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ABSTRACT

Fix a straight line L in Euclidean 3-space and consider the fibration of the complement
of L by half-planes. A generic knot K in the complement of L has neither fiber quadrise-
cants nor fiber extreme secants such that K touches the corresponding half-plane at 2
points. Both types of secants occur in generic isotopies of knots. We give lower bounds
for the number of these fiber secants in all isotopies connecting given isotopic knots. The
bounds are expressed in terms of invariants calculable in linear time with respect to the
number of crossings.
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1. Introduction

In this paper, we give another application of the main result of [3], namely, the higher
order Reidemeister theorem for one-parameter families of knots. Fix a straight line
L in R3, the azis. For simplicity assume that L is horizontal. Consider the fibration
o R - L — S;, by half-planes attached to the axis L. The fibration ¢ can be
visualized as an open book whose half-planes are fibers of . We will study some
distances between isotopic knots in the complement R? — L.

A knot is the image of a C°°-smooth embedding S — R3 — L. An isotopy of
knots is a smooth family {K;}, t € [0, 1], of smooth knots. The theory of knots in
R3 — L covers the classical knot theory in R? and closed braids. An n-braid £ is a
family of n disjoint strands in a vertical cylinder such that the strands have fixed
endpoints on the horizontal bases of the cylinder and they are monotonic in the
vertical direction. After identifying the bases of the cylinder in Fig. 1, any braid
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Fig. 1. Examples of a braid, a closed braid, a plat knot.

(8 becomes a closed braid B, a link in a solid torus going around the axis L. The
boundary circle of the lower base of the cylinder plays the role of L U co.

A secant, a trisecant and a quadrisecant of K C R3 — L is a straight line meeting
K transversally in 2, 3 and 4 points, respectively. A secant meeting K in points p, ¢
is extreme if the secant and the tangents of K at p, ¢ lie in the same plane. Namely,
K has tangencies of order 1 at p,q with a plane passing through the secant, i.e. the
plane and K are given by {z = 0} and {y = 0, 2 = 2} in local coordinates near
p,q. A generic knot has finitely many extreme secants and quadrisecants. If we are
interested only in fiber secants respecting ¢, then these geometric features define
codimension 1 singularities in the space of all smooth knots K C R? — L.

Definition 1.1. A fiber secant, a fiber trisecant, a fiber quadrisecant of a knot
K C R3— L is a straight line meeting K transversally in 2, 3, 4 points, respectively,
that lie in a fiber of the fibration ¢ : R* — L — S_. A fiber secant meeting K in
points p, q is called eztreme if K has tangencies of order 1 at p, ¢ with the fiber.

We use fiber secants to measure a distance between different embeddings of a
knot. A similar distance with respect to Reidemeister moves of type I1I was studied
in [1], see Fig. 4. Reidemeister moves can be performed on a knot K in a small
neighborhood of a disk. Reidemeister moves III correspond to triple points in the
horizontal disk of a projection, i.e. to vertical trisecants meeting K in 3 points.

The authors of [1] found the minimal number of vertical trisecants in isotopies
between different representations of a knot. We consider more general features of a
knot, namely, quadrisecants in the half-planes of the fibration ¢ and estimate their
minimal number in knot isotopies. Arbitrary quadrisecants provide lower bounds
for the ropelength of knots [2]. To define our lower bounds, we associate to each
knot K C R?® — L an oriented graph TG(K), the trace graph in a thickened torus.

Choose cylindrical coordinates p, ¢, A in R3, where \ is the coordinate on the
oriented axis L, p and ¢ are polar coordinates on a plane orthogonal to L. For
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an ordered pair of points (p,q) C {¢ = const}, let 7(p, q) be the angle between L
and the oriented line S(p, ¢) passing first through p and after through ¢g. Denote by
p(p,q) the distance between S(p,q) and the origin 0 € L. Introduce the oriented
thickened torus T = S} x S! x R} parametrized by 7,¢ € [0,27) and p € R*.

Definition 1.2. Take a knot K C R3— L in general position such that K intersects
each fiber of ¢ in finitely many points. Map an ordered pair (p, ¢) C KN{¢ = const}
to (7(p,q), ¢, p(p,q)) € T. So, each oriented fiber secant of K maps to a point in
the thickened torus T. The image of this map is the trace graph TG(K) C T.

