sides 1. Then m = 1,360

n = 2, r(Λ) = 0.5, β(Λ) = 1, and α(Λ) = 2. If Λ deforms from a square lattice to

a hexagonal lattice, the covering radius R(Λ) varies in the range [ 1√
3
, 1√

2
]. The

past bound above gives the estimate 1+2(22+1) log2(2+
2√
3
) ≈ 17.6 > α(Λ) = 2.

For any lattice Λ in this family, the symmetry group Sym(Λ, 0) = Sym(Λ, 0; 1)

stabilizes at α0 = 1. Lemma 3.6(c) for α0 = 1 gives L = log2(2)− log2(2) = 0,365

so the upper bound α0 + (L +m)β(S) ≥ α(S) is tight: 2 ≥ α(Λ). In practice,

if L is large because some local clusters C(S; p;α0) have too many symmetries,

one can increase the radius α0 to reduce L for a better bound of α(S). ■

Definition 3.8 reminds of the isoset, which was initially introduced in [17,

Definition 9]. We also cover the case of rigid motion and prove Completeness370

Theorem 3.10 in the appendix in more detail than in [17, Theorem 9].

Definition 3.8 (isoset I(S;α) at a radius α ≥ 0). Let a periodic point set

S ⊂ Rn have a motif M of m points. Split all points p ∈ M into α-equivalence

classes. Each α-equivalence class of (say) k points in M can be associated with

the isometry class σ = [C(S, p;α)] of an α-cluster centered at some p ∈ M . The375

weight of σ is w = k/m. The isoset I(S;α) is the unordered set of all isometry

classes (σ;w) with weights w for all points p in the motif M . If we replace

isometry with rigid motion, we get the oriented isoset Io(S;α). ■

All points p of a lattice Λ ⊂ Rn from one α-equivalence class for any radius

α ≥ 0 because all α-clusters C(Λ, p;α) are isometrically equivalent to each other380
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by translations. Hence the isoset I(Λ;α) is one isometry class of weight 1 for

α ≥ 0, see examples in Fig. 6. All isometry classes σ in I(S;α) are in a 1-1

correspondence with all α-equivalence classes in the α-partition P (S;α) from

Definition 3.4. So I(S;α) without weights can be viewed as a set of points

in the isotree IT(S) at the radius α. The size of the isoset I(S;α) equals the385

number |P (S;α)| of α-equivalence classes in the α-partition. Formally, I(S;α)

depends on α because α-clusters grow in α. To distinguish any S,Q ⊂ Rn up

to isometry, we will compare their isosets at a maximum stable radius of S,Q.

Example 3.9 (isosets of simple lattices). (a) Any lattice Λ ⊂ Rn is 1-regular

by Definition 3.1 and can be assumed to contain the origin 0 of Rn. Then the390

isoset I(Λ;α) consists of a single isometry class of a cluster C(Λ, 0;α). So the

isotree IT(Λ) is a linear path, which is horizontally drawn for the hexagonal

and square lattices Λ6,Λ4 in Fig. 5. If both Λ6,Λ4 have a minimum inter-point

distance 1, then the bridge length from Definition 3.3 is β = 1.

Figure 5: The isotree of any lattice Λ is [0,+∞) is a line R parametrized by the radius α.

Left: the isotree of the hexagonal lattice Λ6. Right: the isotree of the square lattice Λ4.

(b) For the hexagonal lattice Λ6 ⊂ R2, C(Λ6, (0, 0);α) includes points p ̸=395

(0, 0) only for α ≥ 1. The cluster C(Λ6, (0, 0); 1) = {(0, 0), (±1, 0), (± 1
2 ,±

√
3
2 )}

appears in the 2nd step of Fig. 5 (left). The symmetry group Sym(Λ6, (0, 0);α)

becomes the dihedral group D6 (all symmetries of a regular hexagon) for α ≥ 1.

Hence any α ≥ β + 1 = 2 is stable. The isoset I(Λ6; 1) is the isometry class of

the cluster C(Λ6, (0, 0); 1) of six vertices of the regular hexagon and its center.400

(c) For the square lattice Λ4 ⊂ R2, C(Λ4, (0, 0);α) has points p ̸= (0, 0) only for

α ≥ 1. C(Λ4, (0, 0); 2) = {(0, 0), (±1, 0), (0,±1), (±
√
2,±

√
2), (±2, 0), (0,±2)}

includes the origin (0, 0) with its 12 neighbors in the 4th step of Fig. 5 (right).

The group Sym(Λ4, (0, 0);α) becomes the dihedral group D4 (all symmetries of
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a square) for α ≥ 1. So any α ≥ β + 1 = 2 is stable. The isoset I(Λ4; 1) is the405

isometry class of C(Λ4, (0, 0); 1) of four vertices of the square and its center. ■

An equality σ = ξ between isometry classes of clusters means that some

(hence any) clusters C(S, p;α) and C(Q, q;α) representing σ, ξ, respectively, are

related by f ∈ O(Rn; p, q), which will be algorithmically tested in Corollary 5.4.

Theorem 3.10 (isometry classification of periodic point sets). For any periodic410

point sets S,Q ⊂ Rn, let α be a common stable radius satisfying Definition 3.5

for an upper bound β ≥ β(S), β(Q). Then S,Q are isometric (related by rigid

motion, respectively) if and only if there is a bijection φ : I(S;α) → I(Q;α)

(between oriented isosets, respectively) that preserves all their weights. ■

Theorem 3.10 was inspired by [33, Theorem 1.3] saying that, for a multi-415

regular point set X, “the only Delone sets Y all of whose ρ-stars are isometric

to ρ-stars of X are sets globally isometric to X”. After renaming ρ-stars as

α-clusters, we collected their isometry classes (with weights) into the isoset to

rephrase [33, Theorem 1.3] as a classification of all periodic point sets by isosets.

The α-equivalence and isoset in Definition 3.8 can be refined by labels such as420

chemical elements, which keeps Theorem 3.10 valid for labeled points.

When comparing sets from a finite database, it suffices to build their isosets

only up to a common upper bound of a stable radius α in Lemma 3.6(c).

4. Continuous metrics on isometry classes of periodic sets in Rn

This section proves the continuity of the isoset I(S;α) in Theorem 4.9 by425

using the Earth Mover’s Distance (EMD) from Definition 4.4. For a point

p ∈ Rn and a radius ε, the closed ball B̄(p; ε) = {q ∈ Rn : |q⃗ − p⃗| ≤ ε} has as

its the boundary (n− 1)-dimensional sphere ∂B̄(p; ε) ⊂ Rn. The ε-offset of any

set C ⊂ Rn is the Minkowski sum C + B̄(0; ε) = {p⃗+ q⃗ : p ∈ C, q ∈ B̄(0; ε)}.

Then the directed Hausdorff distance from Definition 2.1(a) dH⃗(C,D) is the430

minimum radius ε ≥ 0 such that C ⊆ D+ B̄(0; ε). Definition 4.1 introduces the

crucial new metric, which will be explicitly computed in Lemma 5.6.
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Definition 4.1 (boundary tolerant metric BT on isometry classes of clusters).

For a radius α and periodic point sets S,Q ⊂ Rn, let clusters C(S, p;α), C(Q, q;α)

represent isometry classes σ ∈ I(S;α), ξ ∈ I(Q;α), respectively. The boundary435

tolerant metric BT(σ, ξ) is defined as the minimum ε ≥ 0 such that

(4.1a) C(Q, q;α− ε) ⊆ f(C(S, p;α)) + B̄(0; ε) for some f ∈ O(Rn; p, q), and

(4.1b) C(S, p;α− ε) ⊆ g(C(Q, q;α)) + B̄(0; ε) for some g ∈ O(Rn; q, p). ■

In Definition 4.1, if one cluster consists of only its centre, e.g. C(S, p;α) =

{p}, then the boundary tolerant metric is BT = max{|s⃗− q⃗| | s ∈ C(Q, q;α)}.440

Lemma 4.2 (correctness of BT). The metric BT(σ, ξ) in Definition 4.1 is in-

dependent of cluster representatives and satisfies the metric axioms below:

(4.2a) BT(σ, ξ) = 0 if and only if σ = ξ as isometry classes of α-clusters;

(4.2b) symmetry : BT(σ, ξ) = BT(ξ, σ) for any isometry classes of α-clusters;

(4.2c) triangle inequality : BT(σ, ζ) ≤ BT(σ, ξ) + BT(ξ, ζ) for any σ, ξ, ζ. ■445

Example 4.3 (square lattice vs hexagonal). The isoset I(Λ;α) of any lattice

Λ ⊂ Rn containing the origin 0 consists of a single isometry class [C(Λ, 0;α)],

see Example 3.9. For the square (hexagonal) lattice with minimum inter-point

distance 1 in Fig. 6, the cluster C(Λ, 0;α) consists of only 0 for α < 1 and

includes four (six) nearest neighbors of 0 for α ≥ 1. Hence Sym(Λ, 0;α) stabilizes450

as the symmetry group of the square (regular hexagon) for α ≥ 1. The lattices

have the minimum stable radius α(Λ) = 2 and β(Λ) = 1 by Example 3.7(c).

Fig. 6 illustrates the computations whose extra details are in Example A.5. ■

Non-isometric periodic sets S,Q such as perturbations in Fig. 2 can have

isosets of different numbers of isometry classes. A distance between these455

weighted distributions of different sizes can be measured by EMD below.

Definition 4.4 (Earth Mover’s Distance on isosets). Let periodic point sets

S,Q ⊂ Rn have a common stable radius α and isosets I(S;α) = {(σi, wi)}

and I(Q;α) = {(ξj , vj)}, where i = 1, . . . ,m(S) and j = 1, . . . ,m(Q). The
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Figure 6: Example 4.3 computes the metric BT from Definition 4.1 for the isometry classes

of the 2-clusters in the square and hexagonal lattices Λ4,Λ6. 1st: the 2-cluster C(Λ6, 0; 2)

with its boundary circle ∂B̄(0; 2); 2nd: the 2-cluster C(Λ4, 0; 2) with its boundary circle

∂B̄(0; 2); 3rd: for ε =
√
2− 1 ≈ 0.41, the cluster C(Λ4, 0; 2) is covered by the yellow ε-offset

of C(Λ6, 0; 2) ∪ ∂B̄(0; 2) rotated through 15◦ clockwise. 4th: C(Λ6, 0; 2) is covered by the

blue ε-offset of C(Λ4, 0; 2) ∪ ∂B̄(0; 2) rotated through 15◦ anticlockwise, so BT =
√
2− 1.

Earth Mover’s Distance [18] is EMD(I(S;α), I(Q;α)) =
m(S)∑
i=1

m(Q)∑
j=1

fijBT(σi, ξj)460

minimized over flows fij ∈ [0, 1] subject to
m(Q)∑
j=1

fij ≤ wi for i = 1, . . . ,m(S),

m(S)∑
i=1

fij ≤ vj for j = 1, . . . ,m(Q), and
m(S)∑
i=1

m(Q)∑
j=1

fij = 1. ■

Lemma 4.5 (EMD is a metric on isosets). The Earth Mover’s Distance from

Definition 4.4 satisfies the metric axioms for all α and periodic sets S,Q, T .

