Drawing a graph in 3 pages within its isotopy class in linear time

Vitaliy Kurlin, http://kurlin.org Microsoft Research Cambridge and Durham University, UK

(日) (日) (日) (日) (日) (日) (日)

Models of knotted structures

Knotted structured in nature are graphs with vertices, not simple closed loops like knots/links.

Spatial (knotted) graphs in \mathbb{R}^3

Def: a spatial graph is an embedding of a finite non-oriented graph $f : G \to \mathbb{R}^3$. So the image f(G) has no self-intersections, but may have double crossings under a planar projection.

If $G \approx S^1$, the spatial graph $S^1 \subset \mathbb{R}^3$ is a knot. If $G \approx \sqcup_{i=1}^m S_i^1$, the spatial graph is called a link.

Isotopy of spatial graphs

Def: an ambient isotopy between spatial graphs $G, H \subset \mathbb{R}^3$ is a continuous family of ambient homeomorphisms $F_t : \mathbb{R}^3 \to \mathbb{R}^3$, $t \in [0, 1]$, where $F_0 = \mathbf{id}$ on \mathbb{R}^3 and $F_1(G) = H$.

イロト イ理ト イヨト イヨト

Reidemeister moves

Thm: diagrams represent isotopic graphs *if and only if* they are connected by a plane isotopy and finitely many moves of these 5 types:

Move *R*5 is only for rigid graphs that have a neighborhood of any vertex in a moving plane.

Gauss code of a knot diagram

Def : fix orientations of edges, label crossings by 1, ..., *n*. Each crossing has a sign $\varepsilon \in \{\pm\}$.

To get a Gauss code, starting from a base point write a word for each edge: *i* for *i*-th overpass, i^{ε} for *i*-th underpass. Trefoil: $12^+31^+23^+$.

Gauss code of a graph diagram

For a diagram of $G \subset \mathbb{R}^3$ we label vertices and encode crossing along each edge of *G*, note a cyclic order of edges at a vertex of deg > 3.

The red graph has 3 words AB, $A1^-2A$, $B12^-B$. A Gauss code determines a plane diagram and is not unique in the isotopy class of $G \subset \mathbb{R}^3$.

Realizability of Gauss codes

An abstract Gauss may not be realizable in \mathbb{R}^2 .

Code 12^+1^+2 has a diagram on a torus, not \mathbb{R}^2 .

One approach is to allow any virtual crossings.

To draw a graph starting from a code, we solve **planarity problem**: which codes are realizable?

Graph G(W) of a Gauss code W

For an abstract Gauss code *W* with *m* letters A, B, C, \ldots (for vertices) and 2n symbols from $\{i, i^+, i^-\}, i = 1, \ldots, n$ (for crossings), we build the graph *G*(*W*) with *m* + *n* vertices labeled by *A*, *B*, *C*, ... and 1, 2, ..., *n* (without signs).

Connect vertices p, q by an edge in G(W) if p, q (possibly with signs) are adjacent in W.

 $W = 12^+31^+23^+$, G(W) is a 'doubled' triangle with 2 edges between pairs of vertices 1, 2, 3.

Carter surface of a Gauss code

Def : define cycles in G(W) by the rule 'always turn left'. The Carter surface S(W) is obtained by attaching a disk along each cycle in G(W).

A Gauss code *W* is realizable $\Leftrightarrow S(W) = S^2$. Linear time algorithm: check that $\chi(S(W)) = 2$.

2-page embedding in linear time

Th (G.L.M.S. ISAAC'07): any planar graph *G* can be embedded into \mathbb{R}^2 with all |V| vertices in *x*-axis and max 1 bend per edge in time O(|V|).

This max non-hamiltonian graph requires bends.

3-page embedding in linear time

Th (VK'14): for a Gauss code *W* of a graph $G \subset \mathbb{R}^3$, an algorithm of complexity O(|W|) draws a 3-page embedding of a graph *H* isotopic to *G* having max 8|W| intersections.

A 3-page embedding $K_5 \subset T_3 \times \mathbb{R}$

Theoretic construction: draw a curve α without any self-intersections that passes through each vertex and crossing of a diagram, deform \mathbb{R}^2 to make α straight, push overpasses into page 3.

Why 3-page embeddings?

3-page embeddings are encoded by words in

this alphabet (similarly for vertices of deg \neq 4)

596

Isotopy of graphs \Leftrightarrow word problem

Th (VK'07): all central elements of a finitely presented semigroup *uniquely encode* all isotopy classes of graphs with vertices deg $\leq n$.

Typical local relations on 3-page embeddings:

15 generators, 84 relations for singular knots.

Summary and future work

- all spatial graphs in ℝ³ are encoded by Gauss codes with a linear decision time
- any spatial graph G ⊂ ℝ³ is isotopic to a 3-page embedding found in linear time
- from real data to theoretical models: recognize knots from a noisy 3D cloud, or from a 2D image (more challenging)
- collaboration is welcome! kurlin.org/blog