Figure 2 shows the trace graph TG(K) of a long trefoil K going once around a
distant horizontal circle L U co. The fibers there are horizontal planes. The trace
graph TG(K) can be visualized as a trace of fiber secants evolving along K. The
knots in Fig. 2 are obtained from K by the rotation around a vertical line. A crossing
in the projection of a rotated knot corresponds to a fiber secant of K, i.e. to a point
of TG(K). The embedding TG(K) C T is symmetric under the shift 7 — 7 + .
This shift reverses the orientation of each fiber secant.

For a generic knot K of Definition 2.1, TG(K) can have only hanging ver-
tices *= and triple vertices > associated to fiber tangents and fiber trisecants

>
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Fig. 2. The trace graph TG(K) of a long trefoil K.
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Fig. 3. The trace graph of d3o201 splits into 3 trace circles.

of K, respectively. A double crossing of TG(K) under pr,, : TG(K) — S} x S
corresponds to a pair of parallel secants meeting K in points that lie in a fiber
{¢ = const}.

Let m be the linking number of a knot K with the axis L. It turns out that the
trace graph TG(K) splits into a union of oriented traces (arcs or circles) marked
by canonically defined homological markings in Zj,,|, where Zo = Z and Z; = {0},
see Definition 2.2. For example, the closure of 030201 € By has the trace graph in
Fig. 3, which is a disjoint union of 3 trace circles marked by [1], [2], [3] € Z4.

Introduce the sign of a crossing in the projection pr,,(TG(K)) as usual, see
Fig. 1. We shall define 3 functions on TG(K), which will be invariant under regular
isotopy of TG(K), not allowing Reidemeiser moves of type I, see Lemma 3.1.

Definition 1.3. Take a knot K C R3 — L such that lk(K, L) = m # +1 and the
projection pr,,(TG(K)) has finitely many crossings. For distinct [a], [b] € Zj,,) —
{0}, the unordered writhe W, (K) is the sum of signs over all crossings of the trace
marked by [a] with the trace [b]. The ordered writhe We,(K) is the sum of signs
over all crossings, where the trace [a] crosses over the trace [b]. The coordinated
writhe W ,(K) is the sum of signs over all self-crossings of the trace [a].

We do not consider knots K C R? — L with 1k(K, L) = £1, because in this case
TG(K) splits into trace arcs marked by [0] and [1] only, see Definition 2.2. The trace
graph TG(K) can be constructed from a plane projection of K, see Lemma 2.4.
The writhes of Definition 1.3 depend on a geometric embedding K C R?® — L, but
can be computed in linear time with respect to the number of crossings of K and
change under knot isotopies in a controllable way, see Lemma 3.2.

Theorem 1.4. For isotopic generic knots Ko, K1 C R® — L, denote by fqs(Ko, K1)
and fes(Ko, K1) the least number of fiber quadrisecants and fiber extreme secants,
respectively, occurring during all isotopies {K:}, t € [0,1].

For isotopic knots Ko, K1, we have fqs(Ko, K1) > 5 > 0sazbz0 | Wap(Ko) —

W, (K1)| and fqs(Ko, K1) + gles(Ko, K1) > 15 20,20 IWE . (Ko) — WE (K1)

Given isotopic closed braids (o, b1, we get fqs(Bo, B1) > L > 0£akb£0 |W;’b(30) -
Woy (Bl
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The third lower bound is not less than the first one, but works for closed braids
only. The second bound gives another estimate for the number of fiber quadrisecants
for closed braids since fiber extreme secants do not occur in braid isotopies. In
Example 3.3, we show that the second lower bound can be arbitrarily large.

The lower bounds for the least number of Reidemeiter moves III are computed
with exponential complexity in [1], while the writhes of Definition 1.3 can be com-
puted in linear time with respect to the number of crossings, see Lemma 2.4. Other
applications of the 1-parameter approach to knot theory [3] are in [4, 5].