(4.5a) EMD(I(S;α), I(Q;α)) = 0 if and only if I(S;α) = I(Q;α);465

(4.5b) EMD(I(S;α), I(Q;α)) = EMD(I(Q;α), I(S;α));

(4.5b) EMD(I(S;α), I(Q;α))+EMD(I(Q;α), I(T ;α)) ≥ EMD(I(S;α), I(T ;α)).

Example 4.6 (EMD for lattices with dB = +∞). [8, Example 2.1] showed that

the lattices S = Z and Q = (1 + δ)Z have the bottleneck distance dB(S,Q) =

+∞ for any δ > 0. We show that S,Q have Earth Mover’s Distance EMD = 2δ470

at their common stable radius α = 2 + 2δ. The bridge lengths are β(S) = 1

and β(Q) = 1 + δ. The α-cluster C(S, 0;α) contains non-zero points for α ≥ 1,

e.g. C(S, 0; 1) = {0,±1}. The symmetry group Sym(S, 0;α) = Z2 includes

a non-trivial reflection with respect to 0 for all α ≥ 1, so the stable radius
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of S is any α ≥ β + 1 = 2. Similarly, Q has β(Q) = 1 + δ and stable radii475

α ≥ 2(1 + δ). The Earth Mover’s Distance between I(S;α) and I(Q;α) at

the common stable radius α = 2 + 2δ equals the metric BT between the only

α-clusters C(S, 0;α) = {0,±1,±2} and C(Q, 0;α) = {0,±(1 + δ),±2(1 + δ)}.

By Definition 4.1 we look for a minimum ε > 0 such that the cluster

C(S, 0;α − ε) is covered by ε-offsets of ±(1 + δ),±2(1 + δ) and vice versa.480

If ε < 2δ, the points ±2 ∈ C(S, 0;α− ε) cannot be ε-close to ±(1 + δ),±1(+δ),

but ε = 2δ is large enough. The cluster C(Q, 0;α−2δ) = {0,±(1+δ)} is covered

by the 2δ-offset of C(S, 0;α) = {0,±1,±2}, so EMD(I(S;α), I(Q;α)) = 2δ. ■

Definition 4.7 (packing radius). For a discrete set Q ⊂ Rn, the packing radius

r(Q) is the minimum half-distance between any points of Q. Also, r(Q) is the485

maximum radius r such that the open balls B(p; r) are disjoint for all p ∈ Q. ■

Lemma 4.8 is proved in the appendix and is needed for Theorem 4.9.

Lemma 4.8. Let periodic point sets S,Q ⊂ Rn have bottleneck distance

dB(S,Q) < r(Q), where r(Q) is the packing radius. Then S,Q have a common

lattice Λ with a unit cell U such that S = Λ+ (U ∩S) and Q = Λ+ (U ∩Q). ■490

For rigid motion instead of general isometry, Definition 4.1 of a boundary

tolerant metric BT is updated to BTo by considering only orientation-preserving

isometries from SO(Rn; p, q), which also makes the continuity below valid for

oriented isosets Io(S;α) under EMD using BTo instead of BT in Definition 4.4.

Theorem 4.9 (continuity of isosets under perturbations). Let periodic point495

sets S,Q ⊂ Rn have a bottleneck distance dB(S,Q) < r(Q), where r(Q) is the

packing radius in Definition 4.7. Then the isosets I(S;α), I(Q;α) are close in

the Earth Mover’s Distance: EMD(I(S;α), I(Q;α)) ≤ 2dB(S,Q) for α ≥ 0. ■

Proof. By Lemma 4.8 the given periodic point sets S,Q have a common unit

cell U . Let g : S → Q be a bijection such that |p⃗ − g(p⃗)| ≤ ε = dB(S,Q) =500

inf
g:S→Q

sup
p∈S

|p⃗− g(p⃗)| for all points p ∈ S. Since the bottleneck distance ε < r(Q)

is small, the bijective image g(p) of any point p ∈ S is a unique ε-close point of Q
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and vice versa. Hence we can assume that the common unit cell U ⊂ Rn contains

the same number (say, m) points from S and Q. Expand the initial m(S)

isometry classes (σi, wi) ∈ I(S;α) to m isometry classes (with equal weights505

1
m ) represented by clusters C(S, p;α) for m points p ∈ S ∩ U . If the i-th initial

isometry class had a weight wi = ki

m , i = 1, . . . ,m(S), the expanded isoset

contains ki equal isometry classes of weight 1
m . For example, the 1-regular set

S1 in Fig. 10 has the isoset consisting of a single class [C(S1, p;α)], which is

expanded to four identical classes of weight 1
4 for the four points in the motif.510

The isoset I(Q;α) is similarly expanded to m isometry classes of weight 1
m .

For any point p ∈ S∩U , the image g(p) ∈ Q has a unique point h(p) ∈ Q∩U

such that h(p) is equivalent to g(p) modulo the lattice of Q. Then the α-clusters

of g(p) and h(p) in Q are isometric for any α ≥ 0. The bijection p 7→ h(p)

between the expanded motifs of S,Q induces the bijection between the expanded515

sets of m isometry classes. Each correspondence σl 7→ ξl in the latter bijection

can be visualized as the flow fll =
1
m for l = 1, . . . ,m, so

m∑
l=1

fll = 1.

To show that the Earth Mover’s Distance (EMD) between any initial isoset

and its expansion is 0, we collapse all identical isometry classes in the expanded

isosets, but keep the arrows with the flows above. Only if both tail and head of520

two (or more) arrows are identical, we collapse these arrows into one arrow that

gets the total weight. All equal weights 1
m correctly add up at heads and tails

of final arrows to the initial weights wi, vj of isometry classes. So the total sum

of flows is
m∑
i=1

m∑
j=1

fij = 1 as required by Definition 4.4. It suffices to consider

below the EMD only for the expanded isosets of exactly m classes.525

We will estimate the boundary tolerant metric between isometry classes σl, ξl

whose centers p and g(p) are ε-close within the common unit cell U . For any

fixed point p ∈ S ∩ U , shift S by the vector g(p⃗) − p⃗. This shift makes p ∈ S

and g(p) ∈ Q identical and keeps all pairs q, g(q) for q ∈ C(S, p;α) within 2ε

of each other. Using the identity map f in Definition 4.1, we get the upper530

bound BT([C(S, p;α)], [C(Q, g(p);α)]) ≤ 2ε. Then EMD(I(S;α), I(Q;α)) ≤
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m∑
l=1

fllBT([C(S, p;α)], [C(Q, g(p);α)]) ≤ 2ε
m∑
l=1

fll = 2ε as required.

Corollary 4.10a justifies that the EMD satisfies all metric axioms for periodic

point sets that have a stable radius α. Corollary 4.10b avoids this dependence

on α and scales any periodic point set S to the minimum stable radius α(S) = 1.535

Corollary 4.10. (a) For α > 0, EMD(I(S;α), I(Q;α)) is a metric on the space

of isometry classes of all periodic point sets with a stable radius α in Rn.

(b) For a periodic point set S ⊂ Rn, let S/r(S) ⊂ Rn denote S after uni-

formly dividing all vectors by the packing radius r(S). Then |r(S) − r(Q)| +

EMD(I(S/r(S); 1), I(Q/r(Q); 1)) is a metric on all periodic point sets. ■540

Proof. (a) Lemma 4.5 proved the metric axioms for the EMD on isosets. The

equality I(S;α) = I(Q;α) is equivalent to isometry S ≃ Q by Theorem 3.10.

(b) By part (a), EMD(I(S/r(S); 1), I(Q/r(Q); 1)) satisfies the symmetry and

triangle inequality, which are preserved by adding the Euclidean distance d =

|r(S) − r(Q)| between the packing radii. The equality EMD = 0 means that545

S/r(S) ≃ Q/r(Q) are isometric. Hence S,Q are isometric up to a uniform

factor. Adding the distance d = |r(S)− r(Q)| guarantees that the sum becomes

zero only if r(S) = r(Q), so the given sets S,Q should be truly isometric.

The metric EMD(I(S;α), I(Q;α)) is measured in the same units as atomic

coordinates, say in angstroms: 1Å = 10−10m, and hence is physically meaning-550

ful. By Theorem 4.9, a small value δ = EMD(I(S;α), I(Q;α)) means that atoms

of S should be perturbed by at least 0.5δ on average for a complete match with

Q. Since crystals are practically compared within a finite dataset, we can take

any common upper bound of α(S) from Lemma 3.6, also in Corollary 4.10(b).

5. Algorithms to test isometry and to approximate metrics on isosets555

This section describes time complexities for computing the complete invari-

ant isoset (Theorem 5.3), comparing isosets (Corollary 5.4), approximating the
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boundary tolerant metric BT and Earth Mover’s Distance on isosets (Corol-

lary 5.10). All estimates will use the geometric complexity GC(S) below.

Definition 5.1 (geometric complexity GC). Let a periodic point set S ⊂ Rn
560

have an asymmetric unit of m points in a cell U of volume vol[U ]. Let L be the

symmetry characteristic for α0 = 2R(S) in Lemma 3.6(c), where R(S) is the

covering radius. The geometric complexity is GC(S) = (10(L+m+2)R(S)/n)n

2vol[U ] . ■

Let Vn = πn/2

Γ(n
2 +1) be the volume of the unit ball in Rn, where the Gamma

function Γ has Γ(k) = (k − 1)! and Γ(k2 + 1) =
√
π(k − 1

2 )(k − 3
2 ) · · ·

1
2 for any565

integer k ≥ 1. Set ν(U,α, n) = (α+d)nVn

vol[U ] , where d = sup
p,q∈U

|p⃗ − q⃗| is a longest

diagonal of a unit cell U . All complexities assume the real Random-Access

Machine (RAM) model and a fixed dimension n of Euclidean space Rn.

The main input size of a periodic set is the number m of motif points because

the length of a standard Crystallographic Information File is linear in m. For570

a fixed dimension n, the big O notation O(mn) in all complexities means a

function t(m) such that t(m) ≤ Cmn for a fixed constant C independent of m.

We will include all other parameters depending on a periodic point set S.

Lemma 5.2 (a local cluster). Let a periodic point set S ⊂ Rn have m points

in a unit cell U . For any stable radius α ≥ 0 and p ∈ M = S ∩ U , the cluster575

C(S, p;α) has at most k = νm points and can be found in time νO(m), where

ν ≤ GC(S) for geometric complexity GC(S) from Definition 5.1. ■

Theorem 5.3 (computing an isoset). For any periodic point set S ⊂ Rn given

by a motif M of m points in a unit cell U , the isoset I(S;α) at a stable radius

α can be found in time O(m2k⌈n/3⌉ log k), where k = νm for ν ≤ GC(S). ■580

Proof. Lemma 5.2 computes the α-clusters of m points p ∈ M in time O(k).

To verify a congruence (isometry) of finite sets A,B ⊂ Rn, the algorithm from

[35] first moves the centers of mass of A,B to 0 ∈ Rn. We instead move the

centers of given clusters A,B to the origin and then follow [35] to check if the

shifted clusters are related by an isometry f ∈ O(Rn; 0) in time O(k⌈n/3⌉ log k).585
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The isoset I(S;α) is obtained after identifying isometric clusters for m points

through O(m2) pairwise comparisons. The total time is O(m2k⌈n/3⌉ log k).

Corollary 5.4 (comparing isosets). There is an algorithm to check if any peri-

odic point sets S,Q ⊂ Rn with motifs of at most m points are isometric in total

time O(m2k⌈n/3⌉ log k), where k = νm for ν ≤ max{GC(S),GC(Q)}. ■590

Proof. Theorem 5.3 finds I(S;α), I(Q;α) with a common stable radius in time

O(m2k⌈n/3⌉ log k), where each cluster has k = νm points by Lemma 5.2. Any

classes from I(S;α), I(Q;α) are compared [35] in time O(k⌈n/3⌉ log k). Then

O(m2) comparisons suffice to check if there is a bijection I(S;α) ↔ I(Q;α).

Definition 5.5 (directed distances dR⃗ and dM⃗ ). (a) For any sets C,D ⊂ Rn,595

the directed rotationally invariant distance dR⃗(C,D) = min
f∈O(Rn)

dH⃗(C, f(D)) is

minimized over all maps f ∈ O(Rn; 0), which fix the origin 0 ∈ Rn.

(b) For any finite sets C,D ⊂ Rn, order all points p1 . . . , pk ∈ C by increasing

distance to the origin 0. The radius of C is R(C) = max
p∈C

|p|. Define the directed

max-min distance dM⃗ (C,D) = max
i=1,...,k

min{ α− |pi|, dR⃗({p1, . . . , pi}, D) }. ■600

If C ′ ⊂ C, then dR⃗(C
′, D) ≤ dR⃗(C,D). Let C,D ⊂ B̄(0;α) be finite sets

including the origin 0. If C = {0}, then dR⃗(C,D) = 0 because C ⊂ D, but

dR⃗(D,C) = R(D) is the radius of D because D ⊂ {0} + B̄(0; ε) only for ε ≥

R(D). Definition 5.5, Lemma 5.6 and hence all further results work for rigid

motion by restricting all maps to the special orthogonal group SO(Rn; 0).605

Lemma 5.6 (max-min formula for dR⃗ via dM⃗ ). For any finite sets C,D ⊂ Rn,

α ≥ R(C), the distance dR⃗(C ∪ ∂B̄(0;α), D ∪ ∂B̄(0;α)) equals dM⃗ (C,D). ■

Example 5.7 (max-min formula). Consider the subcluster C ⊂ C(Λ4, 0; 2)

of the points p1 = (1, 0), p2 = (1, 1), p3 = (1,−1), p4 = (2, 0) from the

square lattice Λ4 in Fig. 6. Let α = 2 and D = C(Λ6, 0; 2) be the 2-cluster610

of the hexagonal lattice Λ6. Then dR⃗(p1, D) = 0 because p1 coincides with

(1, 0) ∈ D. Then dR⃗({p1, p2}, D) =
√
2 − 1, because the cloud D after the

clockwise rotation through 15◦ has the points (cos 15◦,− sin 15◦) and ( 1√
2
, 1√

2
)
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at distances
√
(cos 15◦ − 1)2 + sin2 15◦ ≈ 0.26,

√
2 − 1 ≈ 0.41 to p1, p2, re-

spectively. Then dR⃗({p1, p2, p3}, D) =
√
2 − 1 because the same rotated im-615

age of D has (
√

3
2 ,−

√
3
2 ) at the distance

√
3 −

√
2 ≈ 0.32 to p3. For i =

1, min{α − |p1|, dR⃗(p1, D)} = min{2 − 1, 0} = 0. For i = 2, 3, min{α −

|p2|, dR⃗({p1, p2}, D)} = min{α − |p3|, dR⃗({p1, p2, p3}, D)} = min{2 −
√
2,
√
2 −

1} =
√
2 − 1. For i = 4, min{α − |p4|, dR⃗(C,D)} = 0 since α = 2 = |p4|. The

maximum value is
√
2− 1, so Example 4.3 fits Lemma 5.6. ■620

Lemma 5.8 extends [36, section 2.3] from n = 3 to any dimension n > 1.

Lemma 5.8 (approximating dR⃗). Let a cloud C ⊂ Rn consist of k = |C|

points ordered by distances |p1| ≤ . . . ≤ |pk| from the origin and ⟨C⟩ denote the

number of different vectors p⃗/|p⃗| for p ∈ C. For each j = 1, . . . , k, consider the

subcloud Cj = {p1, . . . , pj}. For any cloud D ⊂ Rn of |D| points, all distances625

dj = dR⃗(Cj , D) from Definition 5.5 for j = 1, . . . , k can be approximated by

some d′j in time O(|C|⟨C⟩n−1|D|) so that dj ≤ d′j ≤ ωdj , ω = 1+ 1
2n(n− 1). ■

The proof of Lemma 5.8 uses only orientation-preserving isometries from

SO(Rn, 0). Hence the upper bounds from Lemma 5.8, Theorem 5.9, and Corol-

lary 5.10 work for both cases of rigid motion and general isometry in Rn.630

Theorem 5.9 (approximating BT). Let periodic point sets S,Q ⊂ Rn have

isometry classes σ, ξ represented by clusters C,D of a radius α, respectively. In

the notations of Lemma 5.8, BT(σ, ξ) from Definition 4.1 can be approximated

with the factor ω = 1 + 1
2n(n− 1) in time O(|C|(⟨C⟩n−1 + ⟨D⟩n−1)|D|). ■

Proof. By Definitions 4.1 and 5.5, the boundary tolerant metric BT(σ, ξ) is the635

maximum of dR⃗(C∪∂B̄(0;α), D∪∂B̄(0;α)) and dR⃗(D∪∂B̄(0;α), C∪∂B̄(0;α)).

Lemma 5.6 implies that BT(σ, ξ) = max{dM⃗ (C,D), dM⃗ (D,C)}. It remains to

compute required approximations of the two distances dM⃗ above.

Let C consist of k points ordered by distances |p1| ≤ . . . ≤ |pk| from the

origin. For each j = 1, . . . , k, consider the subcloud Cj = {p1, . . . , pj}. We use640

the approximation d′j from Lemma 5.8 to compute d′ = max
i=1,...,k

min{α−|pi|, d′i}
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in the extra time O(|C|). Now we check that this final approximation d′ is

between dM⃗ (C,D) = max
i=1,...,k

min{α− |pi|, di} in Lemma 5.6 and ωdM⃗ (C,D).

The inequalities dj ≤ d′j ≤ ωdj for j = 1, . . . , k from Lemma 5.8 imply that

min{α − |pj |, dj} ≤ min{α − |pj |, d′j} ≤ min{α − |pj |, ωdj}. By fixing an index645

j maximizing the left-hand side minimum above, we conclude that dM⃗ (C,D) =

min{α − |pj |, dj} ≤ max
i=1,...,k

min{α − |pi|, d′i} = d′. By fixing an index j max-

imizing the middle side minimum above, we get the following upper bound:

d′ = min{α− |pj |, d′j} ≤ max
i=1,...,k

min{α− |pi|, ωdi} ≤ ωdM⃗ (C,D). The extra

time O(|C| + |D|) for the approximations of dM⃗ (C,D) and dM⃗ (D,C) is domi-650

nated by the total time O(|C|(⟨C⟩n−1 + ⟨D⟩n−1)|D|) from Lemma 5.8.

Corollary 5.10 (approximating EMD). Let S,Q ⊂ Rn be periodic point sets

whose motifs have at most m points p and χ different vectors p⃗/|p⃗|. For any

α > 0, the metric EMD(I(S;α), I(Q;α)) can be approximated with the factor

ω = 1 + 1
2n(n− 1) in time O(ν2m4χn−1), where ν ≤ max{GC(S),GC(Q)}. ■655

Proof. Since S,Q have at most m points in their motifs, their isosets at any ra-

dius α have at most m isometry classes. By Theorem 5.9 the distance BT(σ, ξ)

between any classes σ ∈ I(S;α) and ξ ∈ I(Q;α) of α-clusters up to k points

can be approximated with the factor ω in time O(k2χn−1). The maximum

number of points is k = νm, where ν ≤ max{GC(S),GC(Q)} by Lemma 5.2.660

Since Definition 4.4 uses normalized distributions, ω emerges as a multiplica-

tive upper bound in EMD(I(S;α), I(Q;α)). After computing O(m2) pairwise

distances between sets of m clusters, the exact EMD can be found in the extra

time O(m3 logm) [37], which is dominated by the time O(m2ν2m2χn−1) for all

cluster distances. So the total time becomes O(ν2m4χn−1). The EMD can be665

approximated [38, section 3] with a constant factor in time O(m).

Counting directions p⃗/|p| as points (χ ≤ m), for dimension n = 3, the

rough bounds for the isoset and its approximate EMD′ in Theorem 5.3 and

Corollary 5.10 are O(m3 logm) and O(m6), respectively. Algorithms 1-2 in the

appendix describe pseudocodes for Lemma 5.8, Theorem 5.9, and Corollary 5.10.670
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6. A lower bound for continuous metrics via simpler invariants

Theorem 6.5 gives a lower bound for EMD in terms of the simpler invariant

Pointwise Distance Distribution [8], see Definition 6.1 below. If S is a lattice

or a 1-regular set, then all points are isometrically equivalent, so they have the

same distances to all their neighbors. In this case, PDD(S; k) is a single row of675

k distances, which is the vector AMD(S; k) of Average Minimum Distances [7].

Definition 6.1 (Pointwise Distance Distribution PDD). Let a periodic set S =

Λ+M have points p1, . . . , pm in a unit cell. For k ≥ 1, consider the m×k matrix

D(S; k), whose i-th row consists of the ordered Euclidean distances di1 ≤ · · · ≤

dik from pi to its first k nearest neighbors in the full set S. The rows of D(S; k)680

are lexicographically ordered as follows. A row (di1, . . . , dik) is smaller than

(dj1, . . . , djk) if the first (possibly none) distances coincide: di1 = dj1, . . . , dil =

djl for l ∈ {1, . . . , k− 1} and the next (l+1)-st distances satisfy di,l+1 < dj,l+1.

If w rows are identical to each other, these rows are collapsed to one row with

the weight w/m. Put this weight in the extra first column. The final matrix of685

k + 1 columns is the Pointwise Distance Distribution PDD(S; k). The Average

Minimum Distance AMD(S; k) is the vector (AMD1, . . . ,AMDk), where AMDi

is the weighted average of the (i+ 1)-st column of PDD(S; k). ■

Theorem 6.2 (isometry invariance of PDD). For any finite or periodic set

S ⊂ Rn, PDD(S; k) in Definition 6.1 is an isometry invariant of S for k ≥ 1. ■690

Theorem 6.2 and continuity of PDD in the metric from Definition 6.3 follows

from more general results in [8]. The distance between rows R⃗i(S), R⃗j(Q) of

PDD matrices below is measured in the metric L∞(p⃗, q⃗) = max
i=1,...,k

|pi − qi|.