2. The Trace Graph of a Knot

We shall define generic knots K C R3—L and geometric features of knots, considered
as codimension 1 singularities in the space of all knots in R? — L. Each singularity is
illustrated by a small portion of the projection of K along the corresponding secant.
For example, a tangent of K maps to a cusp Y in the plane projection along the
tangent, while a quadrisecant projects to a quadruple point 3.

Definition 2.1. A knot K C R® — L is generic if K has no following features:

> : a fiber quadrisecant intersecting K transversally in 4 points;

X : a fiber trisecant meeting K in 3 points such that the trisecant lies in the plane
spanned by the tangents of K at 2 of these points;

X : a fiber secant meeting K in 2 points and having a tangency of order 1 with K
at one of these points;

i a fiber secant meeting K in points p,q such that K has a tangency of order 2
at p with the plane spanned by the secant and the tangent of K at ¢, i.e. the plane
and K are given by {z = 0} and {y = 0, z = 23} in local coordinates near p;

~\: a fiber tangent having a tangency of order 2 with K at p, i.e. the tangent and
K are given by {y = 2 = 0} and {y = 0, 22 = 2°} in local coordinates near p;

A %: a fiber trisecant meeting K in 3 points such that K has a tangency of
order 1 with the fiber at one of these points;

~: a fiber tangent meeting K in a point, where K has a tangency of order 2 with
the fiber, i.e. the fiber and K are given locally by {z =0} and {y =0, z = 23};
=, /7\: a fiber secant meeting K in 2 points, where K has tangencies of order 1
with the fiber.

The singularities of Definition 2.1 can be visualized by rotating a knot around
a vertical line. The last singularity represents two local extrema NN with the same
vertical coordinate: they collide under the projection after a suitable rotation.

A trace in the trace graph TG(K) of a knot K is either a subarc ending at
hanging vertices or a subcircle of TG(K). A trace passes through triple vertices
without changing its direction. The trace graph in Fig. 2 consists of 2 trace arcs.

By Definition 1.2, any point in TG(K) corresponds to a fiber secant of K and
also to an intersection in the projection of K along the secant. Hanging vertices and
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triple vertices of TG(K) correspond to cusps Y and triple intersections X, respec-
tively. Mark also tangent vertices € of degree 2 in TG(K) whose corresponding
secants project to tangent points of order 1, see 2 tangent vertices in Fig. 6(iv).

All points of TG(K) apart from the vertices of TG(K) correspond to double
crossings with well-defined signs. Associate to such a general point, the sign of the
corresponding crossing in the projection. Two close points of TG(K) on different
sides of a tangent vertex correspond to a couple of crossings with opposite signs
like in Reidemeister move II, see Fig. 4. While we travel along a trace of TG(K),
the sign does not change at triple vertices, but is reversed at tangent vertices.

To be completely honest we should also consider critical vertices <~ of degree 2
in TG(K) corresponding to a critical crossing A in a projection of K. Then K has
a fiber secant and another fiber tangent in the same fiber. These critical vertices are
local extrema of pr,, : TG(K) — S} and denoted by small empty circles in Fig. 6.
The critical vertices of TG(K) will not play any role further.

Let us look at the function 7 on fiber secants passing through 2 points p, ¢ on
K. Namely, 7(p,q) is the angle between L and the fiber secant through p,q. The
function 7(p, ¢) has a local extremum if and only if the corresponding secant of K
projects to a tangent point, i.e. 7 changes its monotonic type at tangent vertices of
TG(K). So, passing through a tangent point of TG(K') reverses the sign of crossing
in the projection of K and simultaneously the monotonic type of 7.

Definition 2.2. Take a generic knot K C R3 — L with Ik(K, L) = m. Split TG(K)
by tangent vertices into arcs with associated signs coming from plane projections.
Orient each arc so that if the angle 7 increases (respectively, decreases) along the
arc then the associated sign of the arc is +1 (respectively, —1), see Fig. 2.

Any point of TG(K) apart from the vertices of TG(K) is associated to a crossing
(p, q) in the projection of K along the secant through p, ¢ € K. Smoothing crossing
(p, q) produces a diagram of a 2-component link. The linking number of the circle
L U oo with the component in which the undercrossing goes to the overcrossing in
the original projection of K is called the homological marking [a] € Zy,| of (p,q)
and of the point of TG(K), see Fig. 3.