Definition 6.3 (Earth Mover’s Distance on Pointwise Distance Distributions).

Let finite or periodic sets S,Q ⊂ Rn have PDD(S; k), PDD(Q; k) with rows695

R⃗i(S), R⃗j(Q) of weights wi(S), w(Q) for i = 1, . . . ,m(S) and j = 1, . . . ,m(Q),

respectively. A full flow from PDD(S; k) to PDD(Q; k) is an m(S)×m(Q) ma-

trix whose element fij ∈ [0, 1] is called a partial flow from R⃗i(S) to R⃗j(Q). The

Earth Mover’s Distance is the minimum value of the cost EMD(I(S), I(Q)) =
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m(S)∑
i=1

m(Q)∑
j=1

fijL∞(R⃗i(S), R⃗j(Q)) over flows fij ∈ [0, 1] subject to
m(Q)∑
j=1

fij ≤ wi(S)700

for i = 1, . . . ,m(S),
m(S)∑
i=1

fij ≤ wj(Q) for j = 1, . . . ,m(Q),
m(S)∑
i=1

m(Q)∑
j=1

fij = 1. ■

Lemma 6.4 is a partial case of Theorem 6.5 for 1-regular point sets S,Q.

Lemma 6.4 (lower bound for the tolerant distance BT). Let S,Q ⊂ Rn be

periodic point sets with a common stable radius α. Choose any points p ∈

S and q ∈ Q. Let the distance between isometry classes of α-clusters ε =705

BT([C(S, p;α)], [C(Q, q;α)]) be smaller than a minimum half-distance between

any point of S and Q. Let k be a minimum number of points in the clusters

C(S, p;α − ε) and C(Q, q;α − ε). Then the L∞ distance between the rows of

the points p, q in PDD(S; k),PDD(Q; k), respectively, is at most ε. ■

Theorem 6.5 (lower bound for EMD). Let S,Q ⊂ Rn be periodic sets with a710

common stable radius α. Let ε = EMD(I(S;α), I(Q;α)) and k be the maximum

number of points of S,Q in their (α−ε)-clusters. If ε is less than the half-distance

between any points of S,Q, then EMD(PDD(S; k),PDD(Q; k)) ≤ ε. ■

Proof. To prove that EMD(PDD(S; k),PDD(Q; k)) ≤ EMD(I(S;α), I(Q;α)),

we choose optimal flows fij ∈ [0, 1], i = 1, . . . ,m(S) and j = 1, . . . ,m(Q), that

minimize ε = EMD(I(S;α), I(Q;α)) in Definition 4.4. For any points pi ∈ S and

qj ∈ Q, let R⃗i(S) and R⃗j(Q) be their rows in PDD(S; k) and PDD(Q; k), respec-

tively. Lemma 6.4 gives L∞(R⃗i(S), R⃗j(Q)) ≤ BT([C(S, pi;α)], [C(Q, qj ;α)]).

These inequalities for all indices i, j and the same flows fij imply that

m(S)∑
i=1

m(Q)∑
j=1

fijL∞(R⃗i(S), R⃗j(Q)) ≤
m(S)∑
i=1

m(Q)∑
j=1

fijBT(σi, ξj) = ε

by the choice of fij The left-hand side of the last inequality can become only

smaller when minimizing over fij . Then EMD(PDD(S; k),PDD(Q; k)) ≤ ε.715

7. Real experiments, limitations, significance, and a discussion

In 1930, future Nobel laureate Linus Pauling noticed the ambiguity of crystal

structures obtained by diffraction [39]. Such homometric crystals with identical
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diffraction patterns were only manually distinguished until now because even

the generically complete PDDs coincide for the Pauling periodic sets P (±u) for720

all u ∈ (0, 0.25), see the real overlaid crystals for u = 0.03 in Fig. 7 (left).

Figure 7: Left: a comparison of Pauling’s homometric crystals P (±u) for u = 0.03 [39], by

COMPACK [19] aligning subsets of 48 atoms and outputs RMSD, which fails the triangle

inequality. The atoms from different P (±0.03) are shown in green and gray. Middle: the

pairs of P (±u) have EMD′ > 0 for all u ∈ (0, 0.25) and α > 0.4 (running time 50 ms for

u = 0.03 and α = 0.5). Right: four pairs of mirror images in the CSD are indistinguishable

by all past invariants but have approximate EMD′ > 0 for all radii α > 1.5Å in Fig. 8 (left).

Figure 8: The isosets distinguish all four pairs of mirror images given by their codes in the

CSD. Left: approximate EMD′ for different radii α. Right: running times on a desktop.

The strongest past invariant PDD is based on distances and cannot distin-

guish mirror images. In the CSD, we found four pairs that have identical PDDs

but are mirror images shown in Fig. 7 (right), distinguished by isosets with

α ≥ 1.5Å in Fig. 8 (left). For WODLOS vs XAWGAE and α = 2, the total725

time including isosets and EMD is about 4.3 seconds. All experiments were on

a modest CPU AMD Ryzen 5 5600X, 32GB RAM. Fig. 9 summarizes times of

new invariants and metrics, see Tables A.1 and A.2 for details. The supplemen-

tary materials include a Python code with instructions and full tables of metrics

and run times for thousands of near-duplicates in the CSD and GNoME.730
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Figure 9: Median run times vs the max size of α-clusters. Left: invariants. Right: metrics.

Times are faster for symmetric (inorganic) crystals in the GNoME than in the CSD.

The limitations of the EMD metric on isosets in Definition 4.4 are a slower

running time than for AMD,PDD and the approximate (not exact) algorithm

in Corollary 5.10, which are outweighed by the following crucial advantages.

First, all past invariants could not distinguish infinitely many periodic sets

(including all mirror images) under rigid motion, e.g. the real crystals in Fig. 7.735

The new continuous EMD fully solved Problem 1.2, which remained open at

least since 1965 [27]. Second, because the proved error factor in the practical

dimension n = 3 is close to 4, any near-duplicate crystals that differ by atomic

deviations of up to ε have an exact distance EMD ≤ 2ε by main Theorem 4.9

and hence an approximate distance up to about 8ε by Corollary 5.10.740

Any crystals that can be matched under rigid motion are recognizable since

our approximation of EMD = 0 is also 0. Any approximate value δ of EMD for

real crystals S,Q implies that all atoms of S should be perturbed by at least

δ/8 on average for a complete match with Q. This result justifies filtering out

near-duplicates [10] in all datasets to avoid machine learning on skewed data.745

Future work can use the EMD to continuously quantify changes in material

properties under perturbations of atoms and extend Problem 1.2 to metrics on

finite or periodic sets of points under affine and projective transformations.

Conclusions. Sections 3 and 4 prepared the complexity results in section 5:

algorithms for computing and comparing isosets (Theorems 5.3, Corollary 5.4),750

and approximating the new boundary tolerant metric BT (Theorem 5.9), and

EMD on isosets (Corollary 5.10). The proofs expressed polynomial bounds in

terms of the motif size m = |S| of a periodic set S because the input size of a
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Crystallographic Information File is linear in m, e.g. any lattice has m = 1.

The factors depending on the dimension and geometric complexity GC(S)755

are inevitable due to the curse of dimensionality and the infinite nature of crys-

tals. In practice, crystal symmetries reduce a motif to a smaller asymmetric

part, which usually has less than 20 atoms even for large molecules in the CSD.

The lower bound via faster PDD invariants in Theorem 6.5 justifies applying

the algorithm of Corollary 5.10 only for a final confirmation of near-duplicates.760

So the isosets finalized the hierarchy of the faster but incomplete invariants.

The main novelty is the boundary tolerant metric in Definition 4.1 that

makes the complete invariant isoset Lipschitz continuous (Theorem 4.9) without

extra parameters that are needed to smooth past descriptors such as powder

diffraction patterns and atomic environments with fixed cut-off radii. Because765

the isoset is the only Lipschitz continuous invariant whose completeness under

isometry was proved for all periodic point sets in Rn, the isoset was used to

confirm the duplicates in the CSD and GNoME, see Tables A.1 and A.2.

The resulting Crystal Isometry Principle (CRISP) says that all non-isometric

periodic crystals should have non-isometric sets of atomic centers and implies770

that all known and not yet discovered periodic crystals live in a common Crystal

Isometry Space (CRIS) whose first continuous maps appeared in [16, 40].

We thank all reviewers for their valuable time and helpful comments.
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A. Appendix A: detailed proofs of all auxiliary results

This appendix includes more detailed and updated proofs of [17, Lemmas 7

and 11-13]. Fig. 12 visualizes the logical connections between main results.860

Fig. 10 (left) shows the 1-regular periodic set S1 ⊂ R2 whose all points (close

to vertices of square cells) have isometric global clusters related by translations

and rotations through 90◦, 180◦, 270◦. The set S2 has extra points at the centers

of all square cells. The local α-clusters around these centers are not isometric

to α-clusters around the points close to cell vertices for any α ≥ 3
√
2.865

The 1-regular periodic point set S1 in Fig. 10 for any p ∈ S1 has the symme-

try group Sym(S1, p;α) = O(R2) for α ∈ [0, 4). Then Sym(S1, p;α) stabilizes as

Z2 with one reflection for α ≥ 4 as soon as C(S1, p;α) includes one more point.

Figure 10: Left: in R2, the periodic point set S1 has the square unit cell [0, 10)2 containing

the four points (2, 2), (2, 8), (8, 2), (8, 8), so S1 isn’t a lattice, but is 1-regular by Definition 3.1,

and β(S1) = 6. All local α-clusters of S1 are isometric, shown by red arrows for α = 5, 6, 8,

see Definition 3.2. Right: S2 has the extra point (5, 5) in the center of the cell [0, 10)2 and

is 2-regular with β(S2) = 3
√
2, so S2 has green and yellow isometry types of α-clusters.

Fig. 11 illustrates the isosets for the periodic sets S1, S2 in Fig. 10.

Lemma A.1 (isotree properties). The isotree IT(S) has the properties below:870

(A.1a) for α = 0, the α-partition P (S; 0) consists of one class;
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Figure 11: Left:The isotree IT(S1) from Definition 3.4 of the 1-regular set S1 in Fig. 10 for

any α ≥ 0 has one isometry class of α-clusters up to rotation. Right: the isotree IT(S2) of

the 2-regular set S2 in Fig. 10 stabilizes with two non-isometric classes of α-clusters for α ≥ 4.

(A.1b) if α < α′, then Sym(S, p;α′) ⊆ Sym(S, p;α) for any point p ∈ S;

(A.1c) if α < α′, the α′-partition P (S;α′) refines P (S;α), i.e. any α′-equivalence

class from P (S;α′) is included into an α-equivalence class from the partition

P (S;α). So the cluster count |P (S;α)| is non-strictly increasing in α. ■875

Proof. (A.1a) Let α ≥ 0 be smaller than the minimum distance 2r(S) betweens

any points of S. Then any cluster C(S, p;α) is the single-point set {p}. All these

1-point clusters are isometric to each other. So |P (S;α)| = 1 for α < 2r(S).