The trace graph in Fig. 2 splits into 2 trace arcs marked by [0] and [1]. Under
the shift 7 — 7 + 7, the homological marking [a] becomes [|m| — a] € Z,, see
Fig. 3. Recall that a hanging vertex of TG(K) corresponds to a fiber tangent of K,
i.e. to an ordinary cusp in the plane projection along this tangent.
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Lemma 2.3. The trace graph TG(K) of a generic knot K splits into traces with
well-defined homological markings. The orientation of edges, introduced in Defini-
tion 2.2, provides orientations of all traces of TG(K).

Proof. Consider the sign of a crossing, monotonic type of the function 7 and homo-
logical marking as functions of a point in the trace graph TG(K). All these functions
remain constant while the projection of K along the corresponding secant keeps its
combinatorial type. By the classical Reidemeister theorem, a knot projection can
change under Reidemeister moves of types I-II1, see Fig. 4.

Under Reidemeister move I, a fiber secant of K appears or disappears, i.e. the
corresponding point in the trace graph comes to a hanging vertex. Under Reide-
meister move II, two crossings with opposite signs and the same marking appear or
disappear. At this moment the function 7 reverses its monotonic type. So the ori-
entations of adjacent arcs of TG(K) agree at tangent vertices. Under Reidemeister
move III, nothing changes, i.e. all arcs of a trace have the same marking. O

The right picture in Fig. 1 shows a plat diagram of a knot K3 associated to a
braid 5. Any knot can be isotoped to a curve having a plat diagram.

Lemma 2.4. Let K3 be a knot with a plat diagram associated to a (2n+1)-braid
of braid length l. The trace graph TG(Kg) can be constructed combinatorially from
the diagram of Kg. The writhes of Definition 1.3 can be computed with complexity
Cln?, where the constant C does not depend on | and n.

Proof. We describe the trace graphs of elementary braids containing one crossing
only. Figure 5 shows the explicit example of the crossing o7 of first two strands in the
4-braid. Firstly, we draw all strands in a vertical cylinder. Secondly, we approximate
with the first derivative the strands forming a crossing by smooth arcs.

The monotonic strands in the left pictures of Fig. 5 are denoted by 1,2, 3, 4.
The trace graphs in the right pictures have arcs labeled by ordered pairs (ij),
i,j € {1,2,3,4}. The arc (ij) represents crossings, where the ith strand crosses
over the jth one. For instance, at the moment 7 = 0 the braid o, has exactly one
crossing (12), which becomes crossing (21) after rotating the braid through + = 7 /4.
Two triple vertices on the upper right picture correspond to two fiber (horizontal)
trisecants in the upper left picture. Similarly, we construct the trace graph of a
local extremum. The only hanging vertex corresponds to a horizontal tangent.

In general, we split K5 by fibers of ¢ : R® — L — Si, into several sectors each
of that contains exactly one crossing or one extremum. To each sector we associate
the corresponding elementary block and glue them together. The resulting trace
graph contains 2[(2n — 1) triple vertices and 2n hanging vertices. Any two arcs in
an elementary block have at most one crossing, not more than n? crossings in total.
So each writhe of Definition 1.3 can be computed with complexity Cln?. |



1422  T. Fiedler & V. Kurlin

Fig. 5. Half trace graphs of o1 € B4 and a local maximum.

Definition 2.5. Denote by €2 the discriminant of knots K failing to be generic due
to one of the singularities of Definition 2.1. An isotopy of knots {K;}, ¢ € [0, 1],
is generic if the path {K;} intersects ) transversally. A regular isotopy of trace
graphs is generated by isotopy in S! x S}o and Reidemeister moves II-V.

Any orientations and symmetric images of the moves in Fig. 4 are allowed.
Proposition 2.6 is a particular case of the more general higher order Reidemeister
theorem [3, Sec. 1.3]. A knot can be reconstructed from its trace graph equipped
with labels, ordered pairs of integers, see details in [3, Sec. 6.1].

Proposition 2.6. If knots Ko, K1 C R® — L are isotopic, then TG(Ky), TG(K)
are related by regular isotopy and a finite sequence of the moves in Fig. 6.

Proof. The singularities of Definition 2.4 are all essential codimension 1 singulari-
ties associated to fiber secants and fiber tangents of knots, see [3, Sec. 3]. There are
also codimension 1 singularities formed by pairs of fiber secants and fiber tangents
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(i) tetrahedral moves associated to a quadruple point %

= - =

(ii) a move associated to a tangent triple point X
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(iii) a move associated to an intersected cusp y
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(vi) a move associated to a horizontal triple intersection %

Fig. 6. Moves on trace graphs.
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(vii) a move associated to a horizontal triple mtersectlon
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Vlll a move associated to 1x a move associated to

a horizontal cusp a mixed pair
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(x) a move associated to an extreme palr

(xi) trihedral move associated to a tangency with >|<

Fig. 6. (Continued)

in the same fiber, but they give rise to trivial moves on trace graphs. For example,
the singularity X A\, where a fiber secant and a fiber tangent are in the same fiber,
leads to the move throwing an arc over a critical vertex.

Any isotopy of knots can be approximated by a generic isotopy of Definition 2.5.
Each move of Fig. 6 corresponds to one of the singularities. For instance, when a
path in the space of knots passes through a knot with a fiber quadrisecant, the
tetrahedral move 6i changes the trace graph by collapsing and blowing up the 1-
skeleton of a tetrahedron. A formal correspondence between the singularities and
moves was shown in [3, Lemma 5.5].

The moves of Fig. 6 keep the orientation and homological markings of traces. If
three traces marked by [al, [0], [¢] meet in a triple vertex then b = a 4 ¢ (mod |m]),
where [b] is the marking of the middle trace, see [5, Lemma 3.3]. The trace graph
always remains symmetric under 7 — 7 4 7. Hence, each move of Fig. 6 describes
how to replace a small disk A and the symmetric image of A under 7 — 7+ 7 by
another small disk A’ and the symmetric image of A’, respectively. O
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3. Proofs of Main Results

Lemma 3.1. The writhes of Definition 1.3 are invariant under reqular isotopy of
trace graphs in the sense of Definition 2.5.

Proof. The Reidemeister moves of types II-IV in Fig. 4 do not change the sum
of signs in the writhes. The Reidemeister move of type V either adds or deletes a
crossing of TG(K), but a trace arc coming to a hanging vertex always has homology
marking [0] modulo |Ik(K, L)| and is excluded in Definition 1.3. |

Lemma 3.2. The moves in Fig. 6 keep the writhes of Definition 1.3 except

the move 6(i) changes W'y (a # b) by £2 for at most 6 unordered pairs {a,b};
the move 6(i) changes W¢, (a # b) by £1 for at most 12 ordered pairs (a,b);
the move 6(i) changes WE , either (1) by £6 for at most 2 values of a, or

a,a

(2) by £4 for at most 2 values of a and by £2 for at most 2 values of a, or

(3) by £2 for at most 6 values of a;

the moves 6(vi), 6(vii) change Wg, (a # b) by +1 for at most 4 ordered pairs
(a,b);

the moves 6(ix) and 6(x) change Wy , by 1 for at most two values of a.

Proof. No crossings appear or disappear in the moves 6(ii)-6(v), 6(viii) and 6(xi).
The move 6(i) reverses exactly 3 couples of symmetric crossings. For instance, the
arc DB crosses over AC' in the left picture of Fig. 6(i), but DB crosses under AC
in the right picture. Hence, for at most 6 unordered pairs {a,b} with a # b, the
unordered writhe W, changes by £2. Similarly, for at most 12 ordered pairs (a, b),
the ordered writhe W7, changes by +1 since exactly one crossing of a trace [a] over
a trace [b] either appears or disappears under the move 6(i).

If all the 3 crossings in the disk A in Fig. 6(i) are formed by traces with the
same homological marking [a], then the coordinated writhes W , and Wﬁn\—a,\m—a
change by 46 as required in (1). If two of the above crossings are formed by a
trace [a] and the remaining one by a different trace [b], then we arrive at (2).
The case (3) arises when each of the 3 crossings in A is formed by a different
trace.