(A.1b) For any p ∈ S, the inclusion of clusters C(S, p;α) ⊆ C(S, p;α′) im-

plies that any isometry f ∈ O(Rn; p) that isometrically maps the larger cluster880

C(S, p;α′) to itself also maps the smaller cluster C(S, p;α) to itself. Hence any

element of Sym(S, p;α′) ⊆ O(Rn; p) belongs to Sym(S, p;α).

(A.1c) If points p, q ∈ S are α′-equivalent at the larger radius α′, i.e. the clusters

C(S, p;α′) and C(S, q;α′) are related by an isometry from O(Rn; p, q), then p, q

are α-equivalent at the smaller radius α. Hence any α′-equivalence class of885

points in S is a subset of an α-equivalence class in S.

The proofs of Lemmas A.2, A.3, and Theorem 3.10 follow [32], [33, section 4],

and extend to the oriented case by taking orientation-preserving isometries.

Recall that O(Rn; p, q) denotes the set of all isometries of Rn that map p to q.

Lemma A.2 (local extension). Let S,Q ⊂ Rn be periodic point sets and890

Sym(S, p;α − β) = Sym(S, p;α) for some point p ∈ S and α > β. Assume

that there is an isometry g ∈ O(Rn; p, q) such that g(C(S, p;α)) = C(Q, q;α).
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Figure 12: Key definitions and main Theorems 4.9, 6.5 about the continuous metrics on

complete invariant isosets with time complexities of algorithms in Corollaries 5.4, 5.10.

Let f ∈ O(Rn; p, q) be any isometry such that f(C(S, p;α−β)) = C(Q, q;α−β).

Then f isometrically maps the larger clusters: f(C(S, p;α)) = C(Q, q;α). ■

Proof. The composition h = f−1◦g fixes p and isometrically maps C(S, p;α−β)895

to itself, so h ∈ Sym(S, p;α−β). The condition Sym(S, p;α−β) = Sym(S, p;α)

implies that h ∈ Sym(S, p;α), so the isometry h ∈ O(Rn; p) isometrically maps

the larger cluster C(S, p;α) to itself. Then the given isometry f = g ◦ h−1

isometrically maps C(S, p;α) to f(C(S, p;α)) = g(C(S, p;α)) = C(Q, q;α).

Lemma A.3 (global extension). Let periodic point sets S,Q ⊂ Rn have a com-900

mon stable radius α satisfying Definition 3.5 for an upper bound β ≥ β(S), β(Q).

Let I(S;α) = I(Q;α) and p ∈ S, q ∈ Q be any points with an isometry

f ∈ O(Rn; p, q) such that f(C(S, p;α)) = C(Q, q;α). Then f(S) = Q. ■

Proof. To show that f(S) ⊂ Q, it suffices to check that the image f(a) of any

point a ∈ S belongs to Q. By Definition 3.3 the points p, a ∈ S are connected by905

a sequence of points p = a0, a1, . . . , ak = a ∈ S such that the distances |ai−1−ai|

between any successive points have the upper bound β for i = 1, . . . , k.

We will prove that f(C(S, ak;α)) = C(Q, f(ak);α) by induction on k, where

the base k = 0 is given. The induction step below goes from i to i+ 1.

38



The ball B̄(ai;α) contains the smaller ball B̄(ai+1;α−β) around the closely910

located center ai+1. Indeed, since |ai+1−ai| ≤ β, the triangle inequality for the

Euclidean distance implies that any point a′i+1 ∈ B̄(ai+1;α−β) with |a′i+1−ai| ≤

α − β satisfies |a′i+1 − ai| ≤ |a′i+1 − ai+1| + |ai+1 − ai| ≤ (α − β) + β = α, so

B̄(ai+1;α − β) ⊂ B̄(ai;α). Then the inductive assumption f(C(S, ai;α)) =

C(Q, f(ai);α) gives f(C(S, ai+1;α−β)) = f(C(S, ai;α))∩ f(B̄(ai+1;α−β)) =915

C(Q, f(ai);α) ∩ B̄(f(ai+1);α− β) = C(Q, f(ai+1);α− β).

Due to I(S;α) = I(Q;α), the isometry class of C(S, ai+1;α) equals an isom-

etry class of C(Q, bi+1;α) for some point bi+1 ∈ Q, i.e. there is an isometry

g ∈ O(Rn; ai+1, bi+1) such that g(C(S, ai+1;α)) = C(Q, bi+1;α). Since f ◦g−1 ∈

O(Rn; bi+1) isometrically maps C(Q, bi+1;α − β) to C(Q, f(ai+1);α − β), the920

points bi+1, f(ai+1) ∈ Q are in the same (α− β)-equivalence class of Q.

By condition (3.5a), the splitting of the periodic point set Q ⊂ Rn into α-

equivalence classes coincides with its splitting into (α − β)-equivalence classes.

Hence the points bi+1, f(ai+1) ∈ Q are in the same α-equivalence class of Q.

Then C(Q, f(ai+1);α) is isometric to C(Q, bi+1;α) = g(C(S, ai+1;α)).925

Now we can apply Lemma A.2 for p = ai+1, q = f(ai+1) and conclude that

the given isometry f , which satisfies f(C(S, ai+1;α−β)) = C(Q, f(ai+1);α−β),

isometrically maps the larger clusters: f(C(S, ai+1;α)) = C(Q, f(ai+1);α). The

induction step is finished. The inclusion f−1(Q) ⊂ S is proved similarly.

Lemma A.4 (all stable radii α ≥ α(S)). If α is a stable radius of a periodic930

point set S ⊂ Rn, then so is any larger radius α′ > α. Then all stable radii form

the interval [α(S),+∞), where α(S) is the minimum stable radius of S. ■

Proof. Due to Lemma (A.1bc), conditions (3.5ab) imply that the α′-partition

P (S;α′) and the symmetry groups Sym(S, p;α′) remain the same for all α′ ∈

[α−β(S), α], where β(S) is the bridle length. We need to show that they remain935

the same for any α′ > α and will apply Lemma A.3 for S = Q and β = β(S).

Let points p, q ∈ S be α-equivalent, i.e. there is an isometry f ∈ O(Rn; p, q)

such that f(C(S, p;α)) = C(S, q;α). By Lemma A.3, f isometrically maps the
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full set S to itself. Then all larger α′-clusters of p, q are matched by f , so p, q are

α′-equivalent and P (S;α) = P (S, α′). Similarly, any isometry f ∈ Sym(S, p;α)940

by Lemma A.3 for S = Q and p = q, isometrically maps the full set S to itself.

Then Sym(S, p;α′) coincides with Sym(S, p;α) for any α′ > α.

Figure 13: Logical steps towards main Theorems 4.9, 6.5 and Corollaries 5.4 and 5.10.

Proof of Theorem 3.10. The part only if ⇒. Let f be an isometry of Rn, which

isometrically maps one periodic point set S to another Q. For any point p in a

motif M(S) of S, the image f(p) ∈ Q is equivalent to a unique point g(p) in a945

motif M(Q) of Q modulo a translation along a vector from the lattice of Q.

Then, for any p ∈ M(S) and α ≥ 0, the clusters C(S, p;α) and C(Q, g(p);α)

are related by an isometry of Rn. Hence the bijection g : M(S) → M(Q) induces

a bijection I(S;α) → I(Q;α) between all isometry classes with weights.

The part if ⇐. Fix a point p ∈ S. The cluster C(S, p;α) represents a950

class σ ∈ I(S;α). Due to I(S;α) = I(Q;α), the class σ equals some ξ ∈

I(Q;α). Hence there is an isometry f of Rn such that the cluster f(C(S, p;α)) =

C(Q, f(p);α) represents ξ. By Lemma A.3, f isometrically maps S to Q.

Proof of Lemma 4.2. Since the set O(Rn; p, q) is compact, the minimum ε ≥ 0

is achieved in the inclusions from (4.1b) for some isometries f ∈ O(Rn; p, q) and955
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g ∈ O(Rn; q, p). Then, for any clusters C(S, p̃;α) and C(Q, q̃;α) isometric to

C(S, p;α) and C(Q, q;α) via fS ∈ O(Rn; p̃, p) and gQ ∈ O(Rn; q̃, q), respectively,

the same minimum ε ≥ 0 is achieved in the following inclusions (and vice versa),

which proves the independence of BT(σ, ξ) under a choice of clusters.

C(Q, q̃;α− ε) ⊆ f̃(C(S, p̃;α)) + B̄(0; ε) for f̃ = g−1
Q ◦ f ◦ fS ∈ O(Rn; p̃, q̃), and960

C(S, p̃;α− ε) ⊆ g̃(C(Q, q̃;α)) + B̄(0; ε) for g̃ = f−1
S ◦ g ◦ gQ ∈ O(Rn; p̃, q̃).

Now we prove the coincidence axiom. By Definition 4.1, BT(σ, ξ) = 0 means

that some representatives of given classes σ, ξ satisfy C(Q, q;α) ⊆ f(C(S, p;α))

for some f ∈ O(Rn; p, q) and C(S, p;α) ⊆ g(C(Q, q;α)) for some g ∈ O(Rn; q, p).

Combining these inclusions, we get C(Q, q;α) ⊆ f ◦ g(C(Q, q;α)). Since f ◦ g ∈965

O(Rn; q) is an isometry fixing q and both clusters in the inclusion above consist

of the same number of points the surjection a 7→ f ◦ g(a) for a ∈ C(Q, q;α)

should bijective, so C(Q, q;α) = f ◦ g(C(Q, q;α)). Then the initial inclusions

are equalities. Hence C(S, p;α), C(Q, a;α) are related by the isometry f ∈

O(Rn; p, q), so σ = ξ. The symmetry axiom holds because the inclusions in970

condition (4.1b) are symmetric to each other under swapping the arguments.

To prove the triangle inequality, let clusters C(S, p;α), C(Q, f(p);α), C(T, g◦

f(p);α) represent σ, ξ, ζ, respectively, so that ε1 = BT(σ, ξ) and ε2 = BT(ξ, ζ)

are achieved for inclusions C(Q, f(p);α − ε1) ⊆ f(C(S, p;α)) + B̄(0; ε1) and

C(T, g ◦ f(p);α− ε2) ⊆ g(C(Q, f(p);α)) + B̄(0; ε2) for isometries f, g of Rn.975

The last inclusion gives C(T, g ◦ f(p);α− ε1 − ε2) ⊆ g(C(Q, f(p);α− ε1)) +

B̄(0; ε2) because we can reduce the radius α in the cluster g(C(Q, f(p);α)) to

α − ε1. Indeed, if a point t ∈ C(T, g ◦ f(p);α − ε1 − ε2) is covered by a closed

ball B̄(q; ε2) for some q ∈ g(C(Q, f(p);α)), then |q − t| ≤ ε2 and

|q − g ◦ f(p)| ≤ |q − t|+ |t− g ◦ f(p)| ≤ ε2 + (α− ε1 − ε2) = α− ε1.