In the moves 6(vi) and 6(vii), the overcrossing arc becomes undercrossing and
vice versa, but the sign of the crossing is invariant, i.e. W', does not change. Each
of the moves 6(vi) and 6(vii) deletes exactly one crossing, where a trace [a] crosses
over a trace [b], and adds another crossing, where the trace [a] crosses under the
trace [b]. Under the symmetry 7 — 7 + 7, we get similar conclusions for the traces
marked by [|m| — a| and [[m| — b]. So the ordered writhe W, changes by +1 for
the 4 ordered pairs (a,b), (b,a) and (Jm| — a, |m| —b), (|m| — b, |m| — a).

The move 6(ix) adds or deletes a crossing of a trace circle [a] with itself. Hence,
only the writhes W¢ , and W, _ change by +1. The move 6(x) adds or

a Im|—a
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deletes a crossing between arcs that belong to traces with the same homological
marking [a]. Indeed, a pair of crossings corresponding to these arcs looks like a
horizontal version 7\ of Reidemeister move II, see Fig. 4. By Definition 2.2, the
markings of these crossings are equal. So the conclusion is the same as for the move

6(ix). O

Proof of Theorem 1.4. To prove the first lower bound, it suffices to show that
the right-hand side increases by 1 only if a generic isotopy {K;} passes through a
knot with a fiber quadrisecant. By Lemma 3.2, the unordered writhe changes under
the move 6(i) associated to a fiber quadrisecant, see the correspondence between
singularities and moves in [3, Lemma 5.5]. Six unordered pairs {a,b} provide the
maximal increase 1 as required. Lemma 3.2 also proves the third lower bound since
only the moves 6(i), 6(ii), 6(iv), 6(xi) are relevant for braids.

For the second lower bound, we are interested in crossings whose arcs have the
same marking. By Lemma 3.2, the coordinated writhe changes only under the move
6(i) and two moves 6(ix), 6(x) associated to a fiber extreme secant in knot isotopies.
Under the move 6(i), the right-hand side increases at most by 1 while under the
moves 6(ix) and 6(x) the maximal increase is 1/6 after multiplying by 1/12. m|

Example 3.3. Consider the isotopic closures of the braids 8y = 030201 and 1 =

(010302)203_102_1051. The trace graphs of Bo and Bl are in Fig. 3 and Fig. 7,

! ol = (1)
e awaANa SN A

|

\
\
\

B I WV VI B WV WV
1 (11 2] 131 [1] [21 [1] (31 2] [1] 3] [2] [3]

Fig. 7. The trace graph of the closure of 31 = (010302)2051051051.
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respectively. They were constructed by attaching elementary blocks described in the
proof of Lemma 2.4. So we assume that the closed braids are given by embeddings
into a neighborhood of the torus S} x S;, located vertically in R® — L.

Both graphs split into 3 closed traces (circles with self-intersections) marked by
[1],[2], [3]. The trace graph in Fig. 3 has no crossings, i.e. the writhes of Definition 1.3
vanish. For the trace graph of (1, the non-zero writhes are Wi, =4, Ws;=—4.The
4 signs + and 4 signs — are shown in Fig. 7. The second lower bound of Theorem 1.4
implies that any isotopy connecting the closed braids Bo, 1 involves at least one
fiber quadrisecant. The conclusion is the same for the closures of 5y, 317y, where ~
is any pure 4-braid, i.e. the permutation generated by = is trivial.

Consider the 4-braid 8 = (010302)%(0; ‘o5 05 1)? in Fig. 8 and the sequence
of the braids 8, = 8" 151, n > 1, whose closures are isotopic to Bo, see Fig. 3.
Figure 8 contains the part of TG(Bn) corresponding to a single factor 8 in 3,. So
TG(f,) is obtained from TG(f;) by inserting n— 1 copies of Fig. 8 at the bottom of
Fig. 7. The part in Fig. 8 has the writhes W{, = 3 and W55 = —3. Hence, TG(,)
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Fig. 8. The part of the trace graph for the factor 8 = (010302)2(0;10510;1)2.
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has Wi =3n+ 1 and W§3 = —3n — 1. By Theorem 1.4, any isotopy connecting

the closures of 3y and (3,, involves at least 3’{'2“ fiber quadrisecants. So the second

lower bound of Theorem 1.4 can be arbitrarily large.
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