Hence q belongs to the smaller cluster g(C(Q, f(p);α−ε1) as required. Now we

apply the isometry g to the inclusion C(Q, f(p);α−ε1) ⊆ f(C(S, p;α))+B̄(0; ε1)

to get C(T, g ◦ f(p);α − ε1 − ε2) ⊆ g(C(Q, f(p);α − ε1)) + B̄(0; ε2) ⊆ g ◦

f(C(S, p;α)) + B̄(0; ε1 + ε2) as (q + B̄(0; ε1)) + B̄(0; ε2) = q + B̄(0; ε1 + ε2).
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Swapping the roles of S, T in the arguments above, we similarly prove that

if C(S, p;α − ε1) ⊆ f(C(Q, f−1(p);α)) + B̄(0; ε1) and C(Q, f−1(p);α − ε2) ⊆

g(C(T, g−1 ◦ f−1(p);α)) + B̄(0; ε2) for some isometries f, g of Rn, then

C(S, p;α− ε1 − ε2) ⊆ f ◦ g(C(T, g−1 ◦ f−1(p);α)) + B̄(0; ε1 + ε2).

Definition 4.1 implies that BT(σ, ζ) ≤ ε1 + ε2 = BT(σ, ξ) + BT(ξ, ζ).980

Example A.5 (detailed computations for Example 4.3). Fig. 6 shows the sta-

ble 2-clusters C(Λ4, 0; 2) and C(Λ6, 0; 2) of the square (Λ4) and hexagonal (Λ6)

lattices. Without rotations, the 1st picture of Fig. 6 shows the directed Haus-

dorff distance dH⃗ =

√
(1−

√
3
2 )2 + ( 12 )

2 =
√

2−
√
3 ≈ 0.52 between clusters

with the added boundary circle ∂B(0; 2). Due to high symmetry, it suffices to985

consider rotations of the square vertex (1, 1) for angles γ ∈ [45◦, 60◦] because

all other ranges can be isometrically mapped to this range for another vertex

of the square. We find the squared distances s1(γ) and s2(γ) from the vertex

(
√
2 cos γ,

√
2 sin γ) rotated from (1, 1) at γ = 45◦ through the angle γ − 45◦ to

its closest neighbors ( 12 ,
√
3
2 ) and (32 ,

√
3
2 ) in C(Λ6, 0; 2).990

s1(γ) =
∣∣∣(√2 cos γ,

√
2 sin γ)−

(
1
2 ,

√
3
2

)∣∣∣2 =
(√

2 cos γ − 1
2

)2
+
(√

2 sin γ −
√
3
2

)2

=

3−
√
2 cos γ−

√
6 sin γ, ds1

dγ =
√
2 sin γ−

√
6 cos γ = 0, tan γ =

√
3, γ = 60◦, s1 =

(
√
2− 1)2 is minimal for the points in y =

√
3x at distances 1,

√
2 from 0.

s2(γ) =
∣∣∣(√2 cos γ,

√
2 sin γ)−

(
3
2 ,

√
3
2

)∣∣∣2 =
(√

2 cos γ − 3
2

)2
+
(√

2 sin γ −
√
3
2

)2

=

5 − 3
√
2 cos γ −

√
6 sin γ, ds2

dγ = 3
√
2 sin γ −

√
6 cos γ = 0, γ = 30◦, s2 = (

√
3 −995

√
2)2 is minimal for the points in y = x√

3
at distances

√
2,
√
3 from 0.

It might look that the second minimum is smaller. However, for the angle

γ = 30◦, another vertex (−1, 1) rotated through γ − 45◦ = −15◦ has dis-

tance
√
2 − 1 to its closest neighbor (− 1

2 ,
√
3
2 ) ∈ C(Λ6, 0; 2). For any angle

γ ∈ [45◦, 60◦], the second function has the minimum s2(45
◦) = 2 −

√
3 = d2

H⃗
1000

in the 1st picture of Fig. 6. Hence the vertex (1, 1) has the minimum distance
√
2− 1 ≈ 0.41 <

√
2−

√
3 ≈ 0.52 in the 3rd picture of Fig. 6. All other points
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of the square cluster C(Λ4, 0; 2) are even closer to their neighbors in C(Λ6, 0; 2).

For example, the point (1, 0) rotated by 15◦ has the distance to (1, 0) equal to√
(cos 15◦ − 1)2 + sin2 15◦ ≈ 0.26. The final picture in Fig. 6 confirms that all1005

points of the hexagonal cluster C(Λ6, 0; 2) are covered by the (
√
2− 1)-offset of

C(Λ4, 0; 2) and the boundary circle. So BT =
√
2− 1 ≈ 0.41. ■

Proof of Lemma 4.5. The symmetry axiom holds because Definition 4.4 is sym-

metric under swapping S,Q. The triangle axiom was proved for any weighted

distributions in [18, Appendix A]. We will prove that if EMD(I(S;α), I(Q;α)) =1010

0 then I(S;α) = I(Q;α) as isosets. Indeed,
m(S)∑
i=1

m(Q)∑
j=1

fijBT(σi, ξj) = 0 means

that, for any i, j, if fij > 0 then BT(σi, ξj) = 0, so σi = ξj by the coincidence

axiom of BT from Lemma 4.2(a). Hence any flow fij > 0 is always between

equal isometry classes. The conditions on weights of σi, ξj in Definition 4.4

imply that every class σi should ‘flow’ to its equal class ξj of the same weight.1015

These flows define a bijection I(S;α) → I(Q;α) respecting all weights.

Proof of Lemma 4.8. Choose the origin 0 ∈ Rn at a point of S. Applying trans-

lations, we can assume that primitive unit cells U(S), U(Q) of the given peri-

odic sets S,Q have a vertex at the origin 0. Then S = Λ(S) + (U(S) ∩ S) and

Q = Λ(Q) + (U(Q) ∩Q), where Λ(S),Λ(Q) are lattices of S,Q, respectively.1020

We are given that every point of Q is dB(S,Q)-close to a point of S, where

the bottleneck distance dB(S,Q) is strictly less than the packing radius r(Q).

Assume towards contradiction that S,Q have no common lattice. Then there

is a point p ∈ Λ(S) whose all integer multiples kp ∈ Λ(S) do not belong to Λ(Q)

for k ∈ Z−{0}. Any such multiple kp can be translated by a vector of Λ(Q) to a

point q(k) in the unit cell U(Q) so that kp ≡ q(k) (mod Λ(Q)). Since the cell

U(Q) contains infinitely many points q(k), one can find a pair q(i) ̸= q(j) at a

distance less than δ = r(Q)−dB(S,Q) > 0. For any m ∈ Z, the following points

are equivalent modulo (translations along the vectors of) the lattice Λ(Q).

q(i+m(j − i)) ≡ (i+m(j − i))p = ip+m(jp− ip) ≡ q(i) +m(q(j)− q(i)).
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These points for m ∈ Z lie in a straight line with gaps |q(j) − q(i)| < δ. The

open balls with the packing radius r(Q) and centers at all points of Q do not

overlap. Hence all closed balls with the radius dB(S,Q) < r(Q) and the same1025

centers are at least 2δ away from each other. Due to |q(j) − q(i)| < δ =

r(Q) − dB(S,Q), there is m ∈ Z such that q(i) +m(q(j) − q(i)) is outside the

union Q+ B̄(0; dB(S,Q)) of all these smaller balls. Then q(i) +m(q(j)− q(i))

has a distance more than dB(S,Q) from any point of Q. The translations along

all vectors of the lattice Λ(Q) preserve the union of balls Q + B̄(0; dB(S,Q)).1030

Then the point (i+m(j − i))p ∈ S, which is equivalent to q(i) +m(q(j)− q(i))

modulo Λ(Q), has a distance more than dB(S,Q) from any point of Q. This

conclusion contradicts Definition 2.1(b) of the bottleneck distance dB(S,Q).

Proof of Lemma 5.2. To find all points in C(S, p;α), we will extend U by adding

adjacent cells in‘spherical’ shells around U . After considering the initial cell U

with a basis v⃗1, . . . , v⃗n, we take 3
n−1 cells U+v⃗ for vectors v⃗ =

n∑
i=1

civ⃗i ∈ Λ−{0}

with integer coordinates ci ∈ {−1, 0, 1}. The next ‘spherical’ shell consists of

5n − 3n cells U + v⃗ and so on. For any shifted cell U + v⃗ with v ∈ Λ, if all

vertices have distances more than α to p, this cell is discarded. Otherwise, we

check if any translated points M + v⃗ are within the closed ball B̄(p;α) of radius

α. The upper union Ū =
⋃
{(U + v⃗) : v ∈ Λ, (U + v⃗) ∩ B̄(p;α) ̸= ∅} consists of

vol[Ū ]
vol[U ] cells and is contained in the larger ball B(p;α + d), because any shifted

cell U + v⃗ within Ū has the longest diagonal d and intersects B(p;α). Since

each U + v⃗ contains m points of S, we check at most mvol[Ū ]
vol[U ] points. So

|C(S, p;α)| ≤ m
vol[Ū ]

vol[U ]
≤ m

vol[B(p;α+ d)]

vol[U ]
= m

(α+ d)nVn

vol[U ]
= ν(U,α, n)m,

where ν(U,α, n) = (α+d)nVn

vol[U ] . We will estimate ν(U,α, n) using the upper bound

α ≤ (L+m+ 1)2R(S) from Lemma 3.6(c). Since the longest diagonal has the1035

upper bound 2R(S) ≥ d because the closed balls with the radius d
2 and centers

at the vertices of a unit cell U cover U , so α+ d ≤ (L+m+ 2)2R(S).

Since Γ(n2+1) =
√
π (2n−1)(2n−3)...1

2n =
√
π (2n)(2n−1)(2n−2)(2n−3)...1

2n(2n)(2n−2)...2 =
√
π (2n)!

22nn! ,

the volume of the unit ball becomes Vn = πn/2

Γ(n
2 +1) = (

√
π)n−1 22nn!

(2n)! . The
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bounds
√
2πn

(
n
e

)n
exp( 1

12n+1 ) < n! <
√
2πn

(
n
e

)n
exp( 1

12n ), imply that Vn =1040

(
√
π)n−1 22nn!

(2n)! ≤ (
√
π)n−1

√
2

22n
(
n
e

)n ( e
2n

)2n
exp( 1

12n − 1
24n+1 ) ≤ exp( 1

22 )√
2π

(
e
√
π

n

)n

because 1
12n − 1

24n+1 = (24n+1)−12n
12n(24n+1) ≤ 12n+1

12×24n ≤ 13n
12×24n < 1

22 for n ≥ 1. Then

Vn ≤ exp( 1
22 )√

2π

(
e
√
π

n

)n

implies that ν(U,α, n) = (α+d)nVn

vol[U ] ≤ ((L+m+2)2R(S))nVn

vol[U ] ≤
exp( 1

22 )√
2π

((L+m+2)2R(S)e
√
π/n)n

vol[U ] ≤ (10(L+m+2)R(S)/n)n

2vol[U ] = GC(S) as required.

Proof of Lemma 5.6. The directed distance dR⃗(C∪∂B̄(0;α), D∪∂B̄(0;α)) is the1045

minimum ε ∈ [0, α] such that, for some f ∈ O(Rn), all points of C ∩B(0;α− ε)

are covered by f(D) + B̄(0; ε) as all points of C \ B(0;α − ε) are ε-close to

the boundary ∂B̄(0;α). Let j ∈ {1, . . . , k} be the largest index so that |pj | <

α − ε. Then C ∩ B(0;α − ε) = {p1, . . . , pj} and dR⃗({p1, . . . , pi}, D) ≤ dR⃗(C ∩

B(0;α − ε), D) ≤ ε for all i = 1, . . . , j. By the above choice of j, if j < i ≤ k1050

then α − |pi| ≤ ε. Hence, for all i = 1, . . . , k, both terms in the minimum

min{ α− |pi|, dR⃗({p1, . . . , pi}, D) } are at most ε. Then dM⃗ (C,D) ≤ ε.

Using the brief notation dM⃗ = dM⃗ (C,D), to prove the converse inequality

dR⃗(C ∪ ∂B̄(0;α), D ∪ ∂B̄(0;α)) ≤ dM⃗ , we check below that C ∩ B̄(0;α− dM⃗ ) is

covered by f(D)+ B̄(0; dM⃗ ) for some f ∈ O(Rn) or, equivalently, the inequality1055

dR⃗(C ∩ B̄(0;α−dM⃗ ), D) ≤ dM⃗ holds. Let j ∈ {1, . . . , k} be the largest index so

that |pj | ≤ α−dM⃗ . Since α−|pj | ≥ dM⃗ and min{ α−|pj |, dR⃗({p1, . . . , pj}, D) }

≤ max
i=1,...,k

min{α−|pi|, dR⃗({p1, . . . , pi}, D)} = dM⃗ , the term dR⃗({p1, . . . , pj}, D)

in the minimum above is at most dM⃗ . Due to C ∩ B̄(0;α− dM⃗ ) = {p1, . . . , pj},

we get dR⃗(C ∩ B̄(0;α− dM⃗ ), D) ≤ dM⃗ , which proves the required equality.1060

Proof of Lemma 5.8. Let q1 ∈ D be a point that has a maximum distance to

the origin 0 ∈ Rn. If there are several points at the same maximum distance,

choose any of them. Similar choices below do not affect the estimates. For any

1 < i < n, let qi be a point of D that has a maximum perpendicular distance

to the linear subspace spanned by the previously defined vectors q⃗1, . . . , q⃗i−1.1065

The key idea is to replace the minimization in dR⃗(Cj , D) over infinitely many

f ∈ O(Rn) by a finite minimization over compositions fn−1[sn−1] ◦ . . . ◦ f1[s1] ∈

O(Rn) depending on finitely many unknown points s1, . . . , sn−1 ∈ Cj , which
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will be exhaustively checked in time O(⟨C⟩n−1).

If the point q1 belongs to the infinite straight line L(s1) through the points s11070

and 0, then set f1[s1] to be the identity map. Otherwise, let f1[s1] ∈ SO(Rn) fix

the linear subspace orthogonal to the plane spanned by s⃗1, q⃗1, and then rotate

the point q1 to L(s1) through the smallest possible angle. Since q1 is a furthest

point of D from the origin 0 and |s1 − q1| ≤ dj , the rotation f1[s1] moves q1

and hence any other point of D by at most dj . Then any point in f1[s1](D) is1075

at most 2dj away from its closest neighbor in Cj , so dH⃗(Cj , f1[s1](D)) ≤ 2dj .

For any 1 < i < n, if q⃗i belongs to the linear subspace L(q1, . . . , qi−1, si)

spanned by q⃗1, . . . , q⃗i−1, s⃗i, set fi[si] to be the identity map. Else let the rotation

fi[si] ∈ SO(Rn) fix the linear subspace orthogonal to q⃗1, . . . , q⃗i, s⃗i, and rotate

qi to L(q1, . . . , qi−1, si) through the smallest possible angle. Since f1[s1](q2) is1080

at most 2dj away from s2 ∈ Cj , the map f2[s2] moves f1[s1](q2) and hence any

other point of f1[s1](D), by at most 2dj . Since q2 had a maximum perpendicular

distance from the line through q⃗1, the composition f2[s2]◦f1[s1] moves any point

of D by at most dj+2dj = 3dj . For 2 < i < n, the composition fn−1[sn−1]◦ . . .◦

f1[s1] moves any point of D by the maximum distance dj+2dj+. . .+(n−1)dj =1085

n(n−1)
2 dj = (ω−1)dj . Define the rotated image D′ = fn−1[sn−1]◦· · ·◦f1[s1](D)

based on the neighbors s1, . . . , sn−1 ∈ Cj of q1, . . . , qn−1 ∈ D, respectively.

Since the subcloud Cj is covered by the dj-offset of D and hence by the ωdj-

offset of D′, the approximation dH⃗(Cj , D
′) is non-strictly between the exact

distance dj = dH⃗(Cj , D) and its upper bound ωdj .1090

The algorithm starts by finding n − 1 ‘farthest’ points q1, . . . , qn−1 ∈ D,

which are independent of j, in time O(n|D|). Here q1 is a point of D with a

maximum distance |q1| to the origin, q2 is a next ‘farthest’ point of D from 0 and

so on. If some of these points have equal distances to 0, they can be chosen in any

order. Though we do not know which points s1, . . . , sn−1 ∈ Cj become nearest1095

neighbors of q1, . . . , qn−1 ∈ D after an optimal rotation, we will consider all

(unit vectors of) points s1, . . . , sn−1 ∈ Cj to compute the approximate distance

d′j = min
s1,...,sn−1∈Cj

dH⃗(Cj , D
′) for j = 1, . . . , k. The minimization for all such
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points keeps both bounds: dj ≤ d′j ≤ ωdj .

To minimize choices for s1, . . . , sn−1, we remove from the ordered list p1, . . . , pk1100

all points pi whose unit vectors p⃗i/|p⃗i| appear earlier with smaller indices. Then

we consider each variable point si from the remaining list C ′ in increasing order

of distances from the origin. For any chosen points s1, . . . , sn−1, we compute the

rotated image D′ = fn−1[sn−1] ◦ · · · ◦ f1[s1](D) by computing matrix products

in time O(|D|), where we skip polynomial factors of the fixed dimension n.1105

To compute the approximation d′j = d′
R⃗
(Cj , D) = min

s1,...,sn−1∈Cj

dH⃗(Cj , D
′),

we keep the current minimum of d′j , which will be updated after getting the

distance dH⃗(Cj , D
′) for every new choice of s1, . . . , sn−1 ∈ Cj . For each rotated

image D′ = fn−1[sn−1]◦· · ·◦f1[s1](D), we run the internal loop for j = 1, . . . , k.

For each point pj from the ordered full cloud C, we compute the distance1110

d(pj , D
′) = min

q∈D′
|pj−q| to its nearest neighbor in D′ in time O(|D|). We use the

previous iteration for j − 1 to get dH⃗(Cj , D
′) = max{dH⃗(Cj−1, D

′), d(pj , D
′)},

where we set dH⃗(C0, D
′) = 0. If all s1, . . . , sn−1 ∈ Cj and the current value

of d′j is larger than dH⃗(Cj , D
′), we update d′j := dH⃗(Cj , D

′). Because C has

O(⟨C⟩n−1) points s1, . . . , sn−1 with distinct normalized vectors, which deter-1115

mine D′ = fn−1[sn−1] ◦ · · · ◦ f1[s1](D), the total time is O(|C|⟨C⟩n−1|D|).

Lemma A.6 implies that ordering lists of pairs of ε-perturbations will keep ε-

closeness of corresponding ordered values. This result will help prove Lemma 6.4.

Lemma A.6 (re-ordering of ε-close values). For any ε ≥ 0, let C = {c1, . . . , ck}

and D = {d1, . . . , dk} satisfy |ci − di| ≤ ε, i = 1, . . . , k. For any i = 1, . . . , k, let1120

c(i), d(i) be the i-th largest values in C,D, respectively. Then |c(i)−d(i)| ≤ ε. ■

Proof. We consider any real di an ε-perturbation of the corresponding value ci

for i = 1, . . . , k. Assume towards contradiction that c(i) < d(i) − ε, so all i

smallest values of C are less than d(i) − ε. Then all ε-perturbations of these i

values in D are less than d(i), so D has i values that are strictly smaller than1125

d(i). This conclusion contradicts that d(i) is the i-th largest value in D. The

47



assumption c(i) > d(i) + ε similarly leads to contradiction. Hence, after writing

both C,D in increasing order, their i-th largest values remain ε-close.

Proof of Lemma 6.4. Definition 4.1c of ε = BT([C(S, p;α)], [C(Q, q;α)]) implies

that, for a suitable isometry f ∈ O(Rn), the image f(C(S, p;α−ε)−p⃗) is covered1130

by the ε-offset of C(Q; q;α)− q⃗ shifted by q to the origin. Since ε is smaller than

a minimum half-distance between points of S,Q, the above covering establishes

a bijection g with all (at least k) neighbors of p and q in their (α− ε)-clusters.

The covering condition above means that the corresponding neighbors are at

a maximum distance ε from each other. The triangle inequality implies that the1135

distances from corresponding neighbors to their centers p, q differ by at most ε.

The ordered distances from p, q to their k neighbors in the (α− ε)-clusters form

the rows of p, q in PDD(S; k),PDD(Q; k). The bijection g may not respect their

order. By Lemma A.6 the ordered distances with the same indices are ε-close.

So the L∞ distance between the rows of p, q is at most ε.1140

The proof of Lemma 3.6(c) referred to Lemma A.7, which was briefly proved

in the 2nd paragraph in [32, p. 20] without a formal statement. We stated and

prove this auxiliary result below to make all arguments complete.

Lemma A.7 (finite symmetry group). Let a periodic point set S ⊂ Rn be n-

dimensional, i.e. S is not contained a lower-dimensional affine subspace of Rn.1145

Then the symmetry group Sym(S, p; 2R(S)) is finite for any point p ∈ S.

Proof. Recall that the covering radius R(S) is the largest radius R of an open

ball B(q;R) within the complement Rn \ S for q ∈ Rn. Consider any such ball

B̄(q;R(S)) whose boundary sphere passes through the given point p ∈ S and

whose interior contains no points of S. Then the closed ball B̄(q;R(S)) should1150

include at least one more point p1 ∈ S \ {p} with |p− p1| ≤ 2R(S). Otherwise,

the ball B̄(q;R(S)) can be slightly expanded from p ∈ S without including any

points of S \ {p}, which contradicts the definition of the covering radius R(S).

If n ≥ 2, consider another open ball B(q1;R(S)) ⊂ Rn \ S that touches

at p the straight line L(p, p1) through p, p1. Then the closed ball B̄(q1;R(S))1155
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should include at least one more point p2 ∈ S outside the line L(p, p1), so

|p − p2| ≤ 2R(S) and p, p1, p2 ∈ S span the 2-dimensional plane L(p, p1, p2).

Otherwise the closed ball B̄(q1;R(S)) can be slightly expanded from p ∈ S on

the boundary ∂B(q1;R(S)) without including any points of S \ {p, p1}.

If n ≥ 3, consider another open ball B(q2;R(S)) ⊂ Rn \ S that touches at p1160

the plane L(p, p1, p2). Then the closed ball B̄(q2;R(S)) should include at least

one more point p3 ∈ S outside the plane L(p, p1, p2). Then p, p1, p2, p3 ∈ S span

the 3-dimensional subspace L(p, p1, p2, p3) and so on until we find n+1 affinely

independent points p, p1, . . . , pn ∈ S such that each pi is at a maximum distance

2R(S) from p for i = 1, . . . , n. Since the cluster C(S, p; 2R(S)) contains n + 11165

affinely independent points, its symmetry group Sym(S, p; 2R(S)) is finite.

Example A.8 (Earth Mover’s Distance for lattices with bottleneck distance

dB = +∞). The 1D lattices S = Z and Q = (1 + δ)Z with the bottleneck

distance dB(S,Q) = +∞ have PDD consisting of a single row (as for any lat-

tice). For instance, PDD(S; 4) = (1, 1, 2, 2) and PDD(Q; 4) = (1 + δ, 1 + δ, 2 +1170

2δ, 2 + 2δ). For the common stable radius α = 2 + 2δ, Example 4.6 computed

EMD(I(S;α), I(Q;α)) = 2δ. Theorem 6.5 considers the maximum number k of

points in clusters of S,Q with the radius α− 2δ = 2, so k = 2.

Then EMD(PDD(S; 2),PDD(Q; 2)) equals the L∞ distance δ between the

short rows (1, 1) and (1+ δ, 1+ δ). The above computations illustrate the lower1175

bound EMD(PDD(S; 2),PDD(Q; 2)) = δ ≤ EMD(I(S;α), I(Q;α)) = 2δ. This

inequality becomes equality for the larger stable radius α = 2+4δ, because the

clusters of S,Q with the radius α− 2δ = 2 + 2δ contain k = 4 points. The L∞

distance between (1, 1, 2, 2) and (1 + δ, 1 + δ, 2 + 2δ, 2 + 2δ) is 2δ for δ < 1
8 , so

EMD(PDD(S; 4),PDD(Q; 4)) = 2δ = EMD(I(S; 2 + 4δ), I(Q; 2 + 4δ)). ■1180

Example A.9 (lower bound for a distance between square and hexagonal lat-

tices). The square lattice Λ4 and hexagonal lattice Λ6 with minimum inter-

point distance 1 have a common stable radius α = 2 as shown in Fig. 6.

The maximum number of points in the stable 2-clusters is k = 12. The
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rows PDD(Λ4; 12) = (1, 1, 1, 1,
√
2,
√
2,
√
2,
√
2, 2, 2, 2, 2) and PDD(Λ6; 12) =1185

(1, 1, 1, 1, 1, 1,
√
3,
√
3,
√
3,
√
3,
√
3,
√
3) have the L∞ distance max{

√
2 − 1, 2 −

√
3} =

√
2−1, which coincides with EMD(I(Λ4; 2), I(Λ6; 2)) in Example 4.3. ■

The latest version includes Algorithms 1 and 2, which implement the ap-

proximations from section 5 of new metrics defined in section 4. Tables A.1-A.2

with near-duplicates and run times on the CSD and GNoME are new.1190

Algorithm 1: Pseudocode for the boundary tolerant metric BT between

α-clusters and EMD between isosets in Theorem 5.9 and Corollary 5.10,

where the max-min distance dM⃗ is approximated by Algorithm 2.

Input : Isosets is1 = I(S;α), is2 = I(Q;α), with weights w1, w2

Output: EMD(I(S;α), I(Q;α))

1 distance matrix = zeros(len(is1), len(is2))

2 for i in range(len(is1)) do

3 for j in range(len(is2)) do

4 BT = max(dM⃗(C, D), dM⃗(D, C))

5 distance matrix[i, j] = BT

6 emd = EMD(w1, w2, distance matrix)

7 return emd

To confirm near-duplicates in the CSD and GNoME database by complete

isosets, we first filtered out pairs of crystals that have L∞ ≥ 10−4Å on faster

invariants ADA100. The full table of the resulting 4385 pairs with all distances

and running times is in the supplementary materials. In most pairs, crystals1195

belong to the same 6-letter code family because their structures are either poly-

morphs (different phases with the same composition) or slightly different ver-

sions determined under different temperatures or pressures. However, 398 pairs

consist of geometric near-duplicates that were assigned to (unexpectedly) dif-

ferent families. In almost all these cases, the EMD metric on isosets was 0 after1200

rounding to 10−10 (floating point error) in Angstroms. Table A.1 shows all 25

crystals where the EMD metric was only slightly above 0.
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Algorithm 2: Pseudocode for the directed max-min distance dM⃗ in Def-

inition 5.5(b) by using an approximation of dR⃗ in Lemma 5.8.

Input : finite clouds C, D (ordered by distance to the origin 0)

Output: dM⃗ (C,D)

1 alpha = max(norm(C[-1]), norm(D[-1]))

2 q1, d R, max d, res = D[-1], [inf] * len(C), -inf, -inf

3 for q in D do

4 if d := perp dist(q, q1) > max d then max d = d; q2 = q

5 for i1, p1 in enumerate(C) do

6 R1b = rotation to align(q1, p1)

7 q1 , q2 = dot(R1b, q1), dot(R1b, q2)

8 for i2, p2 in enumerate(C) do

9 if i1 == i2 then continue

10 src normal = cross(q1 , q2 )

11 R2b = identity(3)

12 if norm(src normal) != 0 then

13 tar normal = cross(p1, p2)

14 if norm(tar normal) == 0 then

15 if dot(p1, p2) < 0 then

16 R2b = rotation to align(p1, p2)

17 else

18 R2b = rotation to align(src normal, tar normal)

19 d H = Hausdorff dist(C, dot(D, R2b × R1b))

20 if v := min(d H, alpha - norm(p)) > res then res = v

21 return res
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Table A.1: The first pair consists of rigidly different mirror images from Fig. 8 (right). All

others are geometric near-duplicates from (surprisingly) different families in the CSD, con-

firmed by tiny values of the EMD metric on isosets. The distance units are in attometers: 1

am = 10−8Å = 10−18 meter. The run times in milliseconds (ms) depend on the cluster size

(maximum number of atoms in α-clusters) according to Theorem 5.3 and Corollary 5.10.

CSD id1 CSD id2 EMD isosets, am isosets time, ms EMD isosets time, ms cluster size

WODLOS XAWGAE 85856.22 129.619 1204.58 7

TAFQIA VAVQIS 952.96 1690.949 321603.86 20

FIJKIU IPEQUR 728.43 407.579 77455.47 16

JIZMIR01 JIZNAK 496.08 40.454 634.73 5

HIYVUG01 MASPIF 334.62 35.518 543.45 7

KIVXEW10 KIWCEC 125.03 22.456 32.32 5

XAYZOP ZEMDAZ 89.47 301.217 1697.26 4

KIVXEW10 KIWCEC28 83.07 21.701 32.49 5

AFIBOH NENCUF 31.67 126.582 1160.58 5

KIVXEW07 KIWCEC09 31.11 22.287 36.95 5

KIVXEW07 KIWCEC11 31.11 22.434 36.75 5

KIVXEW11 KIWCEC26 26.11 21.646 32.33 5

SERKIL SERKOR 23.78 2444.885 18485.57 6

ADESAG REWPOB 5.81 54.675 5689.27 15

GEQRAX IFOQOL 0.05 265.4 2090.42 6

BUKYEN UYOCES 0.03 398.129 15739.11 11

GOHYOT VIHCEY 0.01 100.031 940.16 5

JUMCUP QAHBOT 0.01 179.367 4234.6 5

CALMOV CALNAI 0.01 128.437 3913.32 4

NABKOT ZIVSEF 0.01 75.401 796.14 5

LIBGAE VESJUY 0.01 41.535 403.87 3

AMEVEV OLERON 0 70.172 558.78 4

SIHFIZ TEZBUV 0 207.984 1761.39 5

XATCAA ZAQMEN 0 60.254 394.74 4

PIDREA XIZNOL 0 94.135 243.46 5

52



Table A.2: After excluding 3248 exact numerical duplicates from [3, Table 1], the next 25

pairs of closest near-duplicates in the GNoME database are confirmed by tiny values of the

EMD metric on isosets. The distance units are attometers: 1 am = 10−8Å = 10−18 meter.

The run times are in milliseconds (ms). The cluster size is the maximum number of atoms in

α-clusters, which affects times. The full table of 2858 pairs is in the supplementary materials.

GNoME id1 GNoME id2 EMD isosets, am isosets time, ms EMD isosets time, ms cluster size

1547d30046 ddc216e80c 1 1.659 434.362 14

b4065a4798 e78d3559e6 1.7 3.034 13.271 6

98ab164895 df1252bc44 2 1.002 419.142 14

0de9d25713 b1733941a7 2.7 1.971 49.816 6

0e79f7c053 6cf951ac6f 3 1.035 429.487 14

07ece241f0 45cacc8d45 3.2 0.618 14.374 6

a58dc74a92 c16bf63220 4.1 2.532 641.086 14

5023e3a4b8 8f7ffb4d4a 4.6 2.776 10.02 6

3198d1a3ea 35f67abe6d 5 1.031 403.398 14

6826b81efb 76ee112799 5 0.985 407.618 14

6826b81efb e9be17f0ee 5 1.008 404.306 14

2cff5f2fa0 f470a5f6fa 5.3 0.635 169.911 17

2ce912f039 9de239ee0c 5.5 0.632 3.456 2

c9f5a7a51b fd9f40e0e1 6 1.14 195.261 10

18078e002b aca2a892a5 6 1.028 421.009 14

18078e002b b9722429b1 6 1.18 445.453 14

18078e002b b702e73db3 6 1.035 414.325 14

34b4204eee adee17535b 6 1.017 396.855 14

506b8b5646 60d266db80 6 1.174 413.254 14

506b8b5646 ec7b789cb3 6 1.174 403.014 14

780741962f a19688f106 6.5 1.804 870.629 15

780741962f c6af1fc763 6.5 2.731 921.496 15

780741962f c64c3e245c 6.5 1.792 829.979 15

b06353561c b6d2341d32 6.6 2.387 259.359 12

ebb33e044c ebc9a4db61 6.8 1.232 450.351 14
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Figure 14: The GNoME crystals 1547d30046 and ddc216e80c in the first row of Table A.2 are

compared as texts by https://text-compare.com. All differences are highlighted in blue.

Fig. 15 shows the most striking pair of exact duplicates in the GNoME

is cdc06a1a2a and 0e2d8f26d6, whose CIFs are identical symbol by symbol in1205

addition to two pairs of atoms at the same positions (Na1=Na2 and Na3=Na4).

Figure 15: Different entries cdc06a1a2a and 0e2d8f26d6 in the GNoME database are not only

identical symbol by symbol but also contain two pairs of atoms (Na1=Na2 and Na3=Na4) at

the same positions. Left: a screenshot from the CIF. Right: Mercury visualization can show

only one atom in each pair of coinciding atoms, e.g. only Na1 and not Na2 from the CIF.